
Online Learning and Profit Maximization from Revealed Preferences

Kareem Amin, Rachel Cummings∗, Lili Dworkin, Michael Kearns, Aaron Roth†
Computer and Information Science

University of Pennsylvania
{akareem,ldworkin,mkearns,aaroth}@cis.upenn.edu; rachelc@caltech.edu

Abstract
We consider the problem of learning from revealed pref-
erences in an online setting. In our framework, each pe-
riod a consumer buys an optimal bundle of goods from
a merchant according to her (linear) utility function and
current prices, subject to a budget constraint. The mer-
chant observes only the purchased goods, and seeks to
adapt prices to optimize his profits. We give an efficient
algorithm for the merchant’s problem that consists of a
learning phase in which the consumer’s utility function
is (perhaps partially) inferred, followed by a price opti-
mization step. We also give an alternative online learn-
ing algorithm for the setting where prices are set ex-
ogenously, but the merchant would still like to predict
the bundle that will be bought by the consumer, for pur-
poses of inventory or supply chain management. In con-
trast with most prior work on the revealed preferences
problem, we demonstrate that by making stronger as-
sumptions on the form of utility functions, efficient al-
gorithms for both learning and profit maximization are
possible, even in adaptive, online settings.

1 Introduction
We consider algorithmic and learning-theoretic aspects of
the classic revealed preferences problem. In this setting, a
consumer has a fixed but unknown utility function u over
n goods, and is price sensitive. At each period t, she ob-
serves a price vector pt and purchases a bundle of (possibly
fractional) goods xt to maximize her utility given her bud-
get (i.e. xt ∈ argmaxx·pt≤B u(x)). Given a sequence of
T observations (p1, x1), . . . , (pT , xT), the revealed prefer-
ences problem (introduced by Samuelson (1938); see Varian
(2006) for a survey) is to determine whether the observations
are consistent with a consumer optimizing any utility func-
tion u, subject to some mild constraints (e.g. monotonicity
of u). In this paper, however, we have different and stronger
objectives, motivated by what power the merchant has to set
prices. We consider two scenarios:

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
∗Research performed while the author was visiting the Univer-

sity of Pennsylvania. Author’s current affiliation: Computing and
Mathematical Sciences, California Institute of Technology.
†Research supported in part by NSF grants CCF-1101389,

CNS-1065060, CNS-1253345, and a Google research grant.

(Price-Setting) First, we consider a monopolist merchant
who has the power to set prices as he wishes (without fear
of losing the consumer to competition). In this setting, we
adopt the natural goal of merchant profit maximization. The
merchant has a fixed unit cost associated with each good,
and his profit, when the consumer buys a bundle x, is his rev-
enue minus the cost of the bundle purchased. The merchant
wishes to adaptively set prices so as to minimize his costs,
which in turn maximizes his profits. Every round, the con-
sumer purchases her utility maximizing bundle subject to the
merchant’s prices and her budget constraint. If the merchant
knew the consumer’s utility function, he could optimally set
prices, but he does not — instead, the merchant faces a
learning problem. For the case when the consumer has a lin-
ear utility function, we give an efficient algorithm for setting
prices to quickly learn the consumer’s utility function and
then exploit this knowledge to set profit-maximizing prices.

(Exogenous Prices) Second, we consider a merchant who
cannot unilaterally set prices, but instead must react to a
stream of exogenously chosen prices. This setting is relevant
to a seller of commodity goods, or the owner of a franchise
that must set prices given by the parent company. Despite his
lack of control over prices, this merchant would nevertheless
like to be able to predict which bundle the consumer is go-
ing to buy in the next period (e.g. to optimize inventory or
streamline the supply chain). The problem remains that the
consumer’s utility function is unknown, and now the price
sequence is also unknown and arbitrary (i.e. it could in the
worst case be chosen adaptively, by an adversary). In this
setting, when the consumer has a linear utility function, we
give an efficient algorithm with a small mistake bound — in
other words, even against an adaptively chosen set of price
vectors, in the worst case over consumer utility functions,
our algorithm makes only a bounded number of mistaken
predictions of bundles purchased.

We note that there are a variety of scenarios that fall under
the two frameworks above. These include sponsored search
or contextual advertising on the web (where advertisers typ-
ically must obey periodic budget constraints, and prices are
set exogenously by the bids of competitors or endogenously
by an ad exchange or publisher); consumers who regularly
receive gift certificates which can only be used for purchases
from a single merchant such as Amazon, who in turn has
price-setting powers; and crowdsourcing or labor manage-

ment settings where a manager (merchant) can set rewards
or payments for a set of daily tasks, and workers (con-
sumers) with a budget of time or effort select tasks according
to the incentives and their own abilities.

From a learning-theoretic point of view, the price-setting
framework can be viewed as a form of query model, since
the merchant is free to experiment with prices (both for the
purpose of learning about the consumer, and subsequently
in order to set optimal prices); while the exogenous price
model falls into the large literature on adversarial, worst-
case online learning. The learning problem we consider in
both settings is unusual, in that the “target function” we are
trying to learn is the vector-valued argmax (optimal bundle)
of the consumer’s utility function. Additionally, despite the
linearity of the consumer’s utility function, the merchant’s
reward function is a non-convex function of prices, which
further complicates learning.

Our major assumptions — that consumers always spend
their entire budget, that there is one divisible unit of each
good available in each round, and that consumers repeatedly
return to the same merchant — are standard in the revealed
preferences model. In order to provide efficient learning al-
gorithms in this setting, we necessarily impose additional
restrictions on the form of the consumer’s utility function.
In particular, we assume that the utility function is linear,
and that the coefficients are discretized and lower-bounded.
The discretization assumption is necessary to learn the util-
ity function exactly, which is required for the merchant’s
optimization. Even if two functions differ by an arbitrarily
small amount, they can induce the consumer to buy very
different bundles. We also assume an upper bound on prices,
and without loss of generality we rescale this upper bound to
be 1. Without such an assumption, the merchant could max-
imize his profits by setting all prices to infinity. Unbounded
prices are neither found in reality, nor lead to an interesting
optimization problem.

1.1 Our Results
We first consider the case of a monopolist merchant who has
the ability to set prices arbitrarily, and is facing a consumer
with an unknown linear utility function. In this setting, we
give an algorithm with bounded regret with respect to the
optimal (profit-maximizing) set of prices in hindsight. Our
argument proceeds in two steps. We first show that, if we
knew the consumer’s utility function u, then we could effi-
ciently compute the optimal profit-maximizing prices p∗:

Theorem 1 (Informal). There is an efficient algorithm (run-
ning in time O(n2 log n)), which given as input the linear
consumer utility function u, outputs the profit-maximizing
prices p∗.

The analysis of this algorithm first assumes we know only
the set of goods purchased by the consumer under optimal
prices (but not the optimal prices themselves), and intro-
duces a family of linear programs with one free parameter.
We then show there is a small set of values for this parame-
ter, one of which yields the optimal prices.

Note that although the consumer’s optimization problem
when selecting a bundle to purchase given prices is simply

a fractional knapsack problem, the problem of computing
optimal prices is substantially more complex. The optimal
price vector p∗ is actually a subgame perfect Nash equilib-
rium strategy for the merchant in a two-stage extensive form
game between the merchant and the consumer (the merchant
first picks prices, and then the consumer best responds).
Viewed in this way, the fractional knapsack problem that
the consumer solves at the second stage is simply her best
response function; what we give is an algorithm for com-
puting the merchant’s subgame perfect equilibrium strategy
in the first stage of this game. Note that doing this in poly-
nomial time is non-trivial, because the merchant’s strategy
space is continuous (and even after discretization, is expo-
nentially large).

We next give an algorithm that learns the consumer’s un-
known linear utility function by making price queries.

Theorem 2 (Informal). There is an efficient algorithm that
learns, after at most O(n) price queries, the utility coeffi-
cients for all goods except those that are so preferred they
will be bought regardless of prices.

This algorithm has two phases. In the first phase, after
setting all prices to 1 (the maximum possible price), the al-
gorithm gradually lowers the prices of unpurchased items in
succession until they are purchased, thus learning the ratio
of their utility coefficient to that of the least preferred good
that was purchased under the price vector of all 1s.

The harder coefficients to learn are those corresponding to
goods purchased even when all prices are 1 — these are the
consumer’s most preferred goods. Some of these are learned
by gradually lowering the prices of unpurchased goods until
a switch of purchased goods occurs; for the ones that can-
not be learned via this procedure, we prove that they are so
favored that they will be purchased under any prices, and
learning their coefficients is not necessary for price opti-
mization.

These two algorithms combine to prove our first main re-
sult:

Theorem 3 (Informal). There is a price-setting algorithm
that, when interacting with a consumer with an unknown lin-
ear utility function for T rounds, achieves regretO(n2/T) to
the profit obtained by the optimal (profit-maximizing) price
vector.

In the last part of the paper, we consider the case of a
commodity merchant who does not have the power to set
prices. The merchant wishes to predict the bundles that a
consumer with an unknown linear utility function will buy,
in the face of a stream of arbitrary price vectors. Here, the
main quantity of interest is how many mistakes we make (by
predicting the incorrect bundle) in the worst case over both
consumer utility functions and sequences of price vectors.
We call this the mistake bound of the algorithm (by analogy
to the mistake bounded model of learning). Here we prove
our second main result:

Theorem 4 (Informal). There exists a polynomial time algo-
rithm in the online exogenous price model that has a mistake
bound of O(n2) with high probability.

1.2 Related Work
The work most directly related to our results is the recent pa-
per of Balcan et al. (2014), which was conducted indepen-
dently and concurrently. They study the problem of learn-
ing from revealed preferences in various settings, including
in a query model related to the model we study here. Our
“price queries” differ slightly from the queries in the Bal-
can et al. model, in that our learner can only specify prices,
whereas the learner from Balcan et al. can specify prices, as
well as the consumer’s budget with each query. However, the
main distinction between our work and theirs is that our goal
is profit maximization (even if we do not exactly learn the
buyer’s utility function), and the goal of Balcan et al (2014)
is to exactly learn the buyer’s utility function — they do not
consider the profit maximization problem.

More broadly, there is a long line of work on the revealed
preference problem, which was first introduced by Samuel-
son (1938).1 Most previous efforts have focused on the con-
struction of utility functions that explain a finite sequence
of price/bundle observations. Afriat’s Theorem (1967) is the
seminal result in this field, and proves that a sequence of ob-
servations is rationalizable (i.e. can be explained by a utility
function) if and only if the sequence is rationalizable by a
piecewise linear, monotone, concave utility function. How-
ever, the hypothesis learned has description length propor-
tional to the number of observations, and hence although it
can explain previous observations, it usually does not gener-
alize to predict the bundles purchased given new price vec-
tors.

The problem of finding a utility function that is both con-
sistent and predictive was first considered by Beigman and
Vohra (2006), who formalize the statement that “Afriat’s
Theorem Learners” do not generalize. Their results essen-
tially show that it is only possible to find predictive hypothe-
ses if we restrict the class of allowable utility functions be-
yond those that are rationalizable. Roth and Zadimoghad-
dam (2012) extend this line of work by providing efficient
learning algorithms for two specific classes of utility func-
tions — linear and linearly separable and concave utility
functions. Cummings, Echenique, and Wierman (2014) con-
sider the revealed preferences problem when the consumer
can strategically choose bundles to subvert the merchant’s
learning. In this setting, they show that without assuming
the consumer’s utility function is linearly separable, the mer-
chant is unable to learn anything.

Like this prior work, we also seek to find predictive hy-
potheses for the class of linear utility functions, but we con-
sider two new learning models: one in which prices are di-
rectly controlled, rather than observed (which corresponds
to a query model of learning), and furthermore we wish to
learn optimal prices; and one in which prices are chosen ad-
versarially and adaptively, and arrive online (which corre-
sponds to online learning in the mistake bound model).

Our results in the second model are inspired by the clas-
sic halving algorithm for the online learning setting, which

1For a textbook introduction to the standard model, see (Mas-
Colell, Whinston, and Green 1995) and (Rubinstein 2012), and for
a survey of recent work, see (Varian 2006).

is credited to Littlestone (1988). To implement the algo-
rithm efficiently, we instead maintain a continuous hypothe-
sis space from which we predict using a randomly sampled
hypothesis (rather than predicting using a majority vote).
We track the volume of the hypothesis space (rather than
the number of consistent hypotheses), and show that after
a bounded number of mistakes, we must have learned one
coefficient of the consumer valuation function.

We also make note of a large literature on preference
learning, which has similar motivation to our work, but is not
directly technically relevant. This literature typically does
not consider preferences which are generated in response
to prices, so the main focus of our work (on profit max-
imization) does not arise in the preference learning litera-
ture. Similarly, in our exogenous prices setting, we are in
a mistake bounded model, and make no distributional as-
sumptions, which differentiates us from most of the work on
preference learning.

2 Preliminaries
We consider a set of n divisible goods that a merchant
wishes to sell to a consumer. We represent a bundle of goods
x ∈ [0, 1]n by a vector specifying what fraction of each of
the n goods is purchased. The consumer has an unknown
utility function u : [0, 1]n → R specifying her utility for
each possible bundle. The prices (one for each good) are
also represented by a vector p ∈ [0, 1]n (we normalize so
that the price of every good i is pi ≤ 1). Written in this way,
the price of a bundle x is simply x · p =

∑n
i=1 pi · xi. Fi-

nally, the consumer behaves as follows: facing a price vector
p, the consumer purchases her most preferred bundle subject
to a budget constraint B ≥ 0. That is, she purchases a bun-
dle in the set X(u, p,B) = argmaxx·p≤B u(x) of utility-
maximizing bundles. If X(u, p,B) is a singleton set, we
say that the consumer’s choice is uniquely specified by p.
We assume the budget is fixed and known to the merchant
(although if the budget were unknown, the merchant could
learn it from a single price query).

We restrict our attention to linear utility functions, which
are defined by a valuation vector v ∈ Rn such that u(x) =
x · v. We assume the valuations vectors are discretized to
some increment δ; i.e. each vi ∈ {0, δ, 2δ, . . . , 1}. For
this family of utility functions, the consumer’s optimiza-
tion problem to computeX(u, p,B) is a fractional knapsack
problem. The capacity of the knapsack is B, and the weight
and value of a good i are pi and vi, respectively. This prob-
lem can be solved greedily by ranking the goods in decreas-
ing order of their vi/pi (i.e. bang per buck) ratios, and then
buying in this order until the budget is exhausted. Note that
in the optimal bundle, there will be at most one fractionally
purchased good. Since this ratio is important in many of our
algorithms, given u and p, we will denote vi/pi by ri(u, p),
or by ri when u and p are clear from context. If ri ≥ rj we
say that the consumer prefers item i to item j.

We consider two problem variants. In the first, the mer-
chant has the power to set prices, and has a production cost
ci ≤ 1 for each good i. Hence, the merchant’s profit when
the consumer buys a bundle x at prices p is x · (p − c).
It always improves the consumer’s utility to saturate her

budget, so x · p = B for any x ∈ X(u, p,B) and x ·
(p − c) = B − x · c. Hence, maximizing the merchant’s
profit is equivalent to minimizing his costs x · c. The mer-
chant’s goal is to obtain profit close to the maximum possi-
ble profit OPT = maxp∈[0,1]n maxx∈X(u,p,B) x · (p− c) =
maxp∈[0,1]n maxx∈X(u,p,B)B − x · c.

Note that solving this problem requires both learning
something about the unknown utility function u, as well
as the ability to solve the optimization problem given u.
At every round t, the merchant chooses some price vec-
tor pt, and the consumer responds by selecting any con-
sistent xt ∈ X(u, pt, B). We measure our success over T
time steps with respect to our regret to the optimal profit
the merchant could have obtained had he priced optimally
at every round, which is defined as Regret(p1, . . . , pT) =

OPT− 1
T

∑T
t=1 x

t · (pt − c).
In the second variant, we view price vectors p1, . . . , pT

as arriving one at a time, chosen (possibly adversarially) by
Nature. In this setting, the merchant has no control over the
bundle purchased by the consumer, and wishes only to pre-
dict it. At each time step t, after learning pt, we get to predict
a bundle x̂t. Following our prediction, we observe the bun-
dle xt ∈ X(u, pt, B) actually purchased. We say that the
algorithm makes a mistake if x̂t 6= xt, and our goal is to de-
sign an algorithm that makes a bounded number of mistakes
in the worst case over both u and the sequence of prices
p1, . . . , pT .

Note: Due to space limitations, some proofs are omitted
or only sketched, but are provided in full detail in the full
version of this paper, which also contains pseudocode for
all algorithms. The full version is available on arXiv at:
http://arxiv.org/abs/1407.7294

3 Price-Setting Model
We begin by considering the first model, in which the mer-
chant controls prices, and seeks to maximize profit. First we
show that, given the coefficients vi of the consumer’s lin-
ear utility function, we can efficiently compute the profit-
maximizing prices. We will then combine this algorithm
with a query algorithm for learning the coefficients, thus
yielding an online no-regret pricing algorithm.

3.1 Computing Optimal Prices Offline
In this section we assume that all the coefficients vi of the
consumer’s utility function are known to the merchant. Even
then, it is not clear a priori that there exists an efficient al-
gorithm for computing a profit-maximizing price vector p.
As previously mentioned, the optimal prices are a subgame
perfect Nash equilibrium strategy for the merchant in a two-
stage extensive form game, in which the merchant has expo-
nentially many strategies. Straightforwardly computing this
equilibrium strategy via backwards induction would there-
fore be inefficient. Our algorithm accomplishes the task in
time only (nearly) quadratic in the number of goods.

The key to the algorithm’s efficiency will stem from the
observation that there exists a restricted family of pricing
vectors P ⊂ [0, 1]n containing a (nearly) profit-maximizing
vector p∗. This subset P will still be exponentially large in

n, but will be “derived” (in a manner which will be made
more precise) from a small set of vectors p(1), ..., p(n). This
derivation will allow the algorithm to efficiently search for
p∗. We define p(k) by letting p(k)i = min(vi/vk, 1). In other
words, the price of every good whose value is less than the
kth good is set to the ratio vi/vk. Otherwise, if vi > vk, the
price of good i in p(k) is set to the ceiling of 1.

To understand the operation of the algorithm, consider the
consumer’s behavior under the prices p(k). Any good priced
at vi/vk will have a bang per buck ratio ri = vk. There-
fore, the consumer’s choice is not uniquely specified by p(k)
in general (since the consumer is indifferent between any of
the previously mentioned goods). Moreover, the consumer’s
choice will have great impact on the merchant’s profit since
the goods between which the consumer is indifferent might
have very different production costs ci. The algorithm there-
fore proceeds by computing, for each p(k), which bundle
x(k) the merchant would like the consumer to purchase un-
der p(k). More precisely, for each k, the algorithm computes
x(k) ∈ argmaxx∈X(u,p(k),B) x · (p(k) − c). Note that if the
merchant were to actually play the price vector p(k), the con-
sumer would be under no obligation in our model to respond
by selecting x(k). Therefore, the final step of the algorithm is
to output a price vector which attains nearly optimal profit,
but for which the consumer’s behavior is uniquely specified.

The analysis proceeds by proof of three key facts. (1)
For some k, the optimal profit is attained by (p(k), x(k)), or
rather, OPT = x(k) · (p(k) − c) for some k. (2) Given any
p(k), x(k) can be computed efficiently (in O(n log n) time).
Finally, (3) there is some price p̂ for which the consumer’s
choice x is uniquely specified, and where x · (p̂− c) is close
to OPT.

Theorem 1. Algorithm OptPrice (which runs in time
O(n2 log n)), takes coefficients v1, . . . , vn as input and com-
putes prices, p̂ for which the consumer’s choice x̂ is uniquely
specified and that for any ε > 0 achieves profit x(p̂ − c) ≥
OPT− ε.

We prove the above theorem by establishing the three key
facts listed above. The first lemma establishes that optimal
profit is attained by some (p(k), x(k)) for some k. We give a
sketch of the proof.

Lemma 1. Let p(k) be the pricing vector such that p(k)i =
min(vi/vk, 1). For any consumer utility parameterized by
(u,B), there exists some k and an x ∈ X(u, p(k), B) such
that OPT = x · (p(k) − c).

Proof. (Sketch). Consider a profit-maximizing price p∗, and
corresponding bundle x∗ ∈ X(u, p∗, B), so that OPT =
x∗ · (p∗ − c). Let O = {i : x∗i > 0} be the set of pur-
chased goods in x∗. We note that there must exist a τ such
that ri(u, p∗) ≤ τ whenever i 6∈ O and ri(u, p∗) ≥ τ when-
ever i ∈ O. In other words, in order for the bundle x∗ to
maximize the consumer’s utility, the bang for buck for every
purchased good must be at least as large as the bang for buck
for every unpurchased good.

Given (x∗, p∗), we write a linear program: maxp
∑

i∈O pi
s.t. (1) vi/pi ≥ τ,∀i ∈ O, (2) vi/pi ≤ τ,∀i 6∈ O, and (3)
pi ≤ 1. We claim that any solution to this LP is also a profit-
maximizing price, and that pi = min(vi/τ, 1) is a solution.
Finally, we argue that τ can always be taken to be vk for
some k ∈ [n]. (Lemma 1)

Lemma 1 establishes that for some k, p(k) is optimal, in
the sense that there exists an x(k) ∈ X(u, p(k), B) such that
OPT = x(k)(p(k)− c). The algorithm proceeds by comput-
ing for each such p(k), the most profitable bundle (for the
merchant) that the consumer (who is indifferent between all
bundles in X(u, p(k), B)) could purchase. X(u, p(k), B) is
potentially a very large set. For example, if the consumer has
identical values for all goods (i.e. vi = c for all i), and p(k)

is the all-1s vector, then X(u, p(k), B) contains any budget-
saturating allocation. Despite the potential size of this set,
Lemma 2 shows that computing maxx∈X(u,p(k),B) x ·(p−c)
simply requires solving a fractional knapsack instance, this
time from the merchant’s perspective.

Lemma 2. For any p, u, andB, maxx∈X(u,p,B) x·(p−c) =
B − x · c can be computed in O(n log n) time.

Proof. Let p be an arbitrary price vector. The merchant-
optimal bundle that could be purchased under this price vec-
tor is maxx∈X(u,p,B)B − x · c, and can be computed as
follows. Let ri(u, p) = vi/pi. First sort the ri in decreasing
order, so that ri1 ≥ ... ≥ rin . The consumer will buy items
in this order until the budget B is exhausted. Thus, we can
simulate the consumer’s behavior, iteratively buying items
and decrementing the budget. The consumer’s behavior is
uniquely specified unless there is some run of items with
rij = rij+1 = ... = rij+d

, and B′ budget remaining, where∑d
l=0 pij+l

> B′. In other words, the consumer is indiffer-
ent between these items, and can make different selections
to exhaust the remaining budget B′.

In that case, we know that for any bundle in X(u, p,B),
xil = 1 if l < j, and xil = 0 if l > j + d. For the
remaining items, the merchant’s profit is maximized when
x · c is minimized. This occurs when the consumer satu-
rates the remaining budget B′ while minimizing the cost c
to the merchant. This is an instance of min-cost knapsack
wherein the size of the items are pij , ..., pij+d

and the cost
of the items are cij , ..., cij+d

. A solution to this problem can
be computed greedily. Thus the most profitable bundle for p
can be computed with at most two sorts (first for ri then for
pi/ci). (Lemma 2)

Finally, to induce the consumer to buy the bundle x∗,
rather than another member of X(u, p∗, B), we perturb the
vector p∗ slightly, and show that this has an arbitrarily small
effect on profit.

Lemma 3. For any ε > 0, there exists a price vector p̂ that
uniquely specifies a bundle x̂ that satisfies x̂ · (p̂ − c) ≥
OPT− ε.

Proof. (Sketch). Recall that the merchant would like the
consumer to purchase the bundle x∗, which is a member
of the set X(u, p∗, B). Even if the merchant sets prices at

p∗, there is no guarantee that the consumer will purchase x∗
rather than some other bundle in the set. Our goal is to com-
pute a vector p̂ that is a slight perturbation of p∗ and will
induce the consumer will purchase some bundle x̂ arbitrar-
ily close to x∗. For any good i such that x∗i = 0 (a good that
consumer should not buy at all), we simply set p̂i = 1. For
any good i such that x∗i = 1 (a good that that the consumer
should buy in its entirety), we set p̂i = p∗i − ε0. Finally,
for any good i such that 0 < x∗i < 1 (a good that the con-
sumer should buy fractionally), we set p̂i = p∗i − δε0. It can
be shown that these perturbations ensure that the consumer
will buy goods in the order desired by the merchant.

We have decreased each price by at most ε0, so the con-
sumer might have up to an additional nε0 budget to spend.
Recall that prices are chosen by the algorithm to be pi =
min(vi/vk, 1) for each i and for some k. Because values are
discretized and lower-bounded, the minimum price possible
is δ. Consider setting ε0 = δε/n, which yields at most δε ad-
ditional budget. Then the consumer can afford to purchase at
most an additional δε/δ = ε fraction of a good. In the worst
case, if this good is of maximum cost 1, the merchant will
incur an additional cost of ε. (Lemma 3)

3.2 Learning Consumer Valuations
We now provide a query algorithm for learning the coeffi-
cients vi of the consumer’s utility function. For the analysis
only, we assume without loss of generality that the goods are
ordered by decreasing value, i.e. v1 > . . . > vn. Our algo-
rithm can learn the values in some suffix of this unknown
ordering; the values that cannot be learned are irrelevant for
setting optimal prices, since those goods will always be pur-
chased by the consumer.

Theorem 2. Algorithm LearnVal, given the ability to set
prices, after at most O(n log((1 − δ)/δ2)) price queries
(where δ is the discretization of values), outputs the ratio
vi/vn for all goods i, except those that will be bought under
all price vectors.

Proof. Algorithm LearnVal proceeds as follows. On each
day we choose a particular price vector, observe the bundle
purchased at those prices, and then use this information as
part of the learning process. First, we set pi = 1 for all i
and observe the bundle x bought by the consumer. Let j be
the index of the least-preferred good that the consumer pur-
chases under this price vector. If the consumer buys some
good i fractionally (which the algorithm can observe), then
j = i. Otherwise, to learn j, we incrementally lower the
price of some good k that the consumer did not purchase,
until k is purchased instead of another good i. Then we have
learned j = i.

In the next phase of this algorithm, we learn the ratio
vk/vj for all goods k > j that were not originally purchased.
To do so, we lower pk (while keeping all other prices at 1)
until item k is purchased. This will occur when vk/pk =
vj/pj , or vk/vj = pk. Recall that we assume each vi is dis-
cretized to a multiple of δ. Therefore to guarantee that we
learn the ratio vk/vj exactly, we must learn the ratio up to a
precision of mink 6=k′ |(vk − v′k)|/vj . This quantity is mini-
mized at vk = v′k + δ and vj = 1 (because vj ≤ 1), so it is

sufficient to learn the ratio to within ±δ. Thus if we perform
a discrete binary search on pk, it will require O(n log(1/δ))
steps to exactly identify the desired ratio. Finally, we renor-
malize the ratios we have learned in terms of vn. That is, for
all k ≥ j, we define sk = vk/vn = (vk/vj)/(vn/vj).

We next attempt to learn sk = vk/vn for all k < j. These
are the most preferred goods that were originally purchased
under the all-1s price vector. We learn sk inductively in de-
creasing order of k, so as we learn sk, we already know the
value si for all i > k. The goal is to now set prices so that the
consumer will be indifferent to all goods i > k (i.e. will have
a tie in the bang per buck for all these goods). The bang per
buck on these goods is initially set low, and gradually raised
by adjusting prices. At some critical point, a switch in the
behavior of the consumer will be observed in which k is no
longer purchased, and sk is learned.

We therefore introduce a parameter α, which controls the
bang per buck ratio of goods k + 1, . . . , n. Define p(α, k)
to be the price vector where pi = 1 for i ≤ k, and
pi = αsi for i > k. Let r(α, k) denote the correspond-
ing bang per buck vector; i.e. r(α, k)i = vi/pi. It is easy
to see that r(α, k) = (v1, . . . , vk, vn/α, . . . , vn/α). Thus,
by lowering α, we lower the prices and raise the desirabil-
ity of goods k + 1, . . . , n. This process is illustrated in Fig-
ure 1, whereby gradually lowering α from 1, we eventually
reach a first point where goods k + 1, ..., n are preferred to
good k. This switch occurs when the bang per buck ratio of
goods k + 1, . . . , n equals the bang per buck ratio of k, i.e.
vn/α = vk, or α = vn/vk. Our goal will be to identify this
value of α, which we denote α∗(k). Once we know α∗(k),
we will have learned sk, since sk = vk/vn = 1/α∗(k).

We know that we have found α∗(k) when we identify
the highest value of α for which some good goes from be-
ing purchased to unpurchased. This good must be k, be-
cause as we decrease α, we increase the desirability of goods
k + 1, . . . , n, so none of these goods will go from being
purchased to unpurchased. Of goods 1, . . . , k, good k is the
least preferred, so it will be the first to become unpurchased.

vi	 	 /	 pi	

v1	 v2	

v3	

v4	

vk	

1	 k	 4	 3	 2	 n	 k+1	

vn	 /	 α	

all	 pi	 =	 1	 	 all	 pi	 =	 αvi	 /	 vn	 	 	 	

Figure 1: An illustration of the process by which we search over
α. The figure depicts the situation just before hitting the critical
point α∗(k). By lowering α slightly, we raise the bang per buck
vn/α of all goods k + 1, . . . , n to be slightly larger than vk, and
the consumer now prefers these goods to good k.

To learn the value of α∗(k) = vn/vk exactly, we must
have a precision of mink 6=k |vn(|1/vk − 1/v′k|). This quan-
tity is minimized at vn = δ (because we assume a lower
bound on values, and therefore vn ≥ δ), vk = 1, and
v′k = 1 − δ, and the corresponding value is δ2/(1 − δ).
Thus, we should search for the critical α∗(k) over the in-
terval [0, 1] in increments of this size. In the algorithm’s
implementation, we can perform a binary rather than lin-
ear search over the range of α, which therefore requires re-
quires O(n log((1− δ)/δ2)) steps. Once we have identified
the value of α∗(k) to within δ2/1−δ, we set sk = 1/α∗(k).

In this manner, we can inductively find the next ratio sk−1
by equalizing preferences for the later goods and searching
for the critical α∗(k− 1). The only problem that might arise
is that good k is sufficiently valued, and the budget suffi-
ciently large, that good k is always purchased no matter how
low α is set. Lemma 4 shows that if this occurs for some k,
then no matter how we price goods 1, . . . , k, the consumer
will always purchase these goods in full. Thus, it is unnec-
essary to learn the values of these goods, since the merchant
can always set the prices to the maximum of 1.

Lemma 4. If goods 1, . . . , k are purchased at price vector
p(α′, k), where α′ = α∗(k)−δ2/(1−δ), then goods 1, . . . , k
will be purchased at any price vector.

The number of queries made is O(n log((1 − δ)/δ2)),
which is linear in the description length of values.

(Theorem 2)

3.3 Putting It All Together
We now combine the previous two sections into a complete
online, no-regret algorithm. The informal description of Al-
gorithm ProfitMax is as follows. First we use Algorithm
LearnVal to learn all possible si ratios. For any good i for
which we did not learn si, we set pi at 1. Finally, we apply
Algorithm OptPrice to the subset of remaining goods, us-
ing the si ratios as input. The following main result shows
that this approach achieves no-regret.

Theorem 3. For any ε > 0, after T rounds, Algorithm
ProfitMax achieves per-round regret O((n2/T) log((1−
δ)/δ2)) to the profit obtained by the optimal price vector
(where ε is the additive approximation to the optimal profit
and δ is the discretization of values).

Proof. First we show that this algorithm correctly composes
Algorithms LearnVal and OptPrice and indeed gener-
ates an approximately optimal price vector p.

Lemma 5. An approximately optimal pricing for goods
{1, . . . , n} is obtained by setting pi = 1 for all goods for
which Algorithm LearnVal could not learn si, and then
applying Algorithm OptPrice to the si ratios of the re-
maining goods.

As the lemma shows, every time we price according to p,
we receive approximately optimal profit. In particular, ac-
cording to Theorem 1, our profit is at least OPT - ε, and
so our regret at most ε. Furthermore, Algorithm LearnVal
uses at most O(n log((1 − δ)/δ2)) price queries, so there

are O(n log((1 − δ)/δ2)) days on which we might incur
maximum regret. On any given day, the maximum possible
profit is B, while the minimum possible is B − n, yield-
ing a maximum regret of n. Thus, our overall per-step re-
gret is bounded by O((n2/T) log((1− δ)/δ2) + ε). Setting
ε = (n2/T) log((1−δ)/δ2) yields the bound in the theorem
statement. (Theorem 3)

4 Exogenous Price Model
We now consider our second model, in which an arbitrary
and possibly adversarially selected price vector arrives ev-
ery day, and the goal of our algorithm is to predict the bun-
dle purchased by the consumer. Recall that the motivating
scenario for such a setting is a merchant who is forced to
set prices according to the market or the choices of a parent
company. At each day t, the algorithm observes a price vec-
tor pt and makes a prediction x̂t. The algorithm then learns
the bundle purchased, xt ∈ X(u, pt, B), and is said to make
a mistake if xt 6= x̂t. Our goal is to prove an upper bound
on the total number of mistakes ever made by our algorithm,
in the worst case over price vectors and utility functions. We
call such an upper bound a mistake bound.

The algorithm maintains the set of valuation vectors v
consistent with the observations seen thus far: initially this
feasible set is simply C0 = [0, 1]n. At every round t, the ob-
served pair (pt, xt) provides a set of linear constraints which
we add to further constrain our feasible set Ct. In particular,
we know that for any pair of goods i, j ∈ [n] where xti > xtj ,
it must be that vi/pti ≥ vj/p

t
j (Zadimoghaddam and Roth

2012). This follows immediately from the fact that the vec-
tor xt is the solution to a fractional knapsack problem, for
which the optimal algorithm is to buy goods in decreasing
order of vi/pti.

The set of all such constraints learned so far at time t
forms the feasible set Ct, which is a convex polytope. The
idea of the algorithm is to sample a hypothesis valuation
function vt uniformly at random from Ct at each stage, and
predict using the bundle that would be purchased if the buyer
had valuation function vt. The event that this hypothesis
makes a mistake in its prediction is exactly the event that
the hypothesis is eliminated when we update the consistent
set to Ct+1, and so the probability of making a mistake is
exactly equal to the fraction of volume eliminated from our
consistent set, which allows us to charge our mistakes to the
final volume of our consistent set. However, we need a way
to lower bound the final volume of our consistent set.

We define the width of a polytope K in dimension i as
widthi(K) = maxx,y∈K |xi − yi|. Note that the width can
be efficiently computed using a linear program. We take ad-
vantage of the fact that the true valuation function takes val-
ues that are discretized to multiples of δ. Hence, if at any
point the width of our consistent set Ct in some dimension
i is less than δ/2, then we can exactly identify the ith co-
efficient of the consumer’s valuation function. Note that if
Vol(Ct) < δn, then there must be some dimension in which
widthi(Ct) < δ/2. When we detect such a dimension, we
fix that coefficient, and restart the algorithm by maintaining
a consistent set in one fewer dimension.

Hence, at each epoch, we maintain a set of consistent val-
uation functions restricted to those indices that are not yet
fixed, and predict according to the composite of the valua-
tion vectors sampled from this consistent set, together with
the fixed indices. Every time we fix an index, a new epoch
begins. The volume of the consistent set can never go below
δn within an epoch, and since we fix an index at the end of
every epoch, there can be at most n such epochs.

The only computationally challenging step is sampling
a point uniformly at random from the consistent set Ct,
which can be done in polynomial time using the technique
of (Dyer, Frieze, and Kannan 1991). We thus obtain:

Theorem 4. Algorithm ExogLearnVal runs in polyno-
mial time per round, and with probability 1 − β, makes
at most O

(
n2 log(1/δ) + n

√
log(1/β) log(1/δ)

)
mistakes

over any sequence of adaptively chosen price vectors.

References
Afriat, S. 1967. The construction of utility functions from
expenditure data. International Economic Review 8(1):67–
77.
Balcan, M.; Daniely, A.; Mehta, R.; Urner, R.; and Vazirani,
V. V. 2014. Learning economic parameters from revealed
preferences. arXiv preprint 1407.7937.
Beigman, E., and Vohra, R. 2006. Learning from revealed
preference. In Proceedings of the 7th ACM Conference on
Electronic Commerce, EC ’06, 36–42.
Cummings, R.; Echenique, F.; and Wierman, A. 2014. The
empirical implications of privacy-aware choice. In Proceed-
ings of the Fifteenth ACM Conference on Economics and
Computation, EC ’14, 969.
Dyer, M.; Frieze, A.; and Kannan, R. 1991. A random
polynomial-time algorithm for approximating the volume of
convex bodies. Journal of the ACM (JACM) 38(1):1–17.
Littlestone, N. 1988. Learning quickly when irrelevant at-
tributes abound: a new linear-threshold algorithm. Machine
Learning 2(4):285–318.
Mas-Colell, A.; Whinston, M. D.; and Green, J. R. 1995.
Microeconomic Theory. Oxford University Press.
Rubinstein, A. 2012. Lecture notes in microeconomic the-
ory: the economic agent. Princeton University Press.
Samuelson, P. A. 1938. A note on the pure theory of con-
sumers’ behavior. Economica 5(17):61–71.
Varian, H. R. 2006. Revealed preference. In Szenberg, M.;
Ramrattan, L.; and Gottesman, A. A., eds., Samuelsonian
economics and the twenty-first century. Oxford University
Press. 99–115.
Zadimoghaddam, M., and Roth, A. 2012. Efficiently learn-
ing from revealed preference. In Proceedings of the 8th In-
ternational Conference on Internet and Network Economics,
WINE ’12, 114–127.

