
Testing Problems with Sub-Learning Sample Complexity

Michael Kearns
AT&T Labs

mkearns@research.att.com

Dana Ron
M.I.T.

danar@theory.lcs.mit.edu

January 1998

Abstract

We study the problem of determining, for a class of functions H, whether an unknown target function f
is contained in H or is “far” from any function in H. Thus, in contrast to problems of learning, where we
must construct a good approximation to f in H on the basis of sample data, in problems of testing we are
only required to determine the existence of a good approximation. Our main results demonstrate that, over
the domain [0; 1]d for constant d, the number of examples required for testing grows only as ~O(

p
s) for both

decision trees of size s and a special class of neural networks with s hidden units. This is in contrast to the

(s) examples required for learning these same classes. Our tests are based on combinatorial constructions
demonstrating that these classes can be approximated by small classes of coarse partitions of space, and rely
on repeated application of the well-known birthday paradox.

1 Introduction

A considerable fraction of the computational learning theory literature is devoted to a basic and natural question:
for a given class of functions H and a distribution P on inputs, how many random examples of an unknown
function f are required in order to construct a good approximation to f inH? In this paper, we consider a natural
and potentially important relaxation of this problem: how many random examples of an unknown function f are
required in order to simply test whether a good approximation to f exists in H? Thus, in contrast to the standard
learning problem, in problems of testing we are not required to actually construct a good hypothesis, but only to
assert its existence — so under the appropriate definitions, the resources required for testing are always at most
those required for learning. In this work, we show that for certain natural classes H , the number of examples
required for testing can actually be considerably less than for learning. Even more dramatic gaps are shown to
hold when the measure is the number of queries required.

The motivation for studying learning problems is by now obvious. Why study testing problems? In addition
to its being a basic statistical question, if we can find fast and simple solutions for testing problems that require
little data, we can use them to choose between alternative hypothesis representations without actually incurring
the expense of running the corresponding learning algorithms. For example, suppose that in a setting where
data is expensive, but the final accuracy of our learned hypothesis is paramount, we are considering running
C4.5 (a fast algorithm) to find a decision tree hypothesis (a relatively weak representation). But we also want to
entertain running backpropagation (a slow algorithm) to find a multilayer neural network (a relatively powerful
representation, requiring more data, but with perhaps greater accuracy). Ideally, we would like a fast, low-data
test that informs us whether this investment would be worthwhile.

The results we present here are far from providing tests of such practicality, but they do examine natural
and common hypothesis representations, and introduce some basic tools for testing algorithms that may point
the way towards further progress. Specifically, our main results demonstrate tests for s-node decision trees, and
for a special class of neural networks of s hidden units (both over [0; 1]d), that require only ~O(

p
s)1 random

examples when the input dimension d is held constant and the underlying distribution is uniform. This is in stark
contrast to the
(s) examples required, under the same conditions, to learn a hypothesis that is even a weak
approximation to such functions. The tests we describe will “accept” any function that is a size s decision tree or
neural network, and “reject” any function that is “far” from all size s0 decision trees or neural networks, where
s0 is not too much larger than s. Thus, even though acceptance ensures the existence of a small decision tree
or neural network nontrivially approximating the target function, we have far fewer examples than necessary to
construct the approximation. We also provide tests using membership queries in which the difference between
testing and learning is even more dramatic, from
(s) queries required for learning to poly(log(s)) or even a
constant number of queries required for testing.

How are such tests possible? We begin by noting that they must look quite different from the standard
learning algorithms. With only ~O(

p
s) examples, if we begin by seeing how well we can fit the data with a size

s function, we will always be able to achieve zero training error, even if the labels were generated randomly. The
tests we describe are based on two central ideas: locality and the Birthday Paradox. Roughly speaking, for both
decision trees and neural networks, we show that there are different notions of two points in the domain being
“near” each other, with the property that for any size s function, the probability that a pair of near points have
the same label significantly exceeds 1=2. It is not hard to construct notions of nearness for which this will hold
— for instance, calling two points near only if they coincide. The trick is to give the weakest such notion, one
sufficiently weak to allow the application of the Birthday Paradox. In particular, we use the Birthday Paradox to
argue that a small sample is likely to contain a pair of near points. Thus, all of the resulting tests are appealingly
simple: they involve taking a small sample or making a small number of queries, pairing nearby points, and

1The ~O(�) notation is used to hide poly-logarithmic factors. For simplicity, in this introduction we use it for a slightly faster growing
function (in the case of decision trees). For a precise statement see our theorems.

1

checking the fraction of pairs in which the two points have common labels.
The heart of our proofs are purely combinatorial lemmas in which we prove that certain notions of locality

yield relatively coarse partitions of space that can approximate the partition induced by any small decision tree
or neural network, respectively. We believe these combinatorial lemmas are of independent interest and may
find application elsewhere. They have an unfortunate exponential dependence on the input dimension, which is
why our tests are of interest only for fixed dimension, and will reject only functions that are rather far from the
reference class H . Improvements or variations on these combinatorial constructions and the resulting tests are
interesting open problems.

There are several lines of prior work that inspired the current investigation. Problems of testing and their
relationship to learning were recently studied by Goldreich et. al. [1], whose framework we follow and generalize;
their positive results are for graph-theoretic problems not typically examined in the learning literature, and their
tests all require queries. Our work can be viewed as a study of the sample complexity of classical hypothesis
testing [4] in statistics, where one wishes to accept or reject a “null hypothesis”, such as “the data is labeled by
a function approximable by a small decision tree”.

The outline of the paper is as follows: in Section 2, we introduce several related notions of testing. Section 3
illuminates the basic ideas of locality and the Birthday Paradox on a simple toy example, interval functions on
the real line. In Sections 4 and 5 we give our main testing results for decision trees and a special class of neural
networks, respectively. In Section 6 we prove an interesting connection between testing and the standard notion
of weak learning from the computational learning theory literature. In Appendix A we show a lower bound on
the number of examples required for testing the classes we consider, which matches our upper bounds, in terms
of the dependence on s, up to logarithmic factors.

2 Definitions

We start by noting that though we consider only Boolean function, our definitions easily generalize to real-valued
functions. We begin with a needed definition for the distance of a function from a class of functions.

Definition 1 Let f and f 0 be a pair of functions over domain X , H a class of functions over X , and P a

distribution over X . The distance between f and f 0 with respect to P is distP (f; f 0)
def
= Prx�P [f(x) 6= f 0(x)],

and the distance between f and H (with respect to P) is distP (f;H)
def
= minf 02H distP (f; f

0). For � 2 [0; 1],
if distP (f;H) > �, then we say that f is �-far from H (with respect to P). Otherwise, it is �-close. We use
dist(�; �) as a shorthand for distU(�; �), where U is the uniform distribution over X .

Before giving our definitions for testing problems, we reiterate the point made in the introduction that the
resources required for testing for H will always be at most those required for learning H in the standard models.
Our interest is in cases where testing is considerably easier than learning.

In our first definition of testing we generalize the definition given by Goldreich et al. [1]. There the task
was to determine whether an unknown function f belongs to a particular class of functions H or is �-far from
H . We relax this definition to determining whether f 2 H or f is �-far from a class H 0, where H 0 � H . This
relaxation is especially appropriate when dealing with classes of functions that are indexed according to size. In
such a case, H might contain all functions of size at most s (for instance, decision trees of at most s leaves) in
a certain family of functions H (all decision trees), while H 0 might contain all functions in H that have size at
most s0, where s0 � s. An ideal test would have H 0 = H (s0 = s), and � arbitrarily small, but it should be clear
that relaxations of this ideal are still worthwhile and nontrivial.

Definition 2 Let H be a class of functions over X , let H 0 � H , let � 2 (0; 1=2], and let P be a distribution
over X . We say that H is testable with rejection boundary (H 0; �) in m examples (respectively, m queries) with

respect to P if there is an algorithm T such that:

2

� If T is given m examples, drawn according to P and labeled by any f 2 H (respectively, T makesm queries
to such an f), then with probability 2=3, T accepts.

� If T is given m examples, drawn according to P any labeled by any function f that is �-far from H 0 with
respect to P (respectively, T makes m queries to such an f), then with probability 2=3, T rejects.

If neither of the above conditions on f holds, then T may either accept or reject.

Note that our insistence that the success probability of the algorithm be at least 2=3 is arbitrary; any constant
bounded away from 1=2 will do, as the success probability can be amplified to any desired value 1 � � by
O(log(1=�)) repetitions of the test.

Our next definition can be viewed as pushing the rejection boundary of the previous definition to the extreme
of truly random functions.

Definition 3 Let H be a class of functions over X , and let P be a distribution over X . We say that H is testable

against a random function in m examples with respect to P if there is an algorithm T such that:

� If T is given m examples drawn according to P and labeled by any f 2 H , then with probability 2=3, T
accepts.

� If T is given m examples drawn according to P and labeled randomly, then with probability 2=3, T rejects.
The probability here is taken both over the choice of examples and their random labels.

Note that whenever H is such that with high probability a random function is �-far from H (for some
� < 1=2), and H is testable with rejection boundary (H; �) in m examples (queries), then it is testable against a
random function in m examples (queries).

Our final definition has a slightly different flavor than the previous two. Here there are two classes of
functions, H1 and H2, and the task is to determine whether f belongs to H1 or to H2.

Definition 4 Let H1 and H2 be classes of functions over X , and let P be a distribution over X . We say that
(H1; H2) are testable in m examples (respectively, m queries) with respect to P if there is an algorithm T such
that:

� If T is given m examples, drawn according to P and labeled by any f 2 H1 (respectively, T makes m
queries to such an f), then with probability 2=3, T outputs 1.

� If T is given m examples, drawn according to P and labeled by any f 2 H2 (respectively, T makes m
queries to such an f), then with probability 2=3, T outputs 2.

If neither of the above conditions on f holds, then T may output either 1 or 2.

Note that in the above definition it is implicitly assumed that there is a certain separation between the
classes H1 and H2 — that is, that there exists some � 2 (0; 1] such that for every h1 2 H1 and h2 2 H2,
distP (h1; h2) > �. Otherwise, it would not be possible to distinguish between the classes in any number of
examples. An alternative definition would require that the testing algorithm be correct only when the function
f belongs to one class and is �-far from the other.

3 Interval Functions

We start by describing and analyzing a testing algorithm for the class of interval functions. The study of this
simple class serves as a good introduction to subsequent sections.

For any size s, the class of interval functions with at most s intervals, denoted INTs, is defined as follows.
Each function f 2 INTs is defined by t � s� 1 switch points, a1 < : : : < at, where ai 2 (0; 1). The value of

3

f is fixed in each interval that lies between two switch points, and alternates from 0 to 1 (or 1 to 0) when going
from one interval to the next.

It is not hard to verify that learning the class INTs requires
(s) examples (even when the underlying
distribution is uniform). In fact,
(s) is also a lower bound on the number of membership queries necessary
for learning. As we show below, the complexity of testing under the uniform distribution is much lower — it
suffices to observe O(

p
s) random examples, and the number of queries that suffice for testing is independent

of s.

Theorem 1 For any integer s > 0 and � 2 (0; 1=2], the class of interval functions INTs is testable with
rejection boundary (INTs=�; �) under the uniform distribution in O(

p
s=�2:5) examples or O(1=�2) queries.

The running time of the testing algorithm is linear in the number of examples (respectively, queries) used.

The basic property of interval functions that our testing algorithm exploits is that most pairs of close points
belong to the same interval, and thus have the same label. The algorithm scans the sample for such close pairs
(or queries the function on such pairs), and accepts only if the fraction of pairs in which both points have the
same label is above a certain threshold. In the proof below we quantify the notion of closeness, and analyze its
implications both on the rejection boundary for testing and on the number of examples needed. Intuitively, there
is the following tradeoff: as the distance between the points in a pair becomes smaller, we are more confident
that they belong to the same interval (in the case that f 2 INTs); but the probability that we observe such pairs
of points in the sample becomes smaller, and the class H 0 in the rejection boundary becomes larger.

Proof: We first describe the testing algorithm in greater detail. Let s0 = s=�, and consider the partition of the
domain [0; 1] imposed by a one-dimensional grid with s0 equal-size cells (intervals) c1; : : : ; cs0. Given a sample
S of size m = O(

p
s0=�2), we sort the examples x1; : : : ; xm into bins B1; : : : ; Bs0, where the bin Bj contains

points belonging to the cell cj. Within each (non-empty) bin Bj , let xi1 ; xi2 ; : : : ; xit be the examples in Bj

according to their order in the sample, and let us pair the points in each such bin according to this order (i.e.,
xi1 is paired with xi2 , xi3 with xi4 , and so on). We call these pairs the close pairs, and we further call a pair
pure if it is close and both points have the same label. The algorithm accepts f if the fraction of pure pairs
is at least 1 � 3�=4; otherwise it rejects. When the algorithm is instead allowed queries, it uniformly selects
m0 = O(1=�2) of the grid cells, uniformly draws a pair of points in each cell chosen, and queries f on these
pairs of points. The acceptance criteria is unaltered.

Our first central observation is that by our choice of m, with high probability (say, 5=6), the number m00

of close pairs is at least m0 = O(1=�2). To obtain this lower bound on m00, assume we restricted our choice
of pairs by breaking the random sample into 4m0 random subsamples, each of size 2

p
s0, and considered only

close pairs that belong to the same subsample. We claim that by the well-known Birthday Paradox, for each
subsample, the probability that the subsample contains a close pair is at least 1=2. To see why this is true,
think of each subsample S 0 as consisting of two parts, S 0

1 and S 0
2, each of size

p
s0. We consider two cases:

In this first case, S 0
1 already contains two examples that belong to a common cell and we are done. Otherwise,

each example in S 0
1 belongs to a different cell. Let this set of cells be denoted C and recall that all cells have

the same probability mass. Thus, the probability that S 0
2 does not contain any example from a cell in C is

(1� 1=jCj)jS0

2j = (1� (1=
p
s0))

p
s0 < e�1 < 1=2, as claimed. Hence, with very high probability, at least a

fourth of the subsamples (i.e., at least m0) will contribute a close pair, in which case m00 � m0. Since the close
pairs are equally likely to fall in each cell cj and are uniformly distributed within each cell, the correctness of
the algorithm when using examples reduces to its correctness when using queries, and so we focus on the latter.
Note that had we made the grid more refined (and so decreased the distance between each close pair) the number
of examples required would grow respectively.

To establish that the algorithm is a testing algorithm we need to address two cases.

CASE 1: f 2 INTs. For t = 1 : : : ; m0, let �t be random variable that is 1 if tth close pair is pure, and 0
otherwise. Thus �t is determined by a two stage process: (1) The choice of the t’th grid cell ct; (2) The selection

4

of the two points inside that cell. When ct is a subinterval of some interval of f , then the points alway have
the same label, and otherwise they have the same label with probability at least 1=2. Since f has at most s
intervals, the number of cells that intersect intervals of f (i.e., are not subintervals of f ’s intervals) is at most s,
and since there are s=� grid cells, the probability of selecting such a cell is at most �. It follows that for each t,
E[�t] � (1� �) � 1 + � � (1=2) = 1� �=2. By an additive Chernoff bound, with probability at least 2=3, the
average of the �t’s (which is just the fraction of close pairs that are pure), is at least 1� 3�=4, as required.

CASE 2: dist(f; INTs0) > �. In order to prove that in this case the algorithm will reject with probability at least
2=3 we prove the counterpositive: If the algorithm accepts with probability greater than 1=3 then there exists a
function f 0 2 INTs0 that is �-close to f .

Let f 0 2 INTs0 be the (equally spaced) s0-interval function that gives the majority label according to f to each
grid cell. We claim that if f is accepted with probability greater than 1=3 then dist(f; f 0) � �. For contradiction
assume thatdist(f; f 0) > �. For each grid cell cj let �j 2 (0; 1=2] be the probability mass of points in cj that have
the minority label of f among points in cj. Thus, dist(f; f 0) = Ej [�j], and so, by our assumption, Ej[�j] > �.

On the other hand, if we define �t as in Case 1, then we get that E[�t] = Ej

h
(1� �j)

2 + �2j

i
� 1� Ej [�j]

where the second inequality follows from � � 1=2. By our assumption on f , E[�t] < 1� �, and by applying an
additive Chernoff bound, with probability greater than 2=3, the average over the �t’s is less than 1� 3�=4.

4 Decision Trees

In this section we study the problem of testing for decision trees over [0; 1]d. Given an input ~x = (x1; : : : ; xd),
the (binary) decision at each node of the tree is whether xi � a for some i 2 f1; : : : ; dg and a 2 [0; 1]. The
labels of the leaves of the decision tree are in f0; 1g. We define the size of such a tree to be the number of
leaves it has, and we let DTd

s denote the class of decision trees of size at most s over [0; 1]d. Thus, every tree
in DTd

s determines a partition of the domain [0; 1]d into at most s axis aligned rectangles, each of dimension d
(the leaves of the tree), where all points belonging to the same rectangle have the same label.

As in the testing algorithm for interval functions, our algorithm for decision trees will decide whether to
accept or reject a function f by pairing “nearby” points, and checking that such pairs have common labels.
The naive generalization of the interval function algorithm would consider a “grid” in d-dimensional space with
(s=�)d cells, each of uniform length in all dimensions. Unfortunately, in order to observe even a single pair
of points that belong to the same grid cell, the size of the sample must be
(

p
(s=�)d), which for d > 1 is

superlinear in s, and represents no savings over the sample size for learning.
Instead of considering this very refined and very large grid, our algorithm will instead consider several much

coarser grids. The heart of our proof is a combinatorial argument, which shows that there exists a (not too large)
set of (relatively coarse) d-dimensional grids G1; : : : ; Gk for which the following holds: for every function
f 2 DTd

s , there exists a grid Gi such that a “significant” fraction of the cells in Gi “fit inside” the leaves of f
— that is, very few of the cells of Gi fall on a decision boundary of f .

Theorem 2 For any size s, dimension d and constant C � 1, let s0 = s0(s; d; C) def
= 2d+1(2s)1+1=C. Then

the class of decision trees DTd
s is testable with rejection boundary

�
DTd

s0 ;
1
2 � 1

2d+5(Cd)d

�
with respect to the

uniform distribution in ~O
�
(2Cd)2:5d � s 1

2 (1+1=C)
�

examples, or O
�
(2Cd)2d � log(s)d+1

�
queries. The time

sufficient for testing is at most (2 log(2s))d larger than the number of examples (respectively, queries) used.

In order for the sample sizes of Theorem 2 to represent a substantial improvement over those required for
learning, we must think of the input dimension d as being a constant. In this case, for a sufficiently large constant
C, Theorem 2 says that it is possible to distinguish between the case in which a function is a decision tree of
size s, and the case in which the function is a constant distance from any tree of size s0 (where s0 is not much

5

bigger than s), using only about an order of
p
s examples or about an order of log(s) queries. Again, it is easy

to verify that
(s) examples or queries are required for learning in any of the standard models.
A possible criticism of the above result is that the distance parameter in the rejection boundary implies that

any function that has a significant bias towards either 1 or 0 (and in particular, a biased coin) will pass the test.
Here we simply note that our testing algorithm can be slightly modified to address this problem, and defer details
until the full paper.

As mentioned above, when queries are allowed we can generalize Theorem 2 as follows.

Theorem 3 For any s and for any �, the class of decision trees DTd
s is testable with rejection boundary�

DTd
(sd=�)d ; �

�
and with respect to the uniform distribution with O(1=�2) queries and in time O(1=�2).

Because the proof of Theorem 3 is very similar to the proof of Theorem 1, it is omitted, and we direct our
attention to proving Theorem 2.

The following combinatorial lemma is the main step in proving Theorem 2. We shall need the following
notation: For a d-dimensional rectangle R = (R1; : : : ; Rd), where Rj 2 [0; 1], we let V (R) denote the volume
of R, so V (R) =

Qd
j=1Rj. If Q and R are d-dimensional rectangles, we say that Q fits in R if Qi � Ri for

all i. Note that this notion is independent of the position of Q and R in space.

Lemma 4 Let R1; : : : ; Rt be rectangles in [0; 1]d, each of volume v 2 [0; 1]. Then for any natural number
k � d, there exists a rectangle Q in [0; 1]d such that V (Q) � v1+(d�1)=k andQ fits in at least a fraction k�(d�1)

of R1; : : : ; Rt.

Proof: We shall prove the lemma by induction. For d = 1 the “rectangles” R1; : : : ; Rt are simply line segments
of length at least v, and so the line segment of length exactly v fits in all of them. Assume the induction hypothesis
holds for d� 1, we prove it for d. For each rectangle Ri and 1 � j � d, we denote by Ri

j the length of Ri in

dimension j. By our assumption on the volume of the rectangles,
Qd

j=1R
i
j � v. Let Vd�1(R

i)
def
=
Qd�1

j=1 R
i
j

be the volume of the projection of Ri to the first d � 1 dimensions. Thus, for each Ri, v � Vd�1(R
i) � 1.

Assume, without loss of generality, that R1; : : : ; Rt are ordered according to Vd�1(R
i), so that Vd�1(R

1) is
largest.

Given a natural number k � d, we partition the rectangles R1; : : : ; Rt into k bins as follows. For ` =
1; : : : ; k, let b` = v

`
k , and let the `th bin, denotedB`, consist of all rectanglesRi such that b` � Vd�1(Ri) < b`�1

(where b0
def
= 1). Since there are only k bins, there exists a bin, denoted Bg, that contains at least k�(d�1) of

the rectangles R1; : : : ; Rt. We focus on the rectangles in this bin.
Consider the set, denoted B0

g , of (d� 1)-dimensional rectangles containing the projections of the rectangles
inBg to the first d�1 dimensions. Then, by definition of the bins, each of the (d�1)-dimensional rectangles in
B0
g has volume at least bg. Assume without loss of generality that they all have volume exactly bg.2 By applying

the induction hypothesis on the rectangles in B0
g , we have that there exists a rectangle Q0 (of dimension d� 1)

that has volume at least b1+(d�2)=k
g and fits in at least k�(d�2) of the rectangles in B0

g.
On the other hand, for each Ri 2 Bg , we also have that Ri

d � v=bg�1. Combining this with the above
application of the induction hypothesis, we know that there exists a d-dimensional rectangle Q such that

V (Q) � v
bg�1

� b1+
d�2
k

g and Q fits in at least k�(d�1) of all rectangles R1; : : : ; Rt. If we now substitute bg�1

and bg in the above lower bound on V (Q), we get that

2If this is not the case, we can consider a modified set, denoted B00

g , of (d � 1)-dimensional rectangles, which we define as follows.
For each rectangle R = (R1; : : : ;Rd�1) in B0

g we have a rectangle R0 = (R1; : : : ;R
0

d�1) such that R0

d�1 = Rd�1 � bg=V (R) so
that R0 has volume exactly bg . Clearly, if some (d� 1)-dimensional rectangle fits in a certain fraction of rectangles in B00

g , then it fits in
at least the same fraction in B00

g .

6

V (Q) � v

v
g�1
k

�
�
v

g
k

�1+ d�2
k

= v(1�
g�1
k

+ g�(k+d�1)

k2) = v(1+
k+g�(d�2)

k2) (1)

which for g <= k (and v � 1) is at least v1+
d�1
k

Lemma 4 shows that some “large” rectangle Q must fit inside “many” rectangles in a given collection;
this statement ignores the absolute position of the rectangles under consideration. We now translate this to a
statement about decision trees, where the rectangles defined by the leaves do in fact have absolute positions. We
show that if we now take a “grid” in which every cell is an identical (scaled) copy of Q, then very few cells will
intersect a decision boundary of the decision tree — that is, almost all cells are purely labeled by the function.

Lemma 5 Let f be a decision tree in DTd
s , and let R1; : : : ; Rs be the d-dimensional rectangles defined by the

leaves of f . Let � 2 [0; 1], and suppose there exists a rectangle Q = (Q1; : : : ; Qd) such that the total volume
of the rectangles among R1; : : : ; Rt in which Q fits is at least �. Consider a rectilinear partition G over [0; 1]d

where for every j 2 f1; : : : ; dg, each cell in G is of length Qj=2 in dimension j. Then the fraction of grid cells
in G that fall entirely inside leaves of f is at least � � 2�d.

Proof: For each rectangle Ri, let Li be the leaf in f to which Ri corresponds. We say that Ri (respectively, Li)
is good with respect to Q if Q fits inside Ri. We shall show that for each good leaf Li the total volume of all
grid-cells that fit inside it is at least 2�(d+1) � V (Ri). Since the total volume of all good leaves is at least �, the
lemma follows.

Consider any good rectangle Ri = (Ri
1; : : : ; R

i
d) and the corresponding leaf Li. For each dimension j, let

rij
def
= Ri

j=Qj . Hence, by definition, V (Ri) = V (Q) �Qj r
i
j. Let �Ri = (�Ri

1; : : : ;
�Ri
d) be the d-dimensional

rectangle defined by the grid-cells of G that fit inside Li. Since the grid-cells have length at most Qj=2
in each dimension j, we have that �Ri

j � Ri
j � Qj=2, and so V (�Ri) � V (Q) � Qj(r

i
j � 1=2). Therefore

V (�Ri)=V (Ri) � Q
j(r

i
j � 1=2)=rij. Since Q fits inside Ri, rij � 1 for each j, and so V (�Ri)=V (Ri) � 2�d,

as claimed.

Proof of Theorem 2: We start by describing the testing algorithm. Let m = O(23d=2(Cd)2d+1(2s)
1
2 (1+1=C) �

log log(s)) be the size of the sample provided to the algorithm, and let n = d(1 + 1=C) � log(2s)e. For each
setting of (i1; : : : ; id) such that the ij’s are integers ranging between 1 and n, and

P
ij = n, the algorithm

considers the grid G(i1; : : : ; id) over [0; 1]d whose grid-cells have length 2�(ij+1) in dimension j. For each
such grid, the algorithms checks whether, among the set of (disjoint) pairs of points in the sample that fall in a
common grid-cell, the fraction that have the same label is at least 1

2
+ 1

2d+4(Cd)d
. (In the query version of the

algorithm, the algorithm uniformly selects m0 = O((2Cd)2d+1 � log log(s)) grid cells in each grid, and for each
cell chosen, it uniformly selects two points in the cell and queries f on these points.)

The proof that for any f such that dist(f;DTd
s0) >

1
2
� 1

2d+5(Cd)d�1 , the algorithm rejects f with probability

at least 2=3, (or, equivalently, that any function that is accepted with probability greater than 1=3 is (1
2
�

1
2d+5(Cd)d�1)-close to DTd

s0), is analogous to the special case of the interval functions proved in Theorem 1, and
is hence omitted.

In the remainder of the proof we analyze the case in which the function f is in fact a decision tree in DTd
s.

We show that for each f 2 DTd
s, there exists a grid G(i1; : : : ; id), such that fraction of grid cells that fits inside

leaves of f is at least 2�(d+2) � (Cd)�(d�1). From that point on the proof proceed as the proof of Theorem 1
(details omitted).

Let R1; : : : ; Rs be the rectangles corresponding to the leaves of f . Consider those rectangles among
R1; : : : ; Rs that have volume at least 1=(2s), and assume, without loss of generality that these are R1; : : : ; Rt.
Thus, the total volume of R1; : : : ; Rt is at least 1=2. We would like to apply Lemma 4 to these rectangles;
however, they do not all have exactly the same volume. We therefore “cut them up” into rectangles of volume
exactly 1=(2s). More precisely, for each rectangle Ri = (Ri

1; : : : ; R
i
d) such that V (Ri) � 1=(2s), let

7

ri
def
= bV (Ri)=(1=(2s)c, be the number of (whole) rectangles with volume 1=(2s) that can fit (“side-by-side”)

in Ri. For each 1 � ` � ri, let Ri;` = (Ri
1; : : : ; �R

i
d), where �Ri

d
def
= (1=(2s))=

Qd�1
j=1 R

i
j. Thus, for each

`, V (Ri;`) = 1=(2s), and Ri;1; : : : ; Ri;ri can all fit “side-by-side” in Ri (with a possible “left-over” smaller
rectangle). The rectangles R1;1; : : : ; R1;r1; : : : ; Rt;1; : : : ; Rt;rt all have volume exactly 1=(2s), and their total
volume is at least 1=4.

Suppose we now apply Lemma 4 to these (at most 2s) rectangles, setting k = C � d. Then, by the lemma,
there exists a rectangle Q = (Q1; : : : ; Qd), that has volume at least (1=(2s))1+1=C and fits inside at least a
fraction (Cd)�(d�1) of R1;1; : : : ; Rt;rt. Recall that R1;1; : : : ; Rt;rt are simply sub-rectangles of a subset of
R1; : : : ; Rs, their total volume is at least 1=4, and they all have equal volume. Therefore, the total volume of the
rectangles amongR1; : : : ; Rs into whichQ fits is at least 1

4
�(Cd)�(d�1). Since V (Q) � (1=2s)�(1+1=C) � 2�n

(where n is as set in Step (1) of the algorithm), there must be at least one iteration of the algorithm in which the
gridG(i1; : : : ; id) (defined in Step (2) of the algorithm) has cells with length at most Qj=2 in each dimension j.
Let us denote this grid by Ĝ. By applying Lemma 5 we obtain that the fraction of grid cells (in Ĝ) that fit inside
leaves of f is at least 2�(d+2) � (Cd)�(d�1). From this point on we proceed as in the proof of Theorem 1.

5 Aligned Voting Networks

In this section we study a restricted class of neural networks over [0; 1]d called Aligned Voting Networks. These
are essentially neural networks in which the hyperplane defining each hidden unit is constrained to be parallel
to some coordinate axis, and the output unit takes a majority vote of the hidden units.

Definition 5 An aligned hyperplane over [0; 1]d is a function h : [0; 1]d ! f+1;�1g of the form h(~x) =
sign(xi�a) for some dimension i 2 f1; : : : ; dg and some a 2 [�1; 1] (where sign(0) is defined to be +1). An

aligned voting network over [0; 1]d is a function f : [0; 1]d ! f+1;�1g of the form f(~x) = sign
�Ps

i=j hj(~x)
�

,

where each hj(~x) is an aligned hyperplane over [0; 1]d. The size of f is the number of voting hyperplanes s.

An alternative way of viewing an aligned voting network f is as a constrained labeling of the cells of a
rectilinear partition of [0; 1]d. For each dimension i, we have positions aji 2 [0; 1] and orientations uji 2
f+1;�1g. The hyperplanes xi = aji define the rectilinear partition, and f is constant over each cell c: for any
~x, we define #(~x) =

Pd
i=1

Psi
j=1 sign(xi � ujia

j
i) (where si is the number of aligned hyperplanes that project

on dimension i), and then f(~x) = sign(#(~x)). By extension, for each cell c of the partition, we define #(c)
as the constant value of #(~x) for all ~x 2 c, and f(c) as the constant value of f(~x) for all ~x 2 c.

A decision tree of size s defines a partition of space into only s cells, each of which may be labeled
arbitrarily. An aligned voting network of size s also naturally defines a partition of space, but into many more
cells, exponential in d. Indeed, already in 3 dimensions, if s=3 of the aligned hyperplanes project into each
dimension, the rectilinear partition defined by these hyperplanes has (s=3)3 cells, and waiting for two points to
fall in a common cell will take more than s examples. Instead, we will exploit the fact that the labels of the
cells in this partition are far from arbitrary, but are instead determined by the vote over the hyperplanes. It will
turn out that if instead of considering two points to be near only if they fall in the same cell of the partition, we
consider them to be near even if they fall in the same slice of the partition (where a slice contains all the cells
sharing some fixed range of values for a single dimension), we can obtain the desired balance: with a number of
examples sublinear in s, we can get a near pair, and the chances that such a pair is purely labeled is significantly
greater than 1=2.

Theorem 6 Let AVNd
s denote the class of aligned voting networks of size at most s over [0; 1]d. Then for

any s and d, AVNd
s is testable with rejection boundary (AVNd

2�62d+1s;
1
2
� 1

62d+3
) with respect to the uniform

distribution in O(62
d+6p

s) examples (and time), or O(62
d+6

) queries (and time).

8

Again, the theorem is interesting in comparison to the resources required for standard learning only if d is
a constant with respect to s. Along the lines of our comments following Theorem 2, here too we can slightly
modify the algorithm so that it will not automatically accept biased random functions (details omitted).

Before giving the proof of Theorem 6, let us make some simple but useful technical observations about
aligned voting networks. For a given network f 2 AVNd

s defined by hyperplanes fajig and orientations fujig,
we define slice(i; j) to consist of all those partition cells in which the ith component falls between aji and aj+1

i

(that is, the cells falling between the jth and j + 1st aligned hyperplanes in dimension i). Note that in going
from slice(i; j) to slice(i; j + 1), either the count #(c) of every cell c increases by 2, or the count of every
cell decreases by 2 (depending on the orientation uji), since the only change is with respect to aji . This implies
that for any i, and for any j and j 0, the ordering of the cells by their counts is preserved between the parallel
slice(i; j) and slice(i; j 0). This leads to a simple but important property that we call the continuation property:
if c has the `th largest count in slice(i; j), and at least ` of the cells have positive counts (and thus, f is +1
on them), then the projection c0 of c into any parallel slice(i; j 0) containing at least ` positive counts will also
satisfy f(c0) = +1. The following combinatorial lemma, which is central to our proof, exploits this property.

Lemma 7 Let f be an aligned voting network over [0; 1]d of size at most s. If Pr[0;1]d [f(~x) = +1] � 1
2 �
d

then there exists a dimension i such that the total probability mass (with respect to the uniform distribution) of
the slice(i; j) of f for which P j

i = Prslice(i;j)[f(~x) = +1] � 1
2 +
d is at least 2
d, where
d = 1=(62

d+1

).
(Note that P j

i is simply the “positive bias” of f on a random point from slice(i; j).) Thus, as long as an aligned
voting network is not significantly biased away from +1, the probability mass of the slices on which the network
in fact has a significant bias towards +1 is non-negligible.

In fact, the lemma remains true (with a slightly different setting of
d if we exchange 1=2 by some p � 1=2.
However, in our application, the worst case is when p = 1=2.
Proof: For i 2 f1; : : : ; dg let a1i < : : : < asii be the aligned hyperplanes of f . We prove the claim by induction
on d. For the base case d = 1, we have at most s intervals of [0; 1] each labeled either +1 or �1. If the overall
probability that f is +1 is at least (1=2)�
1, then in fact the total probability mass of the intervals labeled +1
is (1=2)�
1. Solving 2
1 = (1=2)�
1 yields
1 = 1=6.

Now suppose the claim holds for every d0 < d, and assume that the probability that f is +1 over [0; 1]d is
at least (1=2)�
d. Let 0 � �H � r (the subscript H stands for “high bias”) denote the total probability mass
of all slice(d; j) satisfying P j

d � (1=2) +
d, and let �L be the total probability mass of slice(d; j) satisfying
P j
d � (1=2)�
d�1 (“low bias”). Then we have that

�L ((1=2)�
d�1) + (1� �L � �H) ((1=2) +
d) + �H � 1 � (1=2)�
d : (2)

From this we obtain �H � 1
(1=2)�
d ((
d +
d�1)�L � 2
d). If �L satisfies

�L � ((1=2)�
d)2
d + 2
d

d +
d�1

(3)

then we have �H � 2
d, as desired.
Otherwise, let k be the index j that satisfies P j

d � (1=2)�
d�1 while minimizing P j
d ; thus, slice(d; k)

is the slice that “comes closest” to being low bias without being low bias. Note that f restricted to slice(d; k)
meets the inductive hypothesis for d � 1 dimensions; thus slice(d; k) must contain “subslices” (in which now
both xd ranges between akd and ak+1

d and for some other dimension d0 < d, and some k0, xd0 is between ak
0

d0

and ak
0+1

d0) whose relative probability (with respect to slice(d; k)) is at least
d�1 and whose positive (+1) bias
exceeds (1=2) +
d�1 (that is, the probability that f is +1 exceeds (1=2) +
d�1 in each of these subslices).
Since slice(d; k) was chosen to have minimum positive bias among all the slice(d; j) of positive bias at least
(1=2)�
d�1, by the continuation property, if c is a cell of slice(d; k) that is positively labeled by f , then the

9

projection of c into any of these parallel slice(d; j) must also be positively labeled by f . In other words, we
may take each positive cell in the biased subslices of slice(d; k), and when we project each such cell along
dimension d, it remains positive.

Since the total probability mass of slices (along dimension d) having bias at least (1=2) �
d�1 is at
least 1 � �L, we obtain that the total probability of slices along dimension d0, that have positive bias at least
((1=2)+
d�1)(1� �L), is at least 2
d�1. For this bias to be at least (1=2) +
d we must have

�L �
d�1 �
d
(1=2) +
d�1

(4)

and in addition we need
d�1 �
d.
Returning to the earlier constraint on �L given by Equation (3), we find that Equations (3) and (4) can both

be satisfied provided
((1=2)�
d)2
d + 2
d

d +
d�1

�
d�1 �
d
(1=2) +
d�1

(5)

First note that ((1=2)�
d)2
d + 2
d

d +
d�1

� (1=2)2
d+ 2
d

d�1

=
3
d

d�1

(6)

and
d�1 �
d
(1=2)+
d�1

�
d�1 �
d �
d�1=2 (7)

(where the last inequality holds whenever
d <
d�1=2, which holds in our case assuming
1 � 1=2), so
it suffices to enforce that 3
d=
d�1 �
d�1=2 or equivalently
d �
2

d�1=6. Thus we obtain the constraint

d �
2d

1 =6d, which is satisfied by the choice
d = 1=(62
d+1

) given in the lemma.
The corollary below follows directly from Lemma 7.

Corollary 8 Let f be an aligned voting network over [0; 1]d of size s. For i 2 f1; : : : ; dg and j 2 f0; : : : ; 2 �
62

d+1 � s � 1g, let bji = j=(2 � 62d+1 � s), and let slice(i; j) be the slice between the hyperplanes xi = bji and
xi = bj+1

i . If Pr[0;1]d [f(~x) = +1] � (1=2)�
d then there exists a dimension i such that the total probability
mass (with respect to the uniform distribution) of the slice(i; j) for which Prslice(i;j)[f(~x) = +1] � (1=2)+
d
is at least
d, where
d = 1=(62

d+1

).

All that is missing for the proof of Theorem 6 is to show that any function defined by an arbitrary labeling of
some s0 parallel slices (determined by a set of axis aligned parallel hyperplanes) can be computed by an aligned
voting network of size s0.

Lemma 9 For any integer s0, dimension i 2 f1; : : : ; dg, and values fbjgs0j=1, consider a partition of [0; 1]d

into slices defined by the hyperplanes xi = bj. Then for any f+1;�1g labeling of these slices, there exists an
aligned voting network g of size at most s0 that is consistent with this labeling.

The proof of Lemma 9 is quite straightforward, and is hence ommited.

Proof of Theorem 6: Let
d be as defined in Lemma 7. The algorithm first approximates the bias of the function
using O(1=
2

d) = (62
d+2

) uniformly chosen examples. If the fraction of examples labeled 0 (similarly, 1) is at
least 1=2 + 5
d=4, then the algorithm accepts. Otherwise, for each dimension i 2 f1; : : : ; dg the algorithm
considers the slices defined in Corollary 8. If for some dimension i, among all (disjoint) pairs of points that
belong to a common slice, the fraction that have the same label is at least 1

2
� 1

62d+2
, then the algorithm accepts.

Otherwise it rejects. (When queries are allowed the algorithm uniformly selects O(1=
2
d) slices and queries f

on a uniformly selected pair in the slice). By appealing to this algorithm, the proof of the theorem follows from
Corollary 8 and Lemma 9 using the same arguments applied in the proof of Theorem 1.

10

6 Testing and Weak Learning

The intuition that testing is easier (or at least not harder) than learning can be formalized as follows (generalizing
a similar statement in [1]).

Proposition 10 Let F be a class of functions that is learnable by hypothesis class H , under distribution P ,
with confidence 5=6 and accuracy � 2 (0; 1=2], in m random examples. Then for every �0 2 (0; 1=2], the class
F is testable with rejection boundary (H; �+ �0) with respect to P using m + O(1=(�0)2) examples. In case
F is learnable with any accuracy � in m(�) examples, then F is testable with rejection boundary (H; �) with
respect to P using m(�=2) + O(1=�) examples.

Below we present a theorem concerning the reverse direction — namely, that any class which is efficiently
testable against a random function (see Definition 3), is efficiently weakly learnable.

Theorem 11 Let H be a class of functions over domain X , and P a distribution over X . If H is testable
against a random function in m examples with respect to P , then H is weakly learnable with respect to P with
advantage
(1=m) and constant confidence in ~O(m2) examples.

The proof of Theorem 11, which is given in Appendix B, applies a technique (known as the hybrid or
probability walk technique), which was first used in the context of Cryptography [2]. By using the same
technique we get a more general result that translates testing a pair of function classes (see Definition 4) to
weakly learning (almost all functions in) one of the classes. The Proof of Theorem 12 is also given in Appendix B.

Theorem 12 Let H1 and H2 be finite classes of functions over domain X , and P a distribution over X . If
(H1; H2) is testable in m examples with respect to P , then for any
 > 0, one of the following must hold:

� There exists an i 2 f1; 2g and a subclass H 0 � Hi such that jH 0j � (1 �
)jHij, and H 0 is weakly
learnable with advantage
(1=m) and constant confidence in ~O(m2) examples.

� There exists an i 2 f1; 2g such that Hi is weakly learnable with advantage
(1=m) and constant
confidence in ~O(m2=
) examples

References

[1] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approximation.
In Proceedings of the Thirty-Seventh Annual Symposium on Foundations of Computer Science, pages 339–
348, 1996.

[2] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270–
299, 1984.

[3] M. Kearns, M. Li, and L. Valiant. Learning boolean formulae. Journal of the Association for Computing
Machinery, 41(6):1298–1328, 1995.

[4] Jack Carl Kiefer. Introduction to Statistical Inference. Springer Verlag, 1987.

11

A Lower Bounds

For both function classes we consider, DTd
s and AVNd

s, we can show a lower bound of
(
p
s) on the number

of examples required for testing against a random function and with respect to the uniform distribution. Thus,
in terms of the dependence on s, this lower bound almost matches our upper bounds, where note that in these
case, testing against a random function is not harder than testing with the rejection boundaries we achieve. To
illustrate the common idea for the lower bound (which is based on the lower bound associated with the Birthday
Paradox), we prove the claim below for interval functions.

Theorem 13 The sample complexity for testing the class INTs against a random function and with respect to
the uniform distribution is
(

p
s).

Proof: We define the following distribution PI over functions in INTs. The distribution PI is non-zero only
on functions having switch point in the set fj=sgs�1

j=1, and it assigns equal probability to each function that
is constant over the equal-size subintervals, (j=s; (j + 1)=s]. In other words, in order to draw a function in
INTs according to PI , we randomly label the above subintervals (and then put switch points between any two
subintervals that got opposite labels). Consider the following two distributionsD1 and D2 over labeled samples
S.

In both distributions, the examples are drawn uniformly. In D1 they are labeled according to a function in
INTs chosen according to PI , and in D2 they are labeled randomly. Note that whenever the examples chosen
do not include a pair of examples that belong to the same subinterval, then the distribution on the labels is the
same in D1 and D2 (i.e., it is uniform). It follows that the statistical difference between D1 and D2 is of the
same order as the probability that the sample does include a pair of points that fall in the same subinterval.
However, the probability that a sample of size m contains such a pair of examples is bounded by

�m
2

� � (1=s),
which for m = �

p
s, is bounded by �2. Thus, for any testing algorithm T , there exists at least one function

f 2 INTs, such that the probability that f is accepted (distinguished from random) when T is provided with
�
p
s examples labeled by f , is O(�2), which for an appropriate choice of � is less than 2=3.

B Proofs for Section 6

Proof of Theorem 11: Let T be the testing algorithm that distinguishes between functions in H and a random
function. We start by using a standard technique first applied in the cryptography literature [2]. Let us fix any
function f 2 H , and consider the behavior of the algorithm when it is given a random sample drawn according
to P and labeled partly by f and partly randomly. More precisely, for i = 0; : : : ; m, let

Pi
def
= PrP;~r [T (hx1; f(x1)i; : : : ; hxi; f(xi)i; hxi+1; r1)i; : : :hxm; rm�i)i) = accept] (8)

where ~r is a uniformly chosen vector in f0; 1gm�i. Since Pm � 2=3, while P0 � 1=3, there must exist an
index 1 � i � m such that Pi � Pi�1 =
(1=m). Thus, by observing ~O(m2) examples (and generating the
appropriate number of random labels) we can find an index i such that T has significant sensitivity to whether
the ith example is labeled by f or randomly. From this it can be shown (see analysis in [3]) that by taking
another ~O(m2) examples, we can find a fixed sequence S1 of i examples labeled according to f , and a fixed
sequence S2 of m� i examples having an arbitrary (but fixed) 0=1 labeling such that

PrP [T (S1; hx; f(x)i; S2) = accept]� PrP [T (S1; hx;:f(x)i; S2) = accept] =
(1=m) (9)

where now the probability is taken only over the draw of x. Let h(x) be the following probabilistic func-
tion. If T (S1; hx; 0i; S2) = T (S1; hx; 1i; S2), then h outputs the flip of a fair coin. If for b 2 f0; 1g,

12

T (S1; hx; bi; S2) = accept and T (S1; hx;:bi; S2) = reject, then h outputs b. Then from the preceding
arguments, h has an advantage of
(1=m) over a random coin in predicting f .

Proof of Theorem 12: By a similar argument to the one given in the proof of Theorem 11, we can show that
for any fixed f1 2 H1 and f2 2 H2 it is possible to construct (using ~O(m2) examples) a pair of (randomized)
hypotheses h1 and h2, such that for either i = 1 or i = 2, hi has an advantage of
(1=m) over random guessing
in predicting fi. When i = 1 we say that f2 loses to f1, and otherwise, f1 loses to f2. Fix
 > 0, and let us say
that a function f1 2 H1 is bad if it loses to at least a fraction 1�
 of the functions in H2. Then if there exists
a bad function in H1, then by fixing f1 to be this bad function in the above construction, we have an algorithm
that can weakly learn the 1 �
 fraction of the functions in H2 that f1 loses to. On the other hand, if there is
no bad function in H1, then we can weakly learn any function in H1: for any fixed f1 2 H1, if we randomly
sample a function f2 2 H2 there is at least probability
 that we will draw a function that f1 does not lose to.
Thus, in O(1=
) tries, we will be able to weakly learn f1.

13

