
A Fast, Bottom-Up Decision Tree

Pruning Algorithm with

Near-Optimal Generalization

Michael Kearns

AT&T Labs

mkearns@research.att.com

Yishay Mansour

Tel Aviv University

mansour@math.tau.ac.il

February 27, 1998

Abstract

In this work, we present a new bottom-up algorithm for decision tree pruning
that is very e�cient (requiring only a single pass through the given tree), and
prove a strong performance guarantee for the generalization error of the resulting
pruned tree. We work in the typical setting in which the given tree T may have
been derived from the given training sample S, and thus may badly over�t S.
In this setting, we give bounds on the amount of additional generalization error
that our pruning su�ers compared to the optimal pruning of T . More generally,
our results show that if there is a pruning of T with small error, and whose size is
small compared to jSj, then our algorithm will �nd a pruning whose error is not
much larger. This style of result has been called an index of resolvability result
by Barron and Cover in the context of density estimation.

A novel feature of our algorithm is its locality | the decision to prune a
subtree is based entirely on properties of that subtree and the sample reaching
it. To analyze our algorithm, we develop tools of local uniform convergence, a
generalization of the standard notion that may prove useful in other settings.

Keywords: Decision Trees, Pruning, Theoretical Analysis, Model Selection, Uni-
form Convergence



1 Introduction

We consider the common problem of �nding a good pruning of a given decision tree
T on the basis of sample data S. We work in a setting in which we do not assume the
independence of T and S. In particular, we allow for the possibility that T was in fact
constructed from S, perhaps by a standard greedy, top-down process as employed in
the growth phases of the C4.5 and CART algorithms [8, 3]. Our interest here is in
how one should best use the data S a second time to �nd a good subtree of T . Note
that in the setting we imagine, T itself may badly over�t the data.

Our main result is a new and rather e�cient pruning algorithm, and the proof of a
strong performance guarantee for this algorithm (Theorems 5 and 6). Our algorithm
uses the sample S to compute a subtree (pruning) of T whose generalization error can
be related to that of the best pruning of T . More generally, the generalization error
of our pruning is bounded by the minimum over all prunings T 0 of the generalization
error �(T 0) plus a \complexity penalty" that depends only on the size of T 0. Thus, if
there is a relatively small subtree of T with small error, our algorithm enjoys a strong
performance guarantee. This type of guarantee is fairly common in the model selection
literature, and is sometimes referred to as an index of resolvability guarantee [1]. (It is
also similar to the types of results stated in the literature on combining \experts" [4],
although the interest there is not in generalization error but on-line prediction.) Our
algorithm is a simple, bottom-up algorithm that performs a single pass over the tree T ;
hence its running time is linear in size(T ). The only information our algorithm needs
for this bottom-up pass is, for each node in T , the depth and the number of positive
and negative examples reaching the node. This information is typically available from
the construction of the tree, or can be computed in time O(jSjdepth(T )).

An important aspect of our algorithm is its locality . Roughly speaking, this means
that the decision to prune or not prune a particular subtree during the execution is
based entirely on properties of that subtree and the sample that reaches it. We
argue that locality is an intuitively sensible property for a pruning algorithm to have,
and the analysis of our algorithm requires us to develop the notion of local uniform
convergence, a generalization of the standard notion of uniform convergence, and a
tool that we believe may prove useful in other settings.

There are a number of previous e�orts related to our results, which we only have
space to discuss brie
y here; more detailed comparisons will be given in the full paper.
First of all, our pruning algorithm is closely related to one proposed by Mansour [7],
who emphasized the locality property and gave primarily experimental results, but
was not able to bound the generalization error of the resulting pruned tree.

Helmbold and Schapire [4] gave an e�cient algorithm for predicting nearly as well
as the best pruning of a given tree. However, this algorithm di�ers from ours in a
number of important ways. First of all, it cannot be directly applied to the same data

2



set that was used to derive the given tree in order to obtain a good pruning | the
predictive power is only on a \fresh" or held-out data set. (A standard transformation
of their algorithm can be used on the original data set, but results in a considerably
less e�cient algorithm, as it requires many executions of the algorithm.) Second, it
does not actually �nd a good pruning of the given tree, but a weighted combination
of prunings. However, in the on-line prediction model of learning, their result is
quite strong. Here we study the typical batch model in which we may not assume
independence of our tree and data set.

The use of dynamic programming for pruning was already suggested in the orig-
inal book on CART [3] in order to minimize a weighted sum of the observed error
and the size of the pruning. Bohanec and Bratko [2] showed that it is possible to
compute in quadratic time the subtree of a given tree that minimizes the training
error while obeying a speci�ed size bound. By combining this observation with the
ideas of structural risk minimization [10], it is possible to derive a polynomial-time
algorithm for our setting with error guarantees quite similar to those we will give for
our algorithm. However, this algorithm would be considerably less e�cient than the
one we shall present.

Finally, our ideas are certainly in
uenced by the many single-pass, bottom-up
pruning heuristics in wide use in experimental machine learning, including that used
by C4.5 [8]. While we do not know how to prove strong error guarantees for these
heuristics, our current results provide some justi�cation for them, and suggest spe-
ci�c modi�cations that yield fast, practical and principled methods for pruning with
proven error guarantees. Combined with earlier results proving non-trivial perfor-
mance guarantees for the common greedy, top-down growth heuristics in the model
of boosting [5], it is fair to say that there is now a solid theoretical basis for both the
top-down and bottom-up passes of many standard decision tree learning algorithms.

2 Framework and Preliminaries

We consider decision trees over an input domain X . Each such tree has binary tests
at each internal node, where each test is chosen from a class T of predicates over X .
We use trees(T ; d) to denote the class of all binary trees with tests from T and at
most d internal nodes, and leaves labeled with 0 or 1.

We will also need notation to identify paths in a decision tree. Thus, we use
paths(T ; `) to denote the class of all conjunctions of at most ` predicates from T .
Clearly, if v is a node in a decision tree T 2 trees(T ; d), then we may associate with
v a predicate reachv 2 paths(T ; d), which is simply the conjunction of the predicates
along the path from the root to v in T . Thus, for any input x 2 X , reachv(x) = 1 if
and only if the path de�ned by x in T passes through v.

Given a node v in T , we let Tv denote the subtree of T that is rooted at v, and

3



for any probability distribution P over X , we let Pv denote the distribution induced
by P on just those x satisfying reachv(x) = 1.

In our framework, there is an unknown distribution P over X and an unknown
target function f over X . We are given a sample S of m pairs hxi; f(xi)i, where each
xi is drawn independently according to P . We are also given a tree T = T (S) that
may have been built from the sample S. Now for f and T �xed, for any distribution
P , we de�ne the generalization error �(T ) = �P (T ) = PrP [T (x) 6= f(x)], and also the
training error �̂(T ) = �̂S(T ) = (1=m)

Pm
i=1 I [T (x) 6= f(x)], where I is the indicator

function. In this notation, for any node v in T , we can de�ne the local generalization
error �v = �Pv(Tv) and the local training error �̂v = (1=jSvj)Px2Sv I [T (x) 6= f(x)],
where Sv is the set of all x 2 S satisfying reachv(x) = 1. We will also need to
refer to the local errors incurred by deleting the subtree Tv and replacing it by a leaf
with the majority label of the examples reaching v. Thus, we use �v(;) to denote
minfPrPv [f(x) = 0];PrPv [f(x) = 1]g; this is exactly the error, with respect to Pv ,
of the optimal constant function (leaf) 0 or 1. Similarly, we will use �̂v(;) to denote
(1=jSvj)minfjfx 2 Sv : f(x) = 0gj; jfx 2 Sv : f(x) = 1gjg, which is the observed local
error incurred by replacing Tv by the best leaf.

As we have mentioned in the introduction, we make no assumptions on f , and
our goal is not to \learn" f in the standard sense of, say, �tting a decision tree to the
data and hoping that it generalizes well. Here we limit our attention to the problem
of pruning a given decision tree. Thus, we assume that we are given as input the
sample S and a particular, �xed tree T , with the goal of �nding a pruning of T with
near-optimal generalization.

It is important to specify what we mean by a pruning of T , since allowing di�erent
pruning operations clearly can result in di�erent classes of trees that can be obtained
from T . We let prunings(T ) denote the class of all subtrees of T , that is, the class
of all trees that can be obtained from T by specifying nodes v1; : : : ; vk in T and
then deleting from T the subtrees Tv1 ; : : : ; Tvk rooted at those nodes. The allowed
operation is that of deleting any subtree from the current tree; prunings(T ) is exactly
the class of trees that can be obtained from T by any sequence of such operations.
Thus, any non-empty tree in prunings(T ) shares the same root as T , and can be
\superimposed" on T . In particular, we are not allowing \surgical" operations such
as the replacement of an internal node by its left or right subtree [8]. Nevertheless,
the class prunings(T ) contains an exponential number of subtrees of T , and our goal
will be �nd a tree in prunings(T ) with close to the smallest generalization error.

Let us again emphasize that we do not assume any \independence" between the
given tree T and the sample S | indeed, the likely scenario is that T was built
using S. Formally, we are given a pair (S; T ) in which we allow T = T (S). We are
imagining the common scenario in which the sample S is to be used twice | once
for top-down growth of T using a heuristic such as those used by C4.5 or CART, and

4



now again to �nd a good subtree of T . If one assumes that S is a \fresh" or held-out
sample (that is, drawn separately from the sample used to construct T ), the problem
becomes easier in some ways, since one can then use the observed error on S as an
approximate proxy for the generalization error of any tree in prunings(T ). There
is a trade-o� that renders the two scenarios incomparable in general [6]: by using a
hold-out set for the pruning phase, we gain the independence of the sample from the
given tree T , but at the price of having \wasted" some potentially valuable data for
the training (construction) of T ; whereas in our setting, we waste no data, but cannot
exploit independence of T and S.

In the hold-out setting, a good algorithm is one that chooses the tree in prunings(T )
that minimizes the error on S (which can be computed in polynomial time via a dy-
namic programming approach [2]), and fairly general performance guarantees can be
shown [6] that necessarily weaken as the hold-out set becomes a smaller fraction of
the original data sample.

3 Description of the Pruning Algorithm

We begin with a detailed description of the pruning algorithm, which is given the
random sample S and a tree T = T (S) as input. The high-level structure of the
algorithm is quite straightforward: the algorithm makes a single \bottom-up" pass
through T , and decides for every node v whether to leave the subtree currently rooted
at v in place (for the moment), or whether to delete this subtree. More precisely,
imagine that we place a marker at each leaf of T , and for any node v in T , let
markers(v) denote the set of markers in the subtree Tv rooted at v. When all of the
markers in markers(v) have arrived at v, our algorithm will then (and only then)
consider whether or not to delete the subtree then rooted at v; the algorithm then
passes all of these markers to its parent. Thus, the algorithm only considers pruning
at a node v once it has �rst considered pruning at all nodes below v; this simply
formalizes the standard notion of \bottom-up" processing.

Two observations are in order here. First, the algorithm considers a pruning
operation only once at each node v of T , at the moment when all of markers(v)
resides at v. Second, the subtree rooted at v when all of markers(v) reside at v
may be di�erent than Tv, because parts of Tv may have been deleted as markers were
being passed up towards v. We thus introduce the notation T �

v to denote the subtree
that is rooted at v when all of markers(v) resides at v. It is T �

v that our algorithm
must decide whether to prune, and T �

v is de�ned by the operation of the algorithm
itself. We will use T � to denote the �nal pruning of T output by our algorithm.

It remains only to describe how our algorithm decides whether or not to prune
T �

v . For this we need some additional notation. We de�ne mv = jSvj, and we let sv
denote the number of nodes in T �

v , and `v be the depth of the node v in T . Recall

5



that �̂v(T �

v ) is the fraction of errors T �

v makes on the local sample Sv, and �̂v(;) is the
fraction of errors the best leaf makes on Sv . Then our algorithm will replace T �

v by
this best leaf if and only if

�̂v(T
�

v ) + �(mv ; sv; `v; �) � �̂v(;) (1)

where � 2 [0; 1] is a con�dence parameter. The exact choice of �(mv ; sv; `v; �) will
depend on the setting, but in all cases can be thought of as a penalty for the complexity
of the subtree T �

v . Let us �rst consider the case in which the class T of testing functions
is �nite, in which case the class of possible path predicates paths(T ; `v) leading to
v and the class of possible subtrees trees(T ; sv) rooted at v are also �nite. In this
case, we would choose

�(mv; sv; `v; �) = c

s
log(jpaths(T ; `v)j) + log(jtrees(T ; sv)j+ log(m=�)

mv
(2)

for some constant c > 1. Perhaps the most natural and common special case of this
�nite-cardinality setting is that in which the input space X is the boolean hyper-
cube f0; 1gn, and the test class T contains just the n single-variable tests xi. These
are the kinds of tests allowed in the vanilla C4.5 and CART packages, and since
jpaths(T ; `)j � n` and jtrees(T ; s)j � (an)s for some constant a, Equation (2)
specializes to

�(mv; sv; `v; �) = c0

s
(`v + sv) log(n) + log(m=�)

mv
(3)

for some constant c0 > 1. To simplify the exposition and to make it more concrete, we
will work this particular choice of T in most of our proofs, but speci�cally point out
how the analysis changes for the case of in�nite T , where the pruning rule is given
by choosing

�(mv; sv; `v; �) = c

s
(d`v + dsv) log(2m) + log(m=�)

mv
(4)

for some constant c > 1, where d`v and dsv are the VC dimensions of the classes
paths(T ; `v) and trees(T ; sv), respectively.

Let us �rst provide some brief intuition behind our algorithm, which will serve as
motivation for the ensuing analysis as well. At each node v, our algorithm considers
whether to leave the current subtree T �

v or to delete it. The basis for this comparison
must clearly make use of the sample S provided.

Beyond this observation, a number of ways of comparing T �

v to the best leaf are
possible. For instance, we could simply prefer whichever of T �

v and the best leaf
makes the smaller number of mistakes on Sv. This is clearly a poor idea, since T �

v

cannot do worse than the best leaf (assuming majority labels on the leaves of T �

v ),

6



and may do considerably better | but generalize poorly compared to the best leaf
due to over�tting. Thus, it seems we should penalize T �

v for its complexity, which is
exactly the role of the additive term �(mv; sv; `v; �) above.

One important subtlety of our algorithm is the fact that the comparison between
T �
v and the best leaf is being made entirely on the basis of the local reduction to the

observed error. That is, the comparison depends on Sv and T �

v only, and not on all of
S and T . A reasonable alternative \global" comparison might compare the observed
error of the entire tree, �̂(T �), plus a penalty term that depends on size(T �), with
the observed error of the entire tree with T �

v pruned, �̂(T � � T �

v ) (where T
� � T �

v is
the tree after we prune at v), plus a penalty term that depends on size(T � � T �

v ).
The important di�erence between this global algorithm and ours is that in the global
algorithm, even when there is a large absolute di�erence in complexity between T �

v

and a leaf, this di�erence may be swamped by the fact that both are embedded in the
much larger supertree T � | that is, the di�erence is small relative to the complexity
of T �. This may cause a suboptimal insensitivity, leading to a propensity to leave large
subtrees unpruned. Indeed, it is possible to construct examples in which the global
approach leads to prunings strictly worse than those produced by our algorithm, and
demonstrating that results as strong as we will give are not possible for the global
method.

Our analysis proceeds as follows. We �rst need to argue that any time our al-
gorithm chooses not to prune T �

v , then (with high probability) this was in fact the
\right" decision, in the sense that the current tree T � would be degraded by deleting
T �

v . This allows us to establish that our �nal pruning will be a subtree of the optimal
pruning, so our only source of additional error results from those subtrees of this op-
timal pruning that we deleted. A careful amortized analysis allows us to bound this
additional error by a quantity related to the size of the optimal pruning. This line of
argument establishes a relationship between the error of our pruning and that of the
optimal pruning; a slight modi�cation of the algorithm and a more involved analysis
let us make a similar comparison to any pruning. This extension is important for
cases in which there may be a pruning whose error is only slightly worse than that of
the optimal pruning, but whose size is much smaller. In such a case our bounds are
much better.

4 Local Uniform Convergence

In a standard uniform convergence results, we have a class of events (predicates),
and we prove that the observed frequency of any event in the class does not di�er
much from its true probability. We would like to apply such results to events of the
form \subtree T �

v makes an error on x", but do not wish to take what is perhaps
most obvious approach towards doing so. The reason is that we want to examine

7



this event conditioned on the event that x reaches v, and obviously this conditioning
event di�ers for every v. One approach would be to rede�ne the class of events of
interest to include the conditioning events, that is, to look at events of the form \x
satis�es reachv(x) and T �

v makes an error on x" for all possible reachv(x) and T �

v . It
turns out that this approach would result in �nal bounds on our performance that
are signi�cantly worse than what we will obtain. What we really want is the rather
natural notion of local uniform convergence: for any conditioning event c in a class
C, and any event e in a class E, we would like to relate the observed frequency of e
restricted to the subsample satisfying c to the true probability of e on the distribution
conditioned on c; and clearly the accuracy of this observed frequency will depend not
on the overall sample size, but on the number of examples satisfying the conditioning
event c. Such a relationship is given by the next two theorems, which treat the cases
of �nite classes and in�nite classes separately.

Lemma 1 Let C and H be �nite classes of boolean functions over X, let f be a

target boolean function over x, and let P be a probability distribution over X. For

any c 2 C and h 2 H, let �c(h) = PrP [h(x) 6= f(x)jc(x) = 1], and for any labeled

sample S of f(x), let �̂c(h) denote the fraction of points in Sc on which h errs, where

Sc = fx 2 S : c(x) = 1g. Then the probability that there exists a c 2 C and an h 2 H
such that

j�c(h)� �̂c(h)j �
s
log(jCj) + log(jH j) + log(1=�)

mc
(5)

is at most �, where mc = jScj.

Proof:Let us �x c 2 C and h 2 H . For these �xed choices, we have for any value �

PrP [j�c(h)� �̂c(h)j � �] = Emc
[PrSc [j�c(h)� �̂c(h)j � �]]: (6)

Here the expectation is over the distribution on values of mc induced by P , and the
distribution on Sc is over samples of size mc (which is �xed inside the expectation)
drawn according to Pc (the distribution P conditioned on c being 1). Since mc is
�xed, by standard Cherno� bounds we have

PrSc [j�c(h)� �̂c(h)j � �] � e��
2mc (7)

giving the bound
PrP [j�c(h)� �̂c(h)j � �] � Emc

[e��
2mc ]: (8)

If we choose

� =

s
log(jCj) + log(jH j) + log(1=�)

mc
(9)

8



then e��
2mc = �=(jCjjH j), which is a constant independent of mc and thus can

be moved outside the expectation. By appealing to the union bound (Pr[A _ B] �
Pr[A]+Pr[B]), the probability that there is some c and h such that j�c(h)� �̂c(h)j � �

is at most jCjjH j(�=(jCjjH j)) = �, as desired. 2

Our use of Lemma 1 will be straightforward. Suppose we are considering some
node v in a decision tree T at depth `v , and with a subtree T �

v of size sv rooted at v.
Then we will appeal to the lemma choosing the conditioning class C to be the class
paths(T ; `v), choosing H to be trees(T ; sv), and choosing � to be �0=m2. In this
case, the local complexity penalty �(`v; sv; mv; �) in Equation (2) and the deviation
� in Equation (9) coincide, and thus we can assert that with probability 1 � �0=m2

there is no leaf of depth `v and subtree of size sv such that the local observed error
of the subtree deviates by more than �(mv ; sv; `v; �) from the local true error. By
summing over all m2 choices for `v and sv, we obtain an overall bound of � on the
failure probability.

In other words, if we limit our attention to the local errors �v (generalization)
and �̂v (observed), then with high probability we can assert that they will be within
an amount (namely, �(mv ; sv; `v; �)) that depends only on local quantities: the local
sample size mv , the length `v of the path leading to v, and the size of the subtree
rooted at v.

A more complicated argument is needed to prove local uniform convergence for
the case of in�nite classes.

Lemma 2 Let C and H be classes of boolean functions over X, let f be a target

boolean function over x, and let P be a probability distribution over X. For any

c 2 C and h 2 H, let �c(h) = PrP [h(x) 6= f(x)jc(x) = 1], and for any labeled

sample S of f(x), let �̂c(h) denote the fraction of points in Sc on which h errs, where

Sc = fx 2 S : c(x) = 1g. Then the probability that there exists a c 2 C and an h 2 H
such that

j�c(h)� �̂c(h)j �
s
(dC + dH) log(2m) + log(1=�)

mc
(10)

is at most �, where mc = jScj, and dC and dH are the VC dimensions of C and H,

respectively.

Proof:(Sketch) The proof closely follows the \two-sample trick" proof for the classical
VC theorem [9], with an important variation. Intuitively, we introduce a \nested two-
sample trick", since we need to apply the idea twice | once for C, and again for H .

As in the classical proof, we de�ne two events, but now they are \local" events.
Event A(S) is that in a random sample S of m examples, there exists a c 2 C and an
h 2 H such that j�c(h)� �̂c(h)j � �. Event B(S; S0) is that in a random sample S [S0
of 2m examples, there exists a c 2 C and an h 2 H such that j�̂c(h)� �̂0c(h)j � �=2,
where �̂c(h) and �̂0c(h) denote the observed local error of h on S and S0, respectively.

9



We use the fact that

PrS [A(S)] = PrS;S0 [A(S)] (11)

= PrS;S0 [A(S)^ B(S; S0)]=PrS;S0 [B(S; S0)jA(S)] (12)

Clearly, PrS;S0 [A(S) ^ B(S; S 0)] � PrS;S0 [B(S; S0)] . We also have the inequality
PrS;S0 [B(S; S0)jA(S)] � 1=2. Therefore, PrS;S0 [A(S)] � 2PrS;S0 [B(S; S0)], and we
can concentrate on bounding the probability of event B.

Let us �rst consider a �xed set of 2m inputs x1; : : :x2m. The number of possible
subsets of this set induced by taking intersections with sets in C is at most �C(2m),
where �C is the dichotomy counting functions of classical VC analysis. Let us �x
a c 2 C, and consider the subset Sc of x1; : : : ; x2m that fall in c; let mc = jScj.
Now consider all possible labelings of Sc by the concept class H ; there are at most
�H(mc) � �H(2m) such labelings. Let us now also �x one of these labelings, by
�xing some h 2 H .

Now both c 2 C and h 2 H are �xed. Consider splitting Sc randomly into two
subsets of size mc=2 each, S1c and S2c . For event B to hold, we need the di�erence
between the observed errors of h on S1c and S2c to be at least �=2. It can be shown
that this will occur with probability at most e��

2mc=12, where the probability is taken
only over the random partitioning of Sc. Now if we choose

� =

s
(dC + dH) log(2m) + log(1=�)

mc
(13)

then e��
2mc=12 = (1=(2m)dC)(1=(2m)dH)�, which is independent of mc. We can then

bound the probability that this event occurs for some c and h by summing this bound
over all possible subsets Sc, and all possible labelings of Sc by functions in H , giving a
bound of �C(2m)�H(2m)(1=mdC)(1=mdH)�. Using the fact that �C(m) � mdC and
�H(m) � mdH yields an overall bound of �, as desired. 2

5 Analysis of the Pruning Algorithm

In this section, we apply the tools of local uniform convergence to analyze the pruning
algorithm given in Section 3. As mentioned earlier, for simplicity in exposition, we
will limit our attention to the common case in which X is the boolean hypercube
f0; 1gn and the class T of allowed node tests is just the input variables xi, in which
case the pruning rule used by our bottom-up algorithm is that given by Equation (3).
However, it should be clear how the analysis easily generalizes to the more general
algorithms given by Equations (2) and (4).

We shall �rst give an analysis that compares the generalization error of the pruning
T � produced by our algorithm from S and T to the generalization error of Topt , the

10



pruning of T that minimizes the generalization error. Recall that we use T �

v to denote
the subtree that is rooted at node v of T at the time our algorithm decides whether

or not to prune at v, which may be a subtree of Tv due to prunings that have already
taken place below v.

We will show that �(T �) is larger than �opt = �(Topt) by an amount that can be
bounded by the size sopt and depth `opt of Topt . Thus, if there is a reasonably small
subtree of T with small generalization error, our algorithm will produce a pruning
with small generalization error as well. In Section 6, we will improve our analysis to
compare the error of T � to that of any pruning, and provide a discussion of situations
in which this result may be considerably more powerful than our initial comparison
to Topt alone.

For the analysis, it will be convenient to introduce the notation

rv = (`v + sv) log(n) + log(m=�) (14)

for any node v, where `v is the depth of v in T , and sv is the size of T �

v . In this
notation, the penalty �(mv; sv; `v; �) given by Equation (3) is simply a constant (that
we ignore in the analysis for ease of exposition) times

p
rv=mv. (We assume thatp

rv=mv � 1, since a penalty which is larger than 1 can be modi�ed to a penalty of
1 without changing the results.)

Lemma 3 With probability at least 1� � over the draw of the input sample S, T � is

a subtree of Topt .

Proof:Consider any node v that is a leaf in Topt . It su�ces to argue that our algorithm
would choose to prune T �

v , the subtree that remains at v when our algorithm reaches
v. By Equation (3), our algorithm would fail to prune T �

v only if �̂v(;) exceeded
�̂v(T

�

v ) by at least the amount �(mv; sv; `v; �), in which case Lemma 1 ensures that
�v(T

�

v ) < �v(;) with high probability. In other words, if our algorithm fails to prune
T �

v , then Topt would have smaller generalization error by including T �

v rather than
making v a leaf. This contradicts the optimality of Topt . 2

Lemma 3 means that the only source of additional error of T � compared to Topt
is through overpruning, not underpruning. Thus, for the purposes of our analysis,
we can imagine that our algorithm is actually run on Topt rather than the original
input tree T (that is, the algorithm is initialized starting at the leaves of Topt , since
we know that the algorithm will prune everything below this frontier).

Let V = fv1; : : : ; vtg be the sequence of nodes in Topt at which the algorithm
chooses to prune the subtree T �

vi
rather than to leave it in place; note that t � sopt .

Then we may express the additional generalization error �(T �)� �opt as

�(T �)� �opt =
tX

i=1

(�vi(;)� �vi(T
�

vi
))pvi (15)

11



where pvi is the probability under the input distribution P of reaching node vi, that is,
the probability of satisfying the path predicate reachvi . Each term in the summation
of Equation (15) simply gives the change to the global error incurred by pruning T �

vi ,
expressed in terms of the local errors. Clearly the additional error of T � is the sum
of all such changes.

Now we may write

�(T �)� �opt �
tX

i=1

�
j�vi(;)� �̂vi(;)j+ j�̂vi(;)� �̂vi(T

�

vi)j

+j�̂vi(T �

vi)� �vi(T
�

vij
�
pvi (16)

�
tX

i=1

 s
(`vi + 1) log(n) + log(m=�)

mvi

+ �(mvi ; svi ; `vi; �)

+

s
(`vi + svi) log(n) + log(m=�)

mvi

!
pvi (17)

� 4
tX

i=1

 s
rvi
mvi

!
pvi : (18)

The �rst inequality comes from the triangle inequality. The second inequality uses
two invocations of Lemma 1, and the fact that our algorithm directly compares �̂vi(;)
and �̂vi(T

�

vi), and prunes only when they di�er by less than �(mvi ; svi ; `vi ; �).
Thus, we would like to bound the sum � =

Pt
i=1(

p
rvi=mvi)pvi . The leverage we

will eventually use is the fact that
Pt

i=1 rvi can be bounded by quantities involving
only the tree Topt , since all of the T �

vi
are disjoint subtrees of Topt . First it will be

convenient to break this sum into two sums | one involving just those terms for
which pvi is \small", and the other involving just those terms for which pvi is \large".
The advantage is that for the large pvi , we can relate pvi to its empirical estimate
p̂vi = mvi=m, as evidenced by the following lemma.

Lemma 4 The probability, over the sample S, that there exists a node vi 2 V such

that pvi > 12 log(t=�)=m but pvi � 2p̂vi is at most �.

Proof:We will use the relative Cherno� bound

Pr[p̂vi < (1� 
)pvi] � emp
2=3 (19)

which holds for any �xed vi. By taking 
 = 1=2 and applying the union bound, we
obtain

Pr[9vi 2 V : pv � 2p̂v] � te�pvim=12: (20)

12



Now we can use the assumed lower bound on pvi to bound the probability of the event
by �. 2

Let V 0 be the subset of V for which the lower bound pvi > 12 log(t=�)=m holds.
We divide the sum that describes � into two parts:

� =
X

vi2V�V 0

�q
rvi=mvi

�
pvi +

X
vi2V 0

�q
rvi=mvi

�
pvi (21)

The �rst summation is bounded by 12 log(sopt=�)sopt=m, since
p
rvi=mvi is at most

1, and t � sopt .
For the second summation, we perform a maximization. By Lemma 4, with high

probability we have that for every vi 2 V 0, pvi < 2p̂vi = 2mvi=m. Thus, with high
probability we have

X
vi2V 0

s
rvi
mvi

pvi <
X
vi2V 0

s
rvi
mvi

�
2
mvi

m

�
(22)

=
2

m

X
vi2V 0

p
rvi
p
mvi (23)

� 2

m

s
(
X
vi2V 0

rvi)(
X
vi2V 0

mvi): (24)

To bound this last expression, we �rst bound
P

vi2V 0 rvi . Recall that

rvi = (`vi + svi) log(n) + log(m=�): (25)

Since for any vi 2 V 0, we have `vi � `opt , we have that
P

vi2V 0 `vi � sopt `opt , since
jV 0j � t � sopt . Since the subtrees T

�

vi that we prune are disjoint and subsets of the
optimal subtree Topt , we have

P
vi2V 0 svi � sopt. ThusX

vi2V 0

ri � sopt ((1 + `opt) log(n) + log(m=�)): (26)

To bound
P

vi2V 0 mvi in Equation (24), we observe that since the sets of exam-
ples that reach di�erent nodes at the same level of the tree are disjoint, we haveP

vi2V 0 mvi � m`opt . Thus, with probability 1� �, we obtain an overall bound

� < 12 log(sopt=�)
sopt
m

+
2

m

q
sopt ((1 + `opt) log(n) + log(m=�))(m`opt) (27)

= O

��
log(sopt=�) + `opt

q
log(n) + log(m=�)

�r
sopt
m

�
(28)

This gives the �rst of our main results.

13



Theorem 5 Let S be a random sample of size m drawn according an unknown target

function and input distribution. Let T = T (S) be any decision tree, and let T � denote

the subtree of T output by our pruning algorithm on inputs S and T . Let �opt denote

the smallest generalization error among all subtrees of T , and let sopt and `opt denote
the size and depth of the subtree achieving �opt . Then with probability 1� � over S,

�(T �)� �opt = O

��
log(sopt=�) + `opt

q
log(n) + log(m=�)

�r
sopt
m

�
(29)

6 An Index of Resolvability Result

Roughly speaking, Theorem 5 ensures that the true error of the pruning found by our
algorithm will be larger than that of the best possible pruning by an amount that is

not much worse than
q
sopt=m (ignoring logarithmic and depth factors for simplicity).

How good is this? Since we assume that T itself (and therefore, all subtrees of T )
may have been constructed from the sample S, standard model selection analyses [10]
indicate that �opt may be larger than the error of the best decision tree approximation

to the target function by an amount growing like
q
sopt=m. (Recall that �opt is only

the error of the optimal subtree of T | there may be other trees which are not subtrees
of T with error less than �opt , especially if T was constructed by a greedy top-down
heuristic.) Thus, if we only compare our error to that of Topt , we are e�ectively only
paying a penalty of the same order that Topt pays. If sopt is small compared to m |
that is, the optimal subtree of T is small | then this is quite good indeed.

But a stronger result is possible and desirable. Suppose that Topt is not particu-
larly small, but that there is a much smaller subtree T 0 whose error is not much worse
than �opt . In such a case, we would rather claim that our error is close to that of T 0,
with a penalty that goes only like

p
s0=m. This was the index of resolvability criterion

for model selection �rst examined for density estimation by Barron and Cover [1], and
we now generalize our main result to this setting.

Theorem 6 Let S be a random sample of size m drawn according an unknown target

function and input distribution. Let T = T (S) be any decision tree, and let T � denote

the subtree of T output by our pruning algorithm on inputs S and T . Then with

probability 1� � over S,

�(T �) � min
T 0

�
�(T 0) +

O

0
@�log(se� (T 0)=�) + `e� (T

0)
q
log(n) + log(m=�)

�s
se� (T 0)

m

1
A
9=
; : (30)

14



Here the min is taken over all subtrees T 0 of T , and we de�ne the \e�ective" size

se� (T
0) = s0 + 2m(�(T 0)� �opt ) + 6s0 log(s0=�) (31)

and the `e�ective" depth `e� (T
0) = minf`opt ; s0g, where s0 and `0 are the size and

depth of T 0, �opt denotes the smallest generalization error among all subtrees of T ,

and `opt denotes the depth of the subtree achieving �opt .

The proof is omitted due to space considerations, but the main di�erence from
the proof of Theorem 5 is that our pruning is no longer a subtree of the pruning T 0 to
which it is being compared. This requires a slight modi�cation of the pruning penalty
�(mv; sv; `v; �), and the analysis bounding the sum of the sizes of the pruned subtrees
becomes more involved.

Again ignoring logarithmic and depth factors for simplicity, Theorem 6 compares
the error of our pruning simultaneously to all prunings T 0. Our additional error goes

roughly like
q
se� (T 0)=m. If s0 is small compared to m and �(T 0) is not much larger

than �opt , then the bound shows that our error will compare well to �opt | even
though the tree T 0 achieving the min may not be Topt . This is the power of index of
resolvability results.

References

[1] Andrew R. Barron and Thomas M. Cover. Minimum Complexity Density Estimation.
IEEE Transactions on Information Theory, Vol. 37, No. 4, pages 1034 { 1054, 1991.

[2] Marco Bohanec and Ivan Bratko. Trading Accuracy for simplicity in Decision Trees.
Machine Learning, Vol. 15, pages 223 { 250, 1994.

[3] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone. Classi�cation and Regression Trees.
Wadsworth International Group, 1984.

[4] David P. Helmbold and Robert E. Schapire. Predicting Nearly as Well as the Best Prun-
ing of a Decision Tree. Proceedings of the Eighth Annual Conference on Computational

Learning Theory, ACM Press, pages 61 { 68, 1995.

[5] Michael Kearns and Yishay Mansour. On the Boosting Ability of Top-Down Decision
Tree Learning Algorithms. Proceedings of the 28th Annual ACM Symposium on the

Theory of Computing, ACM Press, pages 459{468, 1996.

[6] M. Kearns, Y. Mansour, A. Ng, D. Ron. An Experimental and Theoretical Comparison
of Model Selection Methods. Machine Learning , 27(1):7{50, 1997.

[7] Yishay Mansour. Pessimistic Decision Tree Pruning Based on Tree Size.
Proceedings of the Fourteenth International Conference on Machine Learning, Morgan
Kaufmann, pages 195 { 201, 1997.

15



[8] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[9] V.N. Vapnik and A. Ya. Chervonenkis. On the Uniform Convergence of Relative Fre-
quencies of Events to thier Probabilities. Theory of Probability and its Applications,
XVI(2):264{280,1971.

[10] V.N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag,
1982.

16


