Testing Problems with Sub-Learning Sample Complexity

Michadl Kearns DanaRon
AT&T Labs M.I.T.
mkearns@research.att.com danar@theory.lcs.mit.edu
January 1998
Abstract

We study the problem of determining, for a class of functions H, whether an unknown target function f
iscontained in H or is“far” from any function in H. Thus, in contrast to problems of learning, where we
must construct a good approximation to f in H on the basis of sample data, in problems of testing we are
only required to determine the existence of a good approximation. Our main results demonstrate that, over
the domain [0, 1]¢ for constant d, the number of examples required for testing grows only as O(1/s) for both
decision trees of size s and a special class of neural networkswith s hidden units. Thisisin contrast to the
(s) examplesrequired for learning these same classes. Our tests are based on combinatorial constructions
demonstrating that these classes can be approximated by small classes of coarse partitions of space, and rely
on repeated application of the well-known birthday paradox.

1 Introduction

A considerable fraction of the computationa learning theory literature is devoted to a basic and natural question:
for a given class of functions H and a distribution P on inputs, how many random examples of an unknown
function f arerequired in order to construct agood approximationto f in H ? Inthis paper, we consider anatura
and potentially important relaxation of this problem: how many random examples of an unknown function f are
required in order to simply test whether agood approximation to f existsin H ? Thus, in contrast to the standard
learning problem, in problems of testing we are not required to actually construct agood hypothesis, but only to
assert its existence — so under the appropriate definitions, the resources required for testing are always at most
those required for learning. In this work, we show that for certain natural classes H, the number of examples
required for testing can actualy be considerably less than for learning. Even more dramatic gaps are shown to
hold when the measure is the number of queries required.

Themotivation for studying learning problemsis by now obvious. Why study testing problems? In addition
to its being abasic statistical question, if we can find fast and simple solutions for testing problems that require
little data, we can use them to choose between aternative hypothesis representations without actually incurring
the expense of running the corresponding learning algorithms. For example, suppose that in a setting where
data is expensive, but the final accuracy of our learned hypothesis is paramount, we are considering running
C4.5 (afast algorithm) to find a decision tree hypothesis (arelatively weak representation). But we aso want to
entertain running backpropagation (a slow agorithm) to find a multilayer neural network (arelatively powerful
representation, requiring more data, but with perhaps greater accuracy). Ideally, we would like afast, low-data
test that informs us whether this investment would be worthwhile.

The results we present here are far from providing tests of such practicality, but they do examine natura
and common hypothesis representations, and introduce some basic tools for testing algorithms that may point
the way towards further progress. Specifically, our main results demonstrate tests for s-node decision trees, and
for a special class of neural networks of s hidden units (both over [0, 1]%), that require only O(+/s)! random
examples when theinput dimension d isheld constant and the underlying distribution isuniform. Thisisin stark
contrast to the §2(s) examples required, under the same conditions, to learn a hypothesis that is even a weak
approximation to such functions. Thetestswe describewill “accept” any function that isasize s decision tree or
neural network, and “reject” any function that is“far” from dl size s’ decision trees or neural networks, where
s" is not too much larger than s. Thus, even though acceptance ensures the existence of a small decision tree
or neural network nontrivially approximating the target function, we have far fewer examples than necessary to
construct the approximation. We also provide tests using membership queries in which the difference between
testing and learning is even more dramatic, from €2(s) queries required for learning to poly(log(s)) or even a
constant number of queries required for testing.

How are such tests possible? We begin by noting that they must look quite different from the standard
learning algorithms. With only O(,/s) examples, if we begin by seeing how well we can fit the datawith asize
s function, wewill always be able to achieve zero training error, even if the labels were generated randomly. The
tests we describe are based on two centrd ideas. locality and the Birthday Paradox. Roughly speaking, for both
decision trees and neura networks, we show that there are different notions of two points in the domain being
“near” each other, with the property that for any size s function, the probability that a pair of near points have
the same label significantly exceeds 1/2. Itis not hard to construct notions of nearness for which this will hold
— for instance, calling two points near only if they coincide. Thetrick isto give the weakest such notion, one
sufficiently weak to allow the application of the Birthday Paradox. In particular, we use the Birthday Paradox to
argue that asmall sampleislikely to contain a pair of near points. Thus, all of the resulting tests are appealingly
simple: they involve taking a small sample or making a small number of queries, pairing nearby points, and

'The O(~) notation is used to hide poly-logarithmic factors. For simplicity, in this introduction we useit for adightly faster growing
function (in the case of decision trees). For a precise statement see our theorems.

checking the fraction of pairs in which the two points have common labels.

The heart of our proofs are purely combinatorial |lemmas in which we prove that certain notions of locality
yield relatively coarse partitions of space that can approximate the partition induced by any small decision tree
or neura network, respectively. We believe these combinatorial lemmas are of independent interest and may
find application elsewhere. They have an unfortunate exponential dependence on the input dimension, which is
why our tests are of interest only for fixed dimension, and will reject only functions that are rather far from the
reference class H. Improvements or variations on these combinatorial constructions and the resulting tests are
interesting open problems.

There are severa lines of prior work that inspired the current investigation. Problems of testing and their
relationship tolearning wererecently studied by Goldreich et. al.[1], whoseframework wefollow and generalize;
their positive results are for graph-theoretic problems not typically examined in the learning literature, and their
tests al require queries. Our work can be viewed as a study of the sample complexity of classical hypothesis
testing [4] in statistics, where one wishes to accept or rgject a“null hypothesis’, such as “the datais |abeled by
afunction approximable by a small decision tree’.

Theoutline of the paper isasfollows: in Section 2, we introduce severa related notions of testing. Section 3
illuminates the basic ideas of locality and the Birthday Paradox on asimple toy example, interval functions on
thered line. In Sections 4 and 5 we give our main testing results for decision trees and a special class of neurad
networks, respectively. In Section 6 we prove an interesting connection between testing and the standard notion
of weak learning from the computational learning theory literature. In Appendix A we show alower bound on
the number of examples required for testing the classes we consider, which matches our upper bounds, in terms
of the dependence on s, up to logarithmic factors.

2 De€finitions

We start by noting that though we consider only Boolean function, our definitions easily generalize to red-valued
functions. We begin with a needed definition for the distance of a function from a class of functions.

Definition 1 Let f and f' be a pair of functions over domain X, H a class of functions over X, and P a
def

distribution over X . Thedistance between f and f’ with respect to P isdistp(f, f') = Pr..p[f(2z) # f'(2)],

and the distance between f and H (with respect to P) isdistp(f, H) < min e distp(f, f'). For ¢ € [0, 1],

if distp(f, H) > ¢, then we say that f is e-far from H (with respect to P). Otherwise, it is e-close. We use
dist(-, -) asa shorthand for disty (-, -), where U is the uniform distribution over X

Before giving our definitions for testing problems, we reiterate the point made in the introduction that the
resources required for testing for H will always be at most those required for learning H in the standard models.
Our interest isin cases where testing is considerably easier than learning.

In our first definition of testing we generalize the definition given by Goldreich et a. [1]. There the task
was to determine whether an unknown function f belongs to a particular class of functions A or is e-far from
H. We relax this definition to determining whether f € H or f ise-far fromaclass H', where H' O H. This
relaxation is especialy appropriate when dealing with classes of functions that are indexed according to size. In
such acase, H might contain all functions of size at most s (for instance, decision trees of at most s leaves) in
acertain family of functions H (al decision trees), while H’ might contain all functionsin H that have size at
most s, where s’ > s. Anideal test would have H' = H (s’ =), and ¢ arbitrarily small, but it should be clear
that relaxations of thisideal are till worthwhile and nontrivial.

Definition 2 Let H be a class of functionsover X, let H' O H,lete € (0,1/2],and let P bea distribution
over X. We say that H is testable with rejection boundary (H’, €) in m examples (respectively, m queries) with
respect to P if thereis an algorithm 7" such that:

e IfT isgiven m examples, drawn according to P and labeled byany f € H (respectively, T' makesm queries
to such an f), then with probability 2/3, T" accepts.

o IfT isgiven m examples, drawn according to P any labeled by any function f that is ¢-far from A’ with
respect to P (respectively, 7" makes m queries to such an f), then with probability 2/3, T rejects.

If neither of the above conditions on f holds, then T may either accept or reject.

Notethat our insistence that the success probability of the algorithm be at least 2/3 isarbitrary; any constant
bounded away from 1/2 will do, as the success probability can be amplified to any desired value 1 — 6 by
O(log(1/6)) repetitions of the test.

Our next definition can be viewed as pushing the rgection boundary of the previous definition to the extreme
of truly random functions.

Definition 3 Let H beaclassof functionsover X, andlet P bea distribution over X . We say that H is testable
against a random function in 72 examples with respect to P if there isan algorithm 7" such that:

e If T isgiven m examples drawn according to P and labeled by any f € H, then with probability 2/3, T
accepts.

e If T isgiven m examples drawn according to P and labeled randomly, then with probability 2/3, T rejects.
The probability here is taken both over the choice of examples and their random labels.

Note that whenever H is such that with high probability a random function is e-far from H (for some
€ < 1/2),and H istestable with rgjection boundary (H, ¢) in m examples (queries), then it is testable against a
random function in m examples (queries).

Our fina definition has a slightly different flavor than the previous two. Here there are two classes of
functions, H; and H, and the task is to determine whether f belongsto H, or to H..

Definition 4 Let H, and H, be classes of functions over X', and let P be a distribution over X'. \We say that
(Hy, H,) are testable in m examples (respectively, m queries) with respect to P if there is an algorithm 7" such
that:

e If T is given m examples, drawn according to P and labeled by any f € H, (respectively, 1" makes m
queries to such an f), then with probability 2/3, T" outputs 1.

e If T is given m examples, drawn according to P and labeled by any f € H., (respectively, 1" makes m
queries to such an f), then with probability 2/3, T" outputs 2.

If neither of the above conditions on f holds, then T" may output either 1 or 2.

Note that in the above definition it is implicitly assumed that there is a certain separation between the
classes H, and H, — that is, that there exists some € € (0, 1] such that for every h, € H, and hy, € H,,
distp(hy, he) > €. Otherwise, it would not be possible to distinguish between the classes in any number of
examples. An dternative definition would require that the testing algorithm be correct only when the function
f belongs to oneclass and is e-far from the other.

3 Interval Functions

We start by describing and analyzing atesting algorithm for the class of interval functions. The study of this
simple class serves as a good introduction to subsequent sections.

For any size s, the class of interval functions with at most s intervals, denoted INT,, is defined as follows.
Each function f € INT, isdefined by ¢ < s — 1 switch points, ¢; < ... < a;, wherea,; € (0, 1). Thevalue of

[isfixed in each interval that lies between two switch points, and aternates from 0 to 1 (or 1 to 0) when going
from one interval to the next.

It is not hard to verify that learning the class INT, requires €2(s) examples (even when the underlying
distribution is uniform). In fact, () is aso alower bound on the number of membership queries necessary
for learning. As we show below, the complexity of testing under the uniform distribution is much lower — it
suffices to observe O(/s) random examples, and the number of queries that suffice for testing is independent
of s.

Theorem 1 For any integer s > 0 and ¢ € (0, 1/2], the class of interval functions INT; is testable with
rejection boundary (INT,,., ¢) under the uniform distribution in O(y/s/¢*®) examples or O(1/¢*) queries.
The running time of the testing algorithm is linear in the number of examples (respectively, queries) used.

The basic property of interva functions that our testing agorithm exploits is that most pairs of close points
belong to the same interval, and thus have the same label. The algorithm scans the sample for such close pairs
(or queries the function on such pairs), and accepts only if the fraction of pairs in which both points have the
same labd is above a certain threshold. In the proof below we quantify the notion of closeness, and analyze its
implications both on the regjection boundary for testing and on the number of examples needed. Intuitively, there
is the following tradeoff: as the distance between the points in a pair becomes smaller, we are more confident
that they belong to the sameinterval (inthecase that f € INT,); but the probability that we observe such pairs
of pointsin the sample becomes smaller, and the class /' in the rejection boundary becomes larger.

Proof: We first describe the testing algorithm in greater detail. Let s’ = s/¢, and consider the partition of the
domain [0, 1] imposed by aone-dimensional grid with s’ equal-size célls (intervals) ¢4, . . ., ¢,,. Givenasample
S of sizem = O(v/s'/¢?), wesort the examples @+, . . ., z,,, into bins By, . . ., B, wherethe bin B; contains
points belonging to the cell ¢;. Within each (non-empty) bin B;, let z;,, z;,, ..., z;, bethe examplesin B;
according to their order in the sample, and let us pair the points in each such bin according to this order (i.e,
z;, is pared with z,,, z;, with z;,, and so on). We call these pairs the close pairs, and we further call a pair
pure if it is close and both points have the same label. The algorithm accepts f if the fraction of pure pairs
isat least 1 — 3¢/4; otherwise it rejects. When the agorithm is instead alowed queries, it uniformly selects
m’ = O(1/€?) of the grid cells, uniformly draws a pair of points in each cell chosen, and queries f on these
pairs of points. The acceptance criteriais unaltered.

Our first central observation is that by our choice of m, with high probability (say, 5/6), the number m”
of close pairsis at least m’ = O(1/¢*). To obtain this lower bound on m”, assume we restricted our choice
of pairs by breaking the random sample into 4’ random subsamples, each of size 2v/s’, and considered only
close pairs that belong to the same subsample. We claim that by the well-known Birthday Paradox, for each
subsample, the probability that the subsample contains a close pair is at least 1/2. To see why this is true,
think of each subsample S’ as consisting of two parts, 5! and S, each of size v/s'. We consider two cases:
Inthisfirst case, .5 already contains two examples that belong to a common cell and we are done. Otherwise,
each example in 5] belongs to a different cell. Let this set of cells be denoted €' and recall that al cells have
the same probability mass. Thus, the probability that 5% does not contain any example from a cell in ' is
(1—1/|CDIseh = (1 = (1/3/s"))Y*" < e7' < 1/2, asclaimed. Hence, with very high probability, at least a
fourth of the subsamples (i.e,, at least m’) will contribute a close pair, in which case m” > m’. Since the close
pairs are equally likely to fall in each cell ¢; and are uniformly distributed within each cell, the correctness of
the algorithm when using examples reduces to its correctness when using queries, and so we focus on the | atter.
Note that had we made the grid more refined (and so decreased the distance between each close pair) the number
of examples required would grow respectively.

To establish that the algorithm is a testing algorithm we need to address two cases.

Casel: f € INT,. Fort = 1...,m/, let x; be random variable that is 1 if ¢th close pair is pure, and 0
otherwise. Thus v, isdetermined by atwo stage process: (1) Thechoice of thet'th grid céll ¢;; (2) Thesdlection

4

of the two points inside that cell. When ¢; is a subinterval of some interva of f, then the points dway have
the same label, and otherwise they have the same label with probability at least 1/2. Since f has a most s
intervals, the number of cells that intersect intervals of f (i.e., are not subintervals of f'sintervals) isat most s,
and since there are s /¢ grid cells, the probability of selecting such acell isat most €. It followsthat for each ¢,
Elx:] > (1—¢€¢)-1+¢€-(1/2) =1 — ¢/2. By an additive Chernoff bound, with probability at least 2/3, the
average of the y,;’'s (whichisjust the fraction of close pairs that are pure), isat least 1 — 3¢/4, asrequired.
Case 2: dist(f,INT,/) > €. Inorder to provethat in this case the algorithm will reject with probability at least
2/3 we prove the counterpositive: If the algorithm accepts with probability greater than 1/3 then there exists a
function f € INT,, that ise-closeto f.

Let f' € INT,. bethe(equally spaced) s’ -interva functionthat givesthemajority labd accordingto f toeach
gridcell. Weclaimthat if f isaccepted with probability greater than 1/3 then dist(f, f’) < e. For contradiction
assumethat dist(f, f') > ¢. Foreachgridcell ¢; lete; € (0, 1/2] betheprobability massof pointsinc¢; that have
the minority label of f among pointsin ¢;. Thus, dist(f, ') = E;[¢;], and so, by our assumption, E;[¢;] > «.
On the other hand, if we define x, asin Case 1, then we get that E[y,] = E; [(1 — &)+ 6]2.] <1-Ee)
where the second inequality followsfrome < 1/2. By our assumption on f, E[y;] < 1 — ¢, and by applying an
additive Chernoff bound, with probability greater than 2/3, the average over the y;'sislessthan 1 — 3¢/4. W

4 Decision Trees

In this section we study the problem of testing for decision trees over [0, 1]¢. Givenaninput & = (z1,...,z4),
the (binary) decision at each node of the tree is whether z; > « for somei € {1,...,d} and a € [0, 1]. The
labels of the leaves of the decision tree are in {0, 1}. We define the size of such a tree to be the number of
leaves it has, and we let DT denote the class of decision trees of size a most s over [0, 1]%. Thus, every tree
in DT? determines a partition of the domain [0, 1]% into at most s axis aligned rectangles, each of dimension d
(the leaves of the tree), where al points belonging to the same rectangle have the same label.

Asin the testing agorithm for interval functions, our agorithm for decision trees will decide whether to
accept or rgect afunction f by pairing “nearby” points, and checking that such pairs have common labels.
The naive generaization of theinterval function algorithm would consider a“grid” in d-dimensiona space with
(s/€)? cells, each of uniform length in al dimensions. Unfortunately, in order to observe even a single pair
of points that belong to the same grid cell, the size of the sample must be Q(+/(s/¢)?), which for d > 1 is
superlinear in s, and represents no savings over the sample size for learning.

Instead of considering thisvery refined and very large grid, our algorithm will instead consider several much
coarser grids. The heart of our proof isacombinatorial argument, which showsthat there exists a (not too large)
set of (relatively coarse) d-dimensional grids ¢4, ..., (G, for which the following holds: for every function
f € DTY, there exists agrid (G; such that a“significant” fraction of the cellsin G; “fit inside” the leaves of f
— that is, very few of the cells of (&; fall on adecision boundary of f.

Theorem 2 For any size s, dimension d and constant C' > 1, let s' = (s, d, ') & 29+1(24)1+1/¢. Then
the class of decision trees DT is testable with rejection boundary (DTf,, L ﬁ) with respect to the
uniform distribution in O ((2Cd)**? - 53041/} examples, or O ((2Cd)* - log(s)*+') queries. The time
sufficient for testing is at most (2 log(2s))? larger than the number of examples (respectively, queries) used.

In order for the sample sizes of Theorem 2 to represent a substantial improvement over those required for
learning, we must think of theinput dimension d as being aconstant. Inthis case, for asufficiently large constant
(', Theorem 2 says that it is possible to distinguish between the case in which a function is a decision tree of
size s, and the case in which the function is a constant distance from any tree of size s’ (where s’ is not much

bigger than s), using only about an order of /s examples or about an order of log(s) queries. Again, itis easy
to verify that §2(.s) examples or queries are required for learning in any of the standard models.

A possible criticism of the above result isthat the distance parameter in the rejection boundary implies that
any function that has a significant bias towards either 1 or 0 (and in particular, a biased coin) will pass the test.
Herewe simply notethat our testing algorithm can be dlightly modified to address this problem, and defer details
until the full paper.

As mentioned above, when queries are alowed we can generalize Theorem 2 asfollows.

Theorem 3 For any s and for any ¢, the class of decision trees DT is testable with rejection boundary
(DTfsd/E)d) e) and with respect to the uniform distribution with O(1/¢?) queriesand intime O(1/¢?).

Because the proof of Theorem 3 is very similar to the proof of Theorem 1, it is omitted, and we direct our
attention to proving Theorem 2.

The following combinatoria lemma is the main step in proving Theorem 2. We shall need the following
notation: For ad-dimensional rectangle R = (R, ..., R;), where R; € [0, 1], welet V (R) denote the volume
of R,soV(R) = Hle R;. 1f) and R are d-dimensional rectangles, we say that () fits in R if Q; < R, for
all i. Note that this notion is independent of the position of ¢ and R in space.

Lemma4 Let R, ..., R berectangles in [0, 1]¢, each of volume v € [0, 1]. Then for any natural number
k > d,thereexistsarectangle Q in [0, 1]¢ suchthat V (Q) > v'*(4=1/k and (fitsin at least afraction k= (41
of R*,..., R

Proof: Weshdll provethelemmaby induction. For d = 1the“rectangles’ R!, ..., R' aresimply line segments
of length at least v, and so the line segment of length exactly » fitsinal of them. Assumetheinduction hypothesis
holds for d — 1, we prove it for d. For each rectangle R’ and 1 < j < d, we denote by R} the length of R’ in

dimension j. By our assumption on the volume of the rectangles, [T¢_, R} > v. Let Vo_,(R)) € [1/Z] R
be the volume of the projection of R’ to the first d — 1 dimensions. Thus, for each R, v < V;_,(R') < 1.
Assume, without loss of generdlity, that R',. .., R’ are ordered according to V,;_,(R'), so that V,_,(R") is
largest.

Given a natural number & > d, we partition the rectangles R', ..., R' into & bins as follows. For { =
1,...,k,leth, = v*,andletthe(thbin, denoted B, consist of all rectangles R’ suchthat b, < Va_1(RY) < by
(where by % o0). Since there are only / bins, there exists a bin, denoted B,, that contains at least k= (=) of
the rectangles R!, ..., R'. We focus on the rectangles in this bin.

Consider the set, denoted 537, of (d — 1)-dimensional rectangles containing the projections of the rectangles
in B, tothefirst d — 1 dimensions. Then, by definition of the bins, each of the (d — 1)-dimensional rectanglesin
B}, hasvolumeat least b,. Assume without loss of generality that they al have volume exactly b,.> By applying
the induction hypothesis on the rectangles in B, we have that there exists arectangle ()’ (of dimension d — 1)
that has volume at least b} +(4=*)/* and fitsin at least £~(*~2) of the rectangles in B!

On the other hand, for each R’ € B,, we dso have that R > v/b,_1. Combining this with the above
application of the induction hypothesis, we know that there exists a d-dimensional rectangle ¢ such that

V(Q) > 5= bfd;_Q and fitsin at least £=(?~Y) of dl rectangles R*, ..., R'. If we now substitute b,_,

and b, in the above lower bound on V' ()), we get that

?|f thisis not the case, we can consider a modified set, denoted B/, of (d — 1)-dimensional rectangles, which we define as follows.
For eachrectangle R = (R, ..., Ra—1) in B, wehave arectangle R’ = (R1,..., Rj_;) suchthat R);_, = Ra—1 - bg/V(R) s0
that R’ has volume exactly b,. Clearly, if some (d — 1)-dimensional rectanglefitsin acertain fraction of rectanglesin By, thenit fitsin
at least the samefraction in By .

g 1-I-d;—2 g—1, g-(ktd—1 k+g-(d—2
e e e R o
VR
whichfor g <= k (and v < 1) isat least v+ % [|

Lemma 4 shows that some “large’ rectangle ¢ must fit inside “many” rectangles in a given collection;
this statement ignores the absolute position of the rectangles under consideration. We now trandate this to a
statement about decision trees, where the rectangles defined by the leaves do in fact have absolute positions. We
show that if we now take a“grid” in which every cell isan identica (scaled) copy of (7, then very few cells will
intersect a decision boundary of the decision tree — that is, dmost al cells are purely labeled by the function.

Lemmab5 Let f beadecision treein DTf, andlet R, ..., R* bethe d-dimensional rectangles defined by the
leaves of f. Let 3 € [0, 1], and suppose there exists arectangle Q@ = (@4, . . ., Q4) such that the total volume
of the rectangles among R*, . .., R' inwhich Q fitsisat least 3. Consider arectilinear partition G over [0, 1]¢
where for every j € {1,...,d}, each cell in G isof length ; /2 in dimension j. Then the fraction of grid cells

in G that fall entirely inside leaves of f isat least 5 - 27¢.

Proof: For each rectangle R, let L’ betheleaf in f to which R corresponds. We say that R (respectively, L)
is good with respect to) if) fits inside R?. We shall show that for each good leaf L¢ the total volume of all
grid-cells that fit insideit is at least 2 (“*1) . V(R?). Since the total volume of al good leaves is a least 3, the
lemma follows.

Consider any good rectangle R = (R, ..., R,) and the corresponding leaf L’. For each dimension j, let
ri = Ri/Q;. Hence, by definition, V(R') = V(Q) -], ri. Let R\ = (Ri, ..., R}) be the d-dimensiona
rectangle defined by the grid-cells of &' that fit inside L'. Since the grid-cells have length a most @); /2
in each dimension j, we have that R} > R} — Q;/2, and so V(R') > V(Q) - [1;(r} — 1/2). Therefore
V(R')/V(R) > [1;(ri — 1/2)/r;. Since Q fitsinside k', r} > 1 for each j,and s0 V(R')/V(R') > 277,
as claimed. [}
Proof of Theorem 2: We start by describing the testing agorithm. Let m = O(234/2((C'd)>d+1(2s)3(1+1/€) .
loglog(s)) be the size of the sample provided to the agorithm, and let » = [(1 + 1/C') - log(2s)]. For each
setting of (¢, ...,1%4) such that the ¢;’s are integers ranging between 1 and n, and 3~ ¢; = n, the agorithm
considers the grid G(i, ..., 14) over [0, 1]¢ whose grid-cells have length 2-(5+1) in dimension j. For each
such grid, the algorithms checks whether, among the set of (disjoint) pairs of pointsin the sample that fall in a
common grid-cell, the fraction that have the same label is at least £ + m (In the query version of the
agorithm, the algorithm uniformly selects m’ = O((2Cd)?¥*1 -loglog(s)) grid cellsin each grid, and for each
cell chosen, it uniformly selects two pointsin the cell and queries f on these points.)

The proof that for any f suchthat dist(f, DTY,) > 1 — W the algorithm rejects f with probability
at least 2/3, (or, equivalently, that any function that is accepted with probability greater than 1/3 is (3 —
W)-closeto DTY,), is analogous to the specia case of the interval functions proved in Theorem 1, and
is hence omitted.

In the remainder of the proof we analyze the case in which the function f isin fact adecision treein DTf.
We show that for each f € DT?, thereexists agrid G(iy,...,14), suchthat fraction of grid cells that fitsinside
leaves of f isat least 2-(4+2) . (C'd)~(*=1). From that point on the proof proceed as the proof of Theorem 1
(details omitted).

Let R',..., R* be the rectangles corresponding to the leaves of f. Consider those rectangles among
R',..., R® that have volume at least 1/(2s), and assume, without loss of generality that theseare R, . . ., R'.
Thus, the total volume of R!,..., R isat least 1/2. We would like to apply Lemma 4 to these rectangles;
however, they do not al have exactly the same volume. We therefore “cut them up” into rectangles of volume
exactly 1/(2s). More precisely, for each rectangle R* = (Ri,..., R}) such that V(R') > 1/(2s), let

ri |V (R)/(1/(2s)], bethe number of (whole) rectangles with volume 1/(2s) that can fit (*side-by-side”)
def

in BY. Foreach1 < (< r, let R™ = (Ri,...,R}), where R}, = (1/(2s))/ [}, Ri. Thus, for each
(, V(RY) = 1/(2s),and R>' ... RY" can dl fit “side-by-side’ in R’ (with apossble“left over” smaller
rectangle). Therectangles RV, ..., RV, ..., R"', ..., R*"" &l have volume exactly 1/(2s), and their total
volumeisat least 1/4.

Suppose we now apply Lemma 4 to these (at most 2s) rectangles, setting & = ' - d. Then, by the lemma,
there exists a rectangle @ = (Q1, ..., @), that has volume at least (1/(2s))!*!/¢ and fits inside at least a
fraction (C'd)~(=1 of R, ..., R""". Recal that R"',..., R""" are simply sub-rectangles of a subset of
R',..., R*, their tota volumeisat least 1/4, and they all have equal volume. Therefore, thetotal volume of the
rectanglesamong R, . . ., R* intowhich @ fitsisat least 1 -(C'd)=(4=1). Since V(Q) > (1/2s)=+1/) > 2-»
(wheren isas set in Step (1) of the dgorithm), there must be at least one iteration of the algorithm in which the
gridG'(iy, ..., 0) (defined in Step (2) of the algorithm) has cells with length at most (;/2ineach dimension j.
Letus denote this grid by (. By applying Lemma 5 we obtain that the fraction of grid cells (in (7) that fit inside
leaves of f isat least 2~(4+2) . (C'd)~(4=1). From this point on we proceed as in the proof of Theorem1. W

5 Aligned Voting Networks

In this section we study arestricted class of neural networks over [0, 1]¢ called Aligned Voting Networks. These
are essentially neura networks in which the hyperplane defining each hidden unit is constrained to be parallel
to some coordinate axis, and the output unit takes a mgjority vote of the hidden units.

Definition 5 An aligned hyperplane over [0,1]¢ is a function & : [0,1]¢ — {+1,—1} of the form h(Z) =
sign(z; —a) for somedimensioni € {1,...,d} andsomea € [—1, 1] (where sign(0)|sdef|nedtobe—|—1) An
aligned voting network over [0, 1]%isafunction f : [0, 1] — {+1, —1} of theform f(&) = sign ()
where each h; (%) isan aligned hyperplane over [0, 1]¢. Thesize of f is the number of voting hyperplaneSS

An dternative way of viewing an aigned voting network f is as a constrained labeling of the cells of a
rectilinear partition of [0, 1]%. For each dimension 4, we have positions @] € [0, 1] and orientations u} €
{+1,-1}. The hyperplanes x; = a’ define the rectilinear partition, and f is constant over each cell ¢: for any
7, we define #(7) = Y2{_; 351, sign(x; — ulal) (wheress; isthe number of aligned hyperplanesthat project
on dimension ¢), and then f(&) = sign(#(&)). By extension, for each cell ¢ of the partition, we define #(c¢)
as the constant value of # (%) for dl # € ¢, and f(¢) asthe constant value of f(Z) forall Z € c.

A decision tree of size s defines a partition of space into only s célls, each of which may be labeled
arbitrarily. An aligned voting network of size s aso naturally defines a partition of space, but into many more
cells, exponentia in d. Indeed, dready in 3 dimensions, if s/3 of the aligned hyperplanes project into each
dimension, the rectilinear partition defined by these hyperplanes has (s/3)? cells, and waiting for two points to
fal in a common cell will take more than s examples. Instead, we will exploit the fact that the labels of the
cellsin this partition are far from arbitrary, but are instead determined by the vote over the hyperplanes. It will
turn out that if instead of considering two points to be near only if they fal in the same cdl of the partition, we
consider them to be near even if they fall in the same dlice of the partition (where a dice contains all the cells
sharing some fixed range of values for a single dimension), we can obtain the desired balance: with anumber of
examples sublinear in s, we can get a near pair, and the chances that such apair is purely labeled is significantly
greater than 1/2.

Theorem 6 Let AVN? denote the class of aligned voting networks of size at most s over [0, 1]%. Then for
any s and d, AVNY is testable with rejection boundary (AVN{ .o+, + — —=) With respect to the uniform

s? 2

distribution in O (62" \/s) examples (and time), or O(62""") queries (and time).

8

Again, the theorem is interesting in comparison to the resources required for standard learning only if d is
a constant with respect to s. Along the lines of our comments following Theorem 2, here too we can dlightly
modify the algorithm so that it will not automatically accept biased random functions (details omitted).

Before giving the proof of Theorem 6, let us make some simple but useful technical observations about
aligned voting networks. For agiven network f € AVN? defined by hyperplanes {a] } and orientations {u! },
we define slice(i, j) to consist of &l those partition cells in which the ith component falls between a} and o] ™
(that is, the cells faling between the jth and j 4+ 1st aligned hyperplanes in dimension z). Note that in going
from slice(1, j) to slice(t, 7 + 1), either the count #(c) of every cell ¢ increases by 2, or the count of every
cell decreases by 2 (depending on the orientation /), since the only change is with respect to a?. Thisimplies
that for any ¢, and for any j and j’, the ordering of the cells by their counts is preserved between the paralle
slice(t, 7) and slice(4, j'). Thisleads to asimple but important property that we call the continuation property:
if ¢ has the (th largest count in slice(z, j), and at least ¢ of the cells have positive counts (and thus, f is +1
on them), then the projection ¢’ of ¢ into any parallel slice(, j’) containing at least ¢ positive counts will aso
satisfy f(¢’) = +1. Thefollowing combinatorial lemma, which is central to our proof, exploits this property.

Lemma7 Let f bean aligned voting network over [0, 1]¢ of size at most s. If Pry 11 [f(Z) = +1] > + — 74
then there exists a dimension ¢ such that the total probability mass (with respect to the uniform distribution) of
the slice(i, j) of f for which P/ = Pr e [f(&) = +1] > & + 74 isat least 27,4, where v, = 1/(6*).
(Notethat P/ issimply the“ positive bias’ of f on arandom point from slice(4, 7).) Thus, aslong asan aligned
voting network is not significantly biased away from + 1, the probability mass of the slices on which the network
in fact has a significant bias towards +1 is non-negligible.

Infact, the lemmaremains true (with aslightly different setting of ~, if we exchange 1/2 by somep > 1/2.

However, in our application, the worst caseiswhen p = 1/2.
Proof: Fori € {1,...,d}letal < ...< a;' bethealigned hyperplanesof f. We prove the claim by induction
on d. For thebase case d = 1, we have a most s intervals of [0, 1] each labeled either +1 or —1. If the overall
probability that f is+1 isat least (1/2) — 74, then in fact the total probability mass of the intervalslabeled +1
is(1/2) — ;. Solving 2v; = (1/2) — v, yieldsy; = 1/6.

Now suppose the claim holds for every d’ < d, and assume that the probability that f is+1 over [0, 1]¢ is
atleast (1/2) — v4. Let 0 < ay < r (thesubscript H stands for “high bias’) denote the total probability mass
of al slice(d, j) satisfying P} > (1/2) + 4, and let o, bethe total probability mass of slice(d, ;) satisfying
P} < (1/2) = 741 (“low bias’). Then we have that

ap ((1/2) =vas)) + (I —ap —ag)(1/2)+v4) +ag -1 > (1/2) =74 - (2
Fromthisweobtain ayy > 75— (Y2 + Ya-1)ar — 274). If o, sdtisfies

0y > ((1/2) = va)27v4 + 274
Ya + Va-1

©)

then we have oy > 27,, asdesired.

Otherwise, let k be the index j that satisfies P; > (1/2) — v4_; while minimizing P;; thus, slice(d, k)
is the slice that “comes closest” to being low bias without being low bias. Note that f restricted to slice(d, k)
meets the inductive hypothesis for ¢ — 1 dimensions; thus slice(d, k) must contain “subslices’ (in which now
both z; ranges between «* and %! and for some other dimension d’ < d, and some k', z is between a,
and a’fl,'“) whose relative probability (with respect to slice(d, k)) is at least v,_; and whose positive (+1) bias
exceeds (1/2) + v4_1 (that is, the probability that f is +1 exceeds (1/2) + v4_, in each of these subslices).
Since slice(d, k) was chosen to have minimum positive bias among al the slice(d, j) of positive bias at least
(1/2) — ~4_1, by the continuation property, if ¢ isacell of slice(d, k) that is positively labeled by f, then the

projection of ¢ into any of these parallel slice(d, j) must aso be positively labeled by f. In other words, we
may take each positive cell in the biased subslices of slice(d, k), and when we project each such cell aong
dimension d, it remains positive.

Since the total probability mass of dlices (dlong dimension d) having bias at least (1/2) — v4_; is a
least 1 — ar, we obtain that the total probability of slices dong dimension d’, that have positive bias at least
((1/2) + v4-1)(1 — o), isat least 2,4_,. For thisbiasto be at least (1/2) + v, we must have

Yd—1 — Yd
a < —— & 4
LS 02 T e @

and in addition we need v4_; > v4.
Returning to the earlier constraint on oy, given by Equation (3), we find that Equations (3) and (4) can both

be satisfied provided ((1/2) = 72)274 + 274 L Y= ()
Ya + Va-1 = (1/2) + vaa

First note that ((1/2) = 74)274 + 274 < (1/2)2744 274 _ 374 (6)
Ya+ Ya-1 B Ya-1 Va-1

and —

Ya-1 — Vd

Az 7 s >~y 1/2 7
(1/2) qams = 1t 7002 e/ v

(where the last inequality holds whenever v; < ~v4_1/2, which holds in our case assuming v, < 1/2), so

it suffices to enforce that 3v;/v4-1 < v4_1/2 or equivdently v; < vZ_,/6. Thus we obtain the constraint

va < 72" /6%, which is satisfied by the choice v, = 1/(62""") given in the lemma. [|
The corollary below follows directly from Lemma 7.

Corollary 8 Let f be an aligned voting network over [0, 1]¢ of sizes. Fori € {1,...,d} andj € {0,...,2-
62" s — 1}, letb] = j/(2-6>" . s), and let slice(i, j) be the slice between the hyperplanes z; = b/ and
x; = bt If Pryo 130 [f(%) = +1] > (1/2) — v, then there exists a dimension 7 such that the total probability
mass (with respect to the uniformdistribution) of the slice(i, j) for which Pr..; [f(£) = +1] > (1/2) 4+ 74
isat least v, where v, = 1/(62°7).

All that ismissing for the proof of Theorem 6 isto show that any function defined by an arbitrary labeling of
some s’ paralld dices (determined by a set of axis aligned parallel hyperplanes) can be computed by an aigned
voting network of size s'.

Lemma For any integer ¢/, dimension i € {1,...,d}, and values {¢’}:_,, consider a partition of [0, 1]
into slices defined by the hyperplanes z; = . Then for any {41, —1} labeling of these dlices, there exists an
aligned voting network ¢ of size at most s’ that is consistent with this labeling.

The proof of Lemma 9 is quite straightforward, and is hence ommited.

Proof of Theorem 6: Let v, beasdefinedin Lemma7. Theagorithm first approximates the bias of the function
using O(1/~2) = (62" uniformly chosen examples. If the fraction of examples labeled 0 (similarly, 1) is at
least 1/2 + 5v4/4, then the algorithm accepts. Otherwise, for each dimension i € {1,...,d} the algorithm
considers the dlices defined in Corollary 8. If for some dimension ¢, among all (digoint) pairs of points that
belong to acommon slice, the fraction that have the same label isat least ; — 7, then the algorithm accepts.
Otherwise it rejects. (When queries are alowed the agorithm uniformly selects O(1/~32) dices and queries f
on auniformly selected pair in the dice). By appealing to this algorithm, the proof of the theorem follows from
Corallary 8 and Lemma 9 using the same arguments applied in the proof of Theorem 1. |

10

6 Testingand Weak Learning

Theintuition that testing iseasier (or at least not harder) than learning can be formalized asfollows (generalizing
asimilar statement in [1]).

Proposition 10 Let F’ be a class of functions that is learnable by hypothesis class H, under distribution P,
with confidence 5/6 and accuracy € € (0, 1/2],in m random examples. Then for every ¢ € (0,1/2], theclass
F istestable with rejection boundary (H, € + €’) with respect to P using m + O(1/(€')?) examples. In case
F islearnable with any accuracy ¢ in m(¢) examples, then /' is testable with rejection boundary (4, €) with
respect to P using m(¢/2) + O(1/¢) examples.

Below we present a theorem concerning the reverse direction — namely, that any class which is efficiently
testable against a random function (see Definition 3), is efficiently weakly learnable.

Theorem 11 Let H be a class of functions over domain X, and P a distribution over X. If H is testable
against a random function in m examples with respect to P, then H isweakly learnable with respect to P with
advantage 2(1/m) and constant confidence in O(m?) examples.

The proof of Theorem 11, which is given in Appendix B, applies a technique (known as the hybrid or
probability walk technique), which was first used in the context of Cryptography [2]. By using the same
technique we get a more genera result that trandates testing a pair of function classes (see Definition 4) to
weakly learning (almost all functionsin) one of theclasses. TheProof of Theorem 12isalso givenin Appendix B.

Theorem 12 Let H; and H- be finite classes of functions over domain X, and P a distribution over X. If
(H,, H,)istestablein m examples with respect to P, then for any v > 0, one of the following must hold:

o Thereexistsan: € {1,2} and a subclass H' C H; such that |[H'| > (1 — v)|H,|, and H' is weakly
learnable with advantage €2(1/m) and constant confidence in O(m?*) examples.

o There exists an ¢ € {1,2} such that H; is weakly learnable with advantage 2(1/m) and constant
confidence in O(m?/~) examples

References

[1] O.Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approximation.
In Proceedings of the Thirty-Seventh Annual Symposium on Foundations of Computer Science, pages 339—
348, 1996.

[2] S. Goldwasser andS. Micdli. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270—
299, 1984.

[3] M. Kearns, M. Li, and L. Valiant. Learning boolean formulae. Journal of the Association for Computing
Machinery, 41(6):1298-1328, 1995.

[4] Jack Carl Kiefer. Introduction to Statistical Inference. Springer Verlag, 1987.

11

A Lower Bounds

For both function classes we consider, DT¢ and AVNY, we can show alower bound of Q(+/s) on the number
of examples required for testing against a random function and with respect to the uniform distribution. Thus,
in terms of the dependence on s, this lower bound almost matches our upper bounds, where note that in these
case, testing against arandom function is not harder than testing with the rejection boundaries we achieve. To
illustrate the common idea for the lower bound (which is based on the lower bound associated with the Birthday
Paradox), we prove the claim below for interval functions.

Theorem 13 The sample complexity for testing the class INT, against a random function and with respect to
the uniform distribution is Q(+/s).

Proof: We define the following distribution P; over functionsin INT,. The distribution P; is non-zero only
on functions having switch point in the set {j/s}j;}, and it assigns equa probability to each function that
is constant over the equal-size subintervals, (j/s, (7 + 1)/s]. In other words, in order to draw a function in
INT, according to P, we randomly label the above subintervals (and then put switch points between any two
subintervals that got opposite labdls). Consider the following two distributions D, and D, over labeled samples
S.

In both distributions, the examples are drawn uniformly. In D; they are labeled according to afunction in
INT, chosen according to P, and in D, they are labeed randomly. Note that whenever the examples chosen
do not include a pair of examples that belong to the same subinterval, then the distribution on the labels is the
samein D, and D, (i.e, itisuniform). It followsthat the statistical difference between D, and D- is of the
same order as the probability that the sample does include a pair of points that fal in the same subinterval.
However, the probability that a sample of size m contains such a pair of examples is bounded by (7) - (1/s),
which for m = a4/s, is bounded by a?. Thus, for any testing algorithm 7', there exists at least one function
f € IN'T,, such that the probability that f is accepted (distinguished from random) when 7' is provided with
ay/s examples labeled by f,is O(a?), which for an appropriate choice of « isless than 2/3. [|

B Proofsfor Section 6

Proof of Theorem 11: Let T’ bethe testing algorithm that distinguishes between functionsin H and arandom
function. We start by using a standard technique first applied in the cryptography literature [2]. Let us fix any
function f € H, and consider the behavior of the algorithm when it is given arandom sample drawn according
to P and labeled partly by f and partly randomly. More precisely, fort: = 0, ..., m, let

P o PTP,F[T(<$17 f($1)>7 cee <xi7 f($2)>, <xi+17 T1)>7 . '<xm7 Tm—i)>) = ACCEPT] (8)

where 7 is a uniformly chosen vector in {0,1}™~*. Since P,, > 2/3, while P, < 1/3, there must exist an
index 1 < i < m suchthat P, — P,_, = Q(1/m). Thus, by observing O(m?) examples (and generating the
appropriate number of random labels) we can find an index ¢ such that 1" has significant sensitivity to whether
the ¢th example is labeled by f or randomly. From this it can be shown (see andysis in [3]) that by taking
another O(m?) examples, we can find a fixed sequence S, of 7 examples labeled according to f, and a fixed
seguence 5, of m — ¢ examples having an arbitrary (but fixed) 0/1 labeling such that

Prp[T(51,(z, f(2)),52) = acCEPT| — Prp[T(S5y, (z, - f(2)),55) = accepT] = Q(1/m) (9)

where now the probability is taken only over the draw of . Let i(2) be the following probabilistic func-
tion. If T(S4,(x,0),5,) = T(5,(x,1),5,), then h outputs the flip of a fair coin. If for b € {0,1},

12

T(Sy,(x,b),5) = accepT and T'(Sy, (x,—b), 52) = REJIECT, then h outputs b. Then from the preceding
arguments, i has an advantage of €2(1/m) over arandom coin in predicting f. |

Proof of Theorem 12: By a similar argument to the one given in the proof of Theorem 11, we can show that
for any fixed f, € H, and f, € H, it is possible to construct (using O(mz) examples) a pair of (randomized)
hypotheses /2, and h-, such that for either : = 1 or i = 2, h; hasan advantage of §2(1/m) over random guessing
inpredicting f;. When: = 1 wesay that f, losesto f;, and otherwise, f; losesto f,. Fix v > 0, and let us say
that afunction f, € H, isbad if it losesto at least afraction 1 — + of the functionsin H,. Then if there exists
abad function in H,, then by fixing f; to be this bad function in the above construction, we have an agorithm
that can weakly learn the 1 — v fraction of the functions in H, that f; losesto. On the other hand, if there is
no bad function in H,, then we can weakly learn any function in H,: for any fixed f, € H,, if we randomly
sample afunction f, € H, thereisat least probability + that we will draw afunction that f; does not lose to.
Thus, in O(1/~) tries, we will be able to weskly learn f;. |

13

