
Empirical Evaluation of a Reinforcement Learning Spoken Dialogue System

Satinder Singh and Michael Kearns and Diane J. Litman and Marilyn A. Walker
AT&T Labs

180 Park Avenue
Florham Park, NJ 07932

fbaveja,mkearns,diane,walkerg@research.att.com

Abstract

We report on the design, construction and empirical
evaluation of a large-scale spoken dialogue system that
optimizes its performance via reinforcement learning on
human user dialogue data.

Introduction
The formalisms of Markov decision processes (MDPs) and
reinforcement learning (RL) have become a standard ap-
proach to many AI problems that involve an agent learn-
ing to improve performance by interaction with its environ-
ment (Sutton, 1991; Kaelbling et al., 1996). While the the-
ory of these formalisms is quite advanced, applications have
been limited almost exclusively to problems in control, op-
erations research, or game-playing (e.g., Crites and Barto,
1995; Tesauro, 1995). In this paper, we describe an appli-
cation of RL to a rather different type of problem, in which
the MDP models a system’s interaction with a population of
human users, and RL is used to optimize the system’s per-
formance.

Policy

Dialogue
Database

TTS

ASR

User

Figure 1: A block diagram representation of a spoken dia-
logue system.

We have adapted the methods of RL to the problem of au-
tomatically learning a good dialogue policy in aspoken di-
alogue system(SDS). The different components of an SDS
are shown in block diagram form in Figure 1. In a typical
SDS, the user speaks to the system in real time through the
telephone, using free-form natural language, in order to re-
trieve desired information from a back-end database compo-
nent. The user’s speech is interpreted through an automatic
speech recognition (ASR) component. Thedialogue pol-
icy decides what the system should say (or in RL terminol-
ogy, whichactionit should take), again in natural language,

Copyright c 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

through a text-to-speech (TTS) component, at each point in
the dialogue.

S1: Welcome to RLDS. How may I help you?
U1: What wineries in Lambertville are open

in the morning? [ASR output:what wineries
in Lambertville open in the morning.]

S2: Did you say you are interested in Lambertville?
U2: Yes.
S3: I found a winery near Lambertville that is open

in the morning. It is . . . Please give me feedback
by saying ‘good’, ‘so-so’, or ‘bad’.

U3: Good.

Figure 2: A transcription of an example spoken dialogue
with our NJFun system. This dialogue happened to go very
well, and is relatively short. In general, dialogue length var-
ied between3 and20 exchanges between user and system.

Figure 2 shows the transcription of a sample spoken di-
alogue from the NJFun system we implemented to provide
telephone access to a database of activities in New Jersey.
In this dialogue, by starting with the open-ended greeting
“How may I help you?”, the system lets theuser take the
initiative in providing information about the activity they
are interested in. User responses in such cases may be rela-
tively unconstrained. In contrast, thesystemcould take the
initiative by saying the more restrictive phrase “Please tell
me the location you are interested in”, thus constraining the
user to provide information about the location of the activity.
Which of these contrasting choices of user or system initia-
tive is superior may depend strongly on the properties of the
underlying and imperfect ASR, the population of users, as
well as the dialogue so far. This choice of initiative occurs
repeatedly throughout a dialogue, and is but one example of
a class of difficult design decisions.

The traditional, or what we shall call Monte Carlo, ap-
proach to learning dialogue policies from data is to pick a
set of dialogue policies that experts intuitively feel are good,
implement each policy as a separate SDS, collect data from
many representative human users for each SDS, and then use
standard statistical tests to pick the best dialogue policy and
system according to some performance criterion or reward
measure (the choice of which we will say more about later).

Only a handful of dialogue policies can be compared this
way because of the cost and time of using human subjects.
On the other hand, as we will show for our system, many
thousands of dialogue policies may still be left after the ex-
perts have excluded all policies that are clearly suboptimal.

In this paper we show that the methods of RL are well-
suited to the problem of searching the large space of policies
that survive after pruning by experts. At a high level, our
RL methodology involves the choice of appropriate reward
measures and estimates for dialogue state, the deployment
of an initial training system that generates deliberately ex-
ploratory dialogue data, the construction of an MDP model
of user population reactions to different action choices, and
the redeployment of the system using the optimal dialogue
policy according to this model. This RL method is more
data-efficient than the Monte Carlo method, because it eval-
uates actions as a function of state rather than evaluating en-
tire policies.

While RL has been applied to dialogue system design
in previous research (Biermann and Long, 1996; Levin et
al., 1997; Walker et al., 1998; Singh et al., 1999), this pa-
per provides a larger scale test of these ideas. We describe
our design and implementation of the NJFun system and
our controlled experiments with human users verifying our
RL-based methodology. The results we describe here pro-
vide empirical evidence that, when properly applied, RL
can quantitatively and substantially improve dialogue sys-
tem policy. For example, one of our main results is that the
rate of task completion rose from 52% in the training system
to 63% in the learned system. In a companion paper (Litman
et al., 2000), we describe the same basic system and exper-
iment, but focus on details and analyses more relevant to
computational linguistics (such as linguistic analyses of the
learned policy, and novice versus expert performance).

Our system and experiments help focus attention on the
many challenges spoken dialogue systems present to the pre-
vailing theory and application of RL. These include the fact
that the Markov property cannot be guaranteed in an appli-
cation modeling human users, the difficulty of balancing the
need for exploratory data with the need for a functioning
training system, and the inherent difficulty of obtaining large
amounts of training data in such applications.

Choices in Dialogue Policy
For our purposes, an ASR can be viewed as an imperfect,
noisy sensor with an adjustable “parameter” (thelanguage
modelor grammar) that can be tuned to influence the types
of speech recognition mistakes made. In addition to any
perceived matches in the utterance, the ASR also returns
a score (typically related to log-likelihood under a hidden
Markov model) giving a subjective estimate of confidence
in the matches found. This score is important in interpreting
the ASR results.

In this work, we concentrate on automating two important
types of decisions faced in dialogue policy design, both of
which are heavily colored by the ASR facts above. The first
type, of which we have already seen an example, is choice of
initiative — namely, whether the system at any given point
should prompt the user in a relatively open-ended manner

(often referred to asuserinitiative) or a relatively restrictive
manner (systeminitiative).

The second type of choice we investigate is that ofconfir-
mation. After it has applied the ASR to a user utterance, and
obtained a value for some attribute of interest (for instance,
town = Lambertville), the system must decide whether to
confirm the perceived utterance with the user. In Figure 2,
for example, the system chooses to confirm the location but
not the activity type (wineries) or the activity time (morn-
ing). While we might posit that confirmation is unnecessary
for high values of the ASR confidence, and necessary for
low values, the proper definitions of “high” and “low” would
ideally be determined empirically for the current state (for
instance, depending on whether there has been difficulty on
previous exchanges), and might depend on our measure of
system success.

In the NJFun system, we identified many different dia-
logue states for which we wanted tolearn whether to take
user or system initiative for the next prompt. Similarly, we
identified many different dialogue states in which we wanted
to learn whether to confirm the ASR-perceived user utter-
ance, or not to confirm. The actual prompts used in each case
were hand-coded; we learn only the choice of initiative and
the choice of confirmation, not what natural language utter-
ances to generate. We note that there is genuine and spirited
debate over choices of initiative and confirmation among di-
alogue system designers (Danieli and Gerbino, 1995; Haller
and McRoy, 1998, 1999; Smith, 1998; Walker et al., 1998),
which is precisely why we wish to automate, in a principled
way, the process of making such choices on the basis of em-
pirical data.

RL for Dialogue Policy Design
In this section, we describe the abstract methodology we
propose to apply RL to dialogue policy design. In the next
section, we will describe in detail the instantiation of this
methodology in the NJFun system.

In order to apply RL to the design of dialogue policy, it
is necessary to define astate-basedrepresentation for dia-
logues. One obvious but impractical choice for this state is a
transcript or system log of the entire dialogue so far, which
would include the audio so far, the utterances matched by
the ASR, the language models used, the confidence scores
returned by the ASR, and perhaps many other quantities. In
practice, we would like to compress this state as much as
possible — representing states by the values of a small set
of features — without losing information necessary for mak-
ing good decisions. We view the design of an appropriate
state space asapplication-dependent, and a task for a skilled
system designer.

Given choices for the state features, the system designer
can think in terms of the state space, and appropriate ac-
tions to take in each state. For some states, the proper ac-
tion to take may be clear (for instance, greeting the user in
the start state, or querying the database when all informa-
tional attributes are instantiated). For other states, the sys-
tem designer may debate a choice of actions that may best
be determined bylearning(such as choices of initiative and

confirmation). Each mapping from such choice-states to a
particular action is a distinctdialogue policy.

We also assume that the system designer has chosen a par-
ticular reward functionthat can be measured with relative
ease on any given dialogue, that takes on scalar values, and
whose expectation over the user population is to be max-
imized. The subject of appropriate measures for dialogue
system success is a complex one, and there are many natural
choices (Danieli and Gerbino, 1995; Walker et al., 1998),
including user satisfaction measures, measures of task com-
pletion, and sales figures (in commercial applications). In
our empirical results, we commit to a task completion re-
ward measure for the optimization, but also examine several
other common reward measures.

Thus, our methodology requires as a starting point that the
designer choose a state representation and a reward function,
and for perhaps a large number of states, to identify a fixed
number of actions to be chosen from. Suppose that the de-
signer implements an initial dialogue policy, and collects a
set of dialogues from a sample of the user population. Each
dialogue, of course, is a sequence of alternating system and
user utterances terminated by a scalar reward:

s1 !a1;r1 s2 !a2;r2 s3 !a3;r3 � � �

where the notationsi !ai;ri si+1 indicates that at theith
exchange, the system was in statesi, executed actionai, re-
ceived rewardri, and then the state changed tosi+1. From
many such sequences, we can estimatetransition probabili-
tiesof the formP (s0js; a), which denotes the probability of
a transition to states0, given that the system was in states
and took actiona. Our estimate of this probability is sim-
ply the number of times, in all of the dialogues, that the
system was ins, took a, and arrived ins0, divided by the
number of times the system was ins and tooka (regardless
of next state). Similarly, we can estimate a reward function
that maps states and actions to rewards. For the reward func-
tions we will examine, the rewards will be nonzero only at
terminal states.

The estimated reward function and transition probabilities
constitute aMarkov decision process(MDP) model of the
user population’s interaction with the system1. It (hopefully)
captures the stochastic behavior of the users when interact-
ing with the system. Note that in order to have any confi-
dence in this model, the training data must have tried many
possible actions from many possible states, and preferably
many times. In other words, the training data must beex-
ploratorywith respect to the chosen states and actions. Per-
haps the most straightforward way of ensuring exploratory
training data is to take actions randomly. While this is the
approach we take, it requires that we be exceptionally care-
ful in designing the actions allowed at each state, in order to
guarantee that the random choices made always result in a
dialogue sensible to human users. (Keep in mind that there
is no exploration in states where the appropriate action is

1Note that this MDP model is at best an approximation. With
a small set of state features, there will be the problem of hidden
state or partial observability, for which the richer POMDP model is
often more appropriate (e.g., Kaelbling et al., 1996). We leave the
use of POMDP models to future work.

already known and fixed by the system designer.) Other ap-
proaches to generating exploratory data are possible.

The final step is to determine the optimal policy in the es-
timated MDP using a dynamic programming algorithm such
as value iteration (e.g., Kaelbling et al., 1996), and then to
implement this policy as the learned dialogue policy. To the
extent that the estimated MDP is an accurate model of the
user population, this final system should maximize the re-
ward obtained fromfutureusers. Here is a summary of the
proposed methodology:

� I. Choose an appropriate reward measure for dialogues,
and an appropriate representation for dialogue states.

� II. Build an initial state-basedtraining system that creates
an exploratorydata set. Despite being exploratory, this
system should provide the desired basic functionality.

� III. Use these training dialogues to build an empirical
MDP model on the state space.

� IV. Compute the optimal dialogue policy according to this
MDP.

� V. Reimplement the system using the learned dialogue
policy.

The NJFun System
In this section, we describe the functionality and construc-
tion of the spoken dialogue system on which we tested our
methodology. The back-end database for our system con-
tained information on interesting places to visit in New Jer-
sey. The database was indexed by three keys: the activity
type (such as historic sites, wineries, museums, etc.); the
name of the New Jersey town in which the activity is lo-
cated (such as Morristown or Lambertville); and the hours
in which the place is open. As an example, the Liberty
Science Center is indexed under activity type museum, lo-
cation Jersey City, and hours 10 AM to 6 PM. We binned
activities into9 activity types, and there were149 distinct
database entries2. The goal of NJFun is to help the user find
all database entries matching a given binding of the desired
activity type, location, and period of the day (morning, af-
ternoon, or evening). For any given binding of these three
attributes, there may be multiple database matches, which
will all be returned to the user.

The system represents the current state of any dialogue by
the values of six different state features, whose possible val-
ues and meanings are described in Figure 3. At a high level,
these state variables tell the system which attribute it is cur-
rently working on, whether it has obtained a value for this
attribute, what the confidence in that value is, how many at-
tempts have been made to get a value for the attribute, what
type of ASR grammar was most recently used, and an indi-
cation of whether there have been difficulties in earlier por-
tions of the dialogue. We note that this state representation,
in the interests of keeping the state space small, deliberately
ignores potentially helpful information about the dialogue so

2To support continuous use, the system’s functionality could be
extended in a number of ways such as a larger live database and
support for followup questions by the users.

Feature Values Explanation
Attribute 1,2,3 Which attribute is

being worked on
Confidence/ 0,1,2, 0,1,2 for low, medium, and
Confirmed high ASR confidence

3,4 3,4 for explicitly confirmed, and
disconfirmed

Value 0,1 Whether value has been
obtained for current attribute

Tries 0,1,2 How many times current
attribute has been asked

Grammar 0,1 Whether open or closed
grammar was used

History 0,1 Whether there was trouble
on any previous attribute

Figure 3: State features and values.

far. For example, there is no state feature explicitly tracking
the average ASR score over all user utterances so far, nor do
we keep information about previous attributes3.

With the state space precisely defined, we can now pro-
vide some more detail on thepolicy classwe considered4.
This policy class is obtained by allowing a choice of system
or user initiative whenever the system needs to ask or reask
for an attribute, and by allowing a choice of confirming or
simply moving on to the next attribute whenever the system
has just obtained a value for an attribute. For example, in
any state in which thetries feature has the value 0 and theat-
tribute feature has value 1 (which means we are working on
activity type, and we have yet to prompt the user for a value
for this attribute), the system has a choice of uttering the user
initiative prompt “How may I help you”, or the system ini-
tiative prompt “Please tell me the activity type”. In the case
of a choice of system initiative, the system has the additional
choice of calling the ASR on the user utterance using either
aclosedgrammar intended just for that attribute, or anopen
grammar that may correctly recognize information offered
on other attributes as well. The open grammar is always
used with a user initiative prompt, because the choice of the
closed grammar does not make sense in that case.

As another example, choices in confirmation policy are
available at states for which thevaluefeature is 1 immedi-
ately following a prompt to the user for the current attribute.
In these states, if theconfidence/confirmedfeature is 0,1 or
2, we allow a choice of whether to confirm the attribute value
obtained from the ASR, or to accept the current binding and
move on to the next attribute.

We will call the set of all deterministic mappings from the
states in which the system has a choice to a particular, fixed
choice thepolicy classexplored in our experiment. The total

3The system of course stores the actual values of previous at-
tributes for the eventual database query, but as these do not influ-
ence future dialogue policy in any way, they are not stored as state
features.

4Greater detail on the policy class can be found in a companion
paper (Litman et al., 2000).

number of unique policies in this class was approximately
242. In keeping with the RL methodology described above,
our goal is to compute and implement an approximately op-
timal policy in this very large class on the basis of RL ap-
plied to exploratory training dialogues.

Experimental Methodology
In this section, we describe in some detail the controlled user
experiments we conducted. The next section presents the
empirical results of these experiments.

Our experimental subjects were75 fellow employees not
involved with the project. The subjects were divided into
a training population of54 people and a test population of
21 people. Although we took the precaution of roughly
balancing the male/female, native/non-native and experi-
enced/inexperienced fractions in the training and test sets,
subsequent analyses indicated that system performance did
not depend significantly on any of these factors. Subjects
were not told their training/test classification nor the purpose
of our experiments.

As dictated by Step II of the RL methodology above, we
first built a training version of the system, using the state
space and action choices outlined in the preceding section,
that usedrandom exploration. By this we mean that in any
state for which we had specified a choice of system actions,
the training system chose randomly among the allowed ac-
tions with uniform probability. We again emphasize the fact
that the allowed choices were designed in a way that ensured
that any dialogue generated by this exploratory training sys-
tem was intuitively sensible to a human user, and permitted
the successful completion of any task the system was in-
tended to perform. Nevertheless, it is important to note that
over their multiple calls to the system (see below), training
users may have effectively experienced multiple dialogue
policies (as induced by the random exploration), while test
users experienced a single, fixed, deterministic policy.

We designed a set of six specific tasks each participant
was to complete using either the training system or the test
system. Each task had an associated web page containing a
brief text description of the desired information the partici-
pant should obtain, as well as a user survey common to all
six tasks5.

The training participants attempted to complete the six
tasks using the exploratory training system. These54 users
generated a total of311 dialogues6. These dialogues were
then annotated with an objectivebinary task completionre-
ward function. Since system logs could be matched with
which of the six tasks the user was attempting, it was possi-
ble to directly compute from the system logs whether or not
the user had completed the task. By “completed” we mean
binding all three attributes (activity type, location, and time
of day) to the exact values specified in the task description
given on the associated web page. In this way, each training
dialogue was automatically labeled by a+1 in the case of

5Some of these survey questions formed the basis for the sub-
jective reward measures examined in the next section.

6The total number of dialogues is less than54 � 6 = 324 be-
cause a few users failed to attempt all 6 tasks.

a completed task, or�1 otherwise. We note that this defi-
nition of task completion guarantees that the user heard all
and only the database entries matching the task specifica-
tions. Relaxations of this reward measure, as well as other
reward measures, are discussed in the next section.

Finally, the311 training dialogues, labeled by task com-
pletion, were used to build an MDP according the RL
methodology, and the optimal policy according to this MDP
was computed and implemented as the (now deterministic)
dialogue policy in the test system.

The test users carried out the same six experimental tasks
using the test system. The primary empirical test of the pro-
posed methodology is, of course, the extent and statistical
significance of the improvement in the allegedly optimized
measure (task completion) from the training to test popula-
tions. The next section is devoted to the analysis of this test,
as well as several related tests.

Results
Perhaps our most important results are summarized in the
first two rows of Figure 4. In the first row, we summarize
performance for thebinary completionreward measure, dis-
cussed in the preceding section. The average value of this
reward measure across the311 dialogues generated using
the randomized training system was0:048 (recall the range
is �1 to 1), while the average value of this same measure
across the124 dialogues using the learned test system was
0:274, an improvement that has a p-value of0:059 in a stan-
dard two-sample t-test over subject means.

Reward Measure Train Test � p-value
Binary Completion 0:048 0:274 0:226 0:059
Weak Completion 1:72 2:18 0:46 0:029

Reuse 2:87 2:72 �0:15 0:55
Easy 3:38 3:39 0:01 0:98
NJFun understood 3:42 3:52 0:1 0:58
What to say 3:71 3:64 �0:07 0:71
Web feedback 0:18 0:11 �0:07 0:42

Figure 4: Train versus test performance for various reward
measures. The first column presents the different reward
measures considered (see text for detail); the second column
is the average reward obtained in the training data; the third
column is the average reward obtained in the test data; the
fourth column shows the difference between the test average
and the train average (a positive number is a “win”, while a
negative number is a “loss”); the fifth column presents the
statistical significance value obtained using the standard t-
test.

We next examine the performance improvement for a
closely related reward measure that we callweak comple-
tion. In weak completion, ifanyattribute is actually bound
to an incorrect value (for instance, if the place was bound
to Morristown instead of Lambertville when the latter was
specified for the task), a reward of -1 is received. If no at-
tribute is actually bound to an incorrect value, the reward
is equal to the number of attributes correctly bound (recall

that unbound variables are assigned as don’t-care). The mo-
tivation for this more refined measure is that reward -1 indi-
cates that the information desired was not contained in the
database entries presented to the user, while non-negative
reward means that the information desired was present, but
perhaps buried in a larger set of irrelevant items for smaller
values of the reward.

In the second row of Figure 4, we show the improvement
in weak completion from training to test7. The training dia-
logue average of weak completion was1:72 (recall the range
is �1 to 3), while the test dialogue average was2:18. Thus
we have a large improvement, this time significant at the
0:029 level. We note that the policy dictated by optimizing
the training MDP for binary completion (which was imple-
mented in the test system), and the policy dictated by opti-
mizing the training MDP for weak completion (which was
not implemented) were very similar, with only very minor
differences in action choices.

Policy # Emp. MDP p-value
Trajs. Avg. Value

Test 12 0:67 0:534

SysNoconfirm 11 �0:08 0:085 0:06
SysConfirm 5 �0:6 0:006 0:01
UserNoconfirm 15 �0:2 0:064 0:01
UserConfirm 11 0:2727 0:32 0:30
Mixed 13 �0:077 0:063 0:06

Figure 5: Comparison to standard policies. Here we com-
pare our test policy with several standard policies using the
Monte Carlo method. The SysNoconfirm policy always uses
system initiative and never confirms; the SysConfirm policy
always uses system initiative and confirms; the UserNocon-
firm policy always uses user initiative and never confirms;
the UserConfirm policy always uses user initiative and con-
firms; the Mixed policy varies the initiative during the dia-
logue. For each policy, the second column shows the num-
ber of consistent trajectories in the training data, the third
column shows the empirical average reward on these con-
sistent trajectories, the fourth column shows the estimated
value of the policy according to our learned MDP, and the
fifth column shows the statistical significance (p-value) of
the policy’s loss with respect to the test policy. For all but
the UserConfirm policy, the test policy is better with a sig-
nificance near or below the0:05 level, and the difference
with UserConfirm is not significant.

Although these results indicate an improvement in mov-
ing from the randomized training policy to the optimized
policy, it is natural to ask how our optimized system com-
pares to systems employing a dialogue policy picked by a
human expert. Although implementing a number of hand-
picked policies, gathering dialogues from them, and com-
paring to our learned system would be time-consuming and

7We emphasize that this is theimprovementin weakcompletion
in the system that was designed to optimizebinary completion —
that is, we only fielded a single test system, but examined perfor-
mance changes for several different reward measures.

expensive (and in fact, is exactly the methodology we are
attempting to replace), our training system provides a con-
venient and mathematically sound proxy. Since our training
dialogues are generated makingrandomchoices, any dia-
logue in the training set that isconsistentwith a policy� in
our policy class provides an unbiased Monte Carlo trial of
�. (This is easily verified formally.) By consistent we mean
that all the random choices in the dialogue agree with those
dictated by�. We can average the rewards over the consis-
tent training dialogues to obtain an unbiased estimate of the
return of�.

Figure 5 compares the performance of our learned test
system, on the binary completion reward measure, to5 fixed
policies in our class that are common choices in the dialogue
systems literature, or that were suggested to us by dialogue
system designers. We see that in4 cases, our learned pol-
icy outperforms these standard policies near or below the
0:05 level of significance, and in one case it is essentially
tied. (Not surprisingly, the fixed UserConfirm policy that
fared best in this comparison is most similar to the policy we
learned.) Thus, in addition to optimizing over a large class
of policy choices than is considerably more refined than is
typical, the RL approach outperforms a number of natural
standard policies.

We next discuss a number of other reward measures that
we did not optimize the test system for, but for which we
nevertheless examined system improvement or degradation.
The two measures considered so far, binary and weak com-
pletion, areobjectivereward measures, in the sense that the
reward is precisely defined as a function of the system log
on a dialogue, and can be computed directly from this log.
In contrast, we also examined a number ofsubjectivemea-
sures that were provided by the human user following each
dialogue. Each dialogue task was accompanied by a web
survey (see Figure 6), on which we asked the user whether
they would use the system again (theReusereward measure,
values1 (worst) to5 (best)), whether they found the system
easy to use (theEasyreward measure, values1 to5), whether
they thought the system understood what they had said (the
NJFun understoodreward measure, values1 to 5), whether
they knew what they could say at each point in the dialogue
(theWhat to sayreward measure, values1 to 5), and finally,
whether their experience on this dialogue was good, bad, or
neutral (theWeb feedbackreward measure, values�1, 0, and
1 respectively).

Since we did not optimize for any of these subjective mea-
sures, we had noa priori expectations for improvement or
degradation, and indeed Figure 4 shows we did not find sta-
tistically significant changes in the mean in either direction
for these measures. However, we observed a curiousmove
to the middleeffect in that a smaller fraction of users had
extremely positive or extremely negative things to say about
our test system than did about the training system. Although
we have no firm explanation for this phenomenon, its con-
sistency (it occurs to varying degree for all5 subjective mea-
sures) is noteworthy.

Let us briefly summarize where we are. Our empirical re-
sults have demonstrated improvements in the optimized task
completion measures of a complex spoken dialogue system,

Please repeat (or give) your feedback on this conversa-
tion. (good, so-so, bad)

1. Did you complete the task and get the information
you needed? (yes, no)

2. In this conversation, it was easy to find the place that
I wanted.

3. In this conversation, I knew what I could say at each
point in the dialogue.

4. In this conversation, NJFun understood what I said.
5. Based on my current experience with using NJFun,

I’d use NJFun regularly to find a place to go when
I’m away from my computer.

Figure 6: User survey.

and no statistically significant changes in a number of non-
optimized subjective measures, but an interesting move to
the middle effect.

of # of Corr. p- Slope Inter.
Trajs. Policies Coeff. value
> 0 1000 0:31 0:00 0:953 0:067
> 5 868 0:39 0:00 1:058 0:087
> 10 369 0:5 0:00 1:11 0:11

Figure 7: A test of MDP accuracy. We generated1000 deter-
ministic policies randomly. For each policy we computed a
pair of numbers: its estimated value according to the MDP,
and its value based on the trajectories consistent with it in
the training data. The number of consistent trajectories var-
ied with policy. The first row is for all1000 policies, the
second row for all policies that had at least5 consistent tra-
jectories, and the last row for all policies that had at least10
consistent trajectories. The reliability of the empirical esti-
mate of a policy increases with increasing number of con-
sistent trajectories. The third column presents the correla-
tion coefficient between the empirical and MDP values. The
fourth column presents the statistical significance of the cor-
relation coefficient. The main result is that the hypothesis
that these two sets of values are uncorrelated can be soundly
rejected. Finally, the last two columns present the slope and
intercept resulting from the best linear fit between the two
sets of values.

The skeptic might wonder if we have simply been fortu-
nate — that is, whether our MDP might have actually been a
rather poor predictor of the value of actions, but that we hap-
pened to have nevertheless chosen a good policy by chance.
As some closing evidence against this view, we offer the
results of a simple experiment in which we randomly gen-
erated many (deterministic) policies in our policy class. For
each such policy�, we used the training dialogues consis-
tent with � to compute an unbiased Monte Carlo estimate
R̂� of the expected (binary completion) return of� (exactly
as was done for the hand-picked “expert” policies in Fig-
ure 5). This estimate was then paired with the valueR� of
� (for the start state) in the learned MDP. If the MDP were

a perfect model of the user population’s responses to system
actions, then the Monte Carlo estimateR̂� would simply be
a (noisy) estimate ofR� , the correlation between these two
quantities would be significant (but of course dependent on
the number of samples in the Monte Carlo estimate), and the
best-fit linear relationship would be simplŷR� = R� + Z
(slope 1 and intercept 0), whereZ is a normally distributed
noise variable with adjustable mean and variance decreas-
ing as the number of consistent trajectories increases. At the
other extreme, if our MDP had no relation to the user popu-
lation’s responses to system actions, thenR̂� andR� would
be uncorrelated, and the best we could do in terms of a linear
fit would beR̂� = Z (slope and intercept 0) — that is, we
ignoreR� and simply model̂R� as noise. The results sum-
marized in Figure 7 indicate that we are much closer to the
former case than the latter. Over the1000 random policies�
that we generated, the correlation betweenR̂� andR� was
positive and rejected the null hypothesis that the variables
are uncorrelated well below the0:01 level of significance;
furthermore, the least squares linear fit gave a slope coeffi-
cient close to1:0 and a y-intercept close to0, as predicted
by the idealized case above.

Conclusion
In this paper we presented a detailed methodology for us-
ing RL in the design of a spoken dialogue system. We built
a large dialogue system using our methodology, and showed
that RL is able to effectively search a very large space of dia-
logue policies (242 in size) using a relatively small amount of
training dialogue data (311 dialogues from54 subjects). Our
learned policy outperformed not only our training policy, but
also many standard dialogue policies from the literature. We
also reported on analyses verifying that the learned MDP is
a reasonable model of the user population’s interaction with
NJFun. As future work, we would like to at least partially
automate the choice of the state features used in construct-
ing the MDP, explore the use of richer POMDP models, and
do additional empirical evaluation of the RL approach.

Acknowledgements The authors thank Fan Jiang for his
substantial effort in implementing our NJFun system, Es-
ther Levin and Roberto Pieraccini for help in using their
DMD programming language, Weiland Eckert for maintain-
ing the CTmedia platform, Mazin Rahim for help with Wat-
son, and David McAllester, Richard Sutton, Esther Levin
and Roberto Pieraccini for numerous helpful conversations
on dialogue system design.

References
A. W. Biermann and Philip M. Long. 1996. The compo-
sition of messages in speech-graphics interactive systems.
In Proc. of the 1996 International Symposium on Spoken
Dialogue, pages 97–100.
R. Crites and A. Barto. 1996. Improving elevator perfor-
mance using reinforcement learning. InProc. NIPS 8pages
1017-1023.
M. Danieli and E. Gerbino. 1995. Metrics for evaluating
dialogue strategies in a spoken language system. InProc.

of the 1995 AAAI Spring Symposium on Empirical Methods
in Discourse Interpretation and Generation, pages 34–39.
S. Haller and S. McRoy, eds. 1998. Special Issue: Com-
putational Models of Mixed-Initiative Interaction (Part I)
User Modeling and User-Adapted Interaction: An interna-
tional journal, Vol. 8, Nos. 3–4.
S. Haller and S. McRoy, eds. 1999. Special Issue: Com-
putational Models of Mixed-Initiative Interaction (Part II)
User Modeling and User-Adapted Interaction: An interna-
tional journal, Vol. 9, Nos. 1–2.
L.P. Kaelbling and M.L. Littman and A.W. Moore 1996.
Reinforcement Learning: A survey. InJournal of Artificial
Intelligence Research 4, pages 237–285.
E. Levin, R. Pieraccini, and W. Eckert. 1997. Learn-
ing dialogue strategies within the Markov decision process
framework. InProc. IEEE Workshop on Automatic Speech
Recognition and Understanding.
D. J. Litman, M. S. Kearns, S. Singh, and M. A. Walker.
2000. Automatic Optimization of Dialogue Management.
In Proc. of COLING 2000.
S. Singh, M. S. Kearns, D. J. Litman, and M. A. Walker.
1999. Reinforcement learning for spoken dialogue sys-
tems. InProc. NIPS99.
R. W. Smith 1998. An Evaluation of Strategies for Se-
lectively Verifying Utterance Meanings in Spoken Natu-
ral Language Dialog. InInternational Journal of Human-
Computer Studies, 48, pages 627–647.
R. S. Sutton. 1991. Planning by incremental dynamic pro-
gramming. InProc. Ninth Conference on Machine Learn-
ing, pages 353–357. Morgan-Kaufmann.
G.J. Tesauro. 1995. Temporal difference learning and TD-
Gammon. InComm. ACM 38, pages 58–68.
M. A. Walker, J. C. Fromer, and S. Narayanan. 1998.
Learning optimal dialogue strategies: A case study of a
spoken dialogue agent for email. InProc. of COLING/ACL
98, pages 1345–1352.

