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Abstract.
In this paper, we address the importance of efficient 

execution in electronic markets. Due to intense 
competition for profit opportunities, trading costs can 
represent a significant portion of overall return. They
must be taken into account both when a specific trade is 
being executed, and when a general investment strategy is 
being designed. We empirically demonstrate that by 
combining market orders (which offer immediate 
execution regardless of price) and limit orders (which 
offer uncertain execution at a specified price), we are 
able to obtain a superior average price than by using 
market orders only. Our analysis highlights the trade-off 
between expected price improvement from limit orders 
and the risk of non-execution. We show how to determine 
the optimal limit order price in a simplified setting and 
suggest how this approach can be generalized to a 
complete solution. All of our experimental results are 
obtained on an extensive collection of NASDAQ limit 
order data.

I. Introduction.
Execution considerations permeate every aspect of 

investment activity – from the development of high-level 
trading strategies to post-trading performance attribution 
– because the actual prices at which trades occur are a
direct consequence of the execution mechanism in place. 
Every market participant should be concerned with 
transaction costs regardless of their investment goals and 
style. Ideally, one would like to have a comprehensive 
execution system, which aims to minimize the costs of 
trading. Classifying and quantifying various trading costs 
is a complex task (see [Kissell and Glantz, 2003]), and a 
comprehensive trade optimization system must solve a 
challenging multi-dimensional problem.

The goal of this paper is not to offer the ultimate 
solution to efficient execution, but rather to develop a 
simple building block, which can be easily implemented, 
quantified, and then extended into a more comprehensive
system. In our study, we concentrate on a single but 
important aspect of the overall problem: the immediate 
price received or paid for a transaction of a fixed size over 
a fixed period of time. This makes our setup stylized and 
yet practical. More specifically, we ask the following 
question: how should one buy (respectively, sell) V shares 
of a given stock over T seconds while spending the least 
(respectively, receiving the most) cash? In the framework 

we consider, a trader has only three options: (1) submit a 
market order at time 0 for V shares, (2) submit a market 
order at time T for V shares, or (3) submit a limit order at 
time 0 for V shares and a market order for the unexecuted 
shares (if any) at time T. In other words, we can use a 
market order at the beginning of the time period, a market 
order at the end of the time period, or a limit order 
combined with a market order for residual shares. In all 
three cases, we will always end up with the same number 
of shares, but will have spent different amounts of cash 
entering the position. By formulating the execution 
problem in this fashion, we can quantitatively answer a 
number of important questions. Which of the three 
options is the most effective? How should one price a 
limit order to expect the most favorable execution? How 
can we quantify the risks of non-execution and 
unfavorable price movements?

We suggest a precise analytical methodology to reason 
about efficient execution in modern electronic markets: 
for every possible limit order price, we compute the ratio 
of the execution price to the mid-spread price at the start 
of the trading period; resulting “return curves” allow us to 
pinpoint which pricing strategy produces the most 
favorable expected price. We similarly build out the risk 
curves, defining risk as the standard deviation of the 
outcomes of each strategy. Risk curves elucidate the 
relationship between limit price and execution 
uncertainty. We then merge the two curves into a single 
function to demonstrate the trade-off between expected 
returns and risk. We conclude that it is only optimal to 
operate on a specific portion of the risk-return function, 
which we call “efficient pricing frontier”. Thus the output 
of our analysis allows the trader to select some tolerable 
risk threshold and to determine a strategy which delivers 
the most favorable execution price for that level of risk. 
Finally, we identify the relative importance of different 
market microstructure variables (order size, execution 
window, market activity, etc.) in the optimization process,
and explain how to expand our basic methodology to the
multi-period dynamic execution. 

To be able to assign specific numbers to the expected 
price improvements and risk associated with each 
strategy, we perform “what-if” simulations within 
historical limit order books. We simulate what would 
have happened to a hypothetical order in the real-world 
market, and we record the execution price at the end of 
each trial. (Details of this experimental methodology are 



provided in Section III). In our approach, we rely on the 
pre-committed liquidity, represented by resting limit 
orders, which is another aspect that sets our work apart 
from similar studies.

This paper is structured as follows: in the next section 
we will discuss related work making an emphasis on the 
novelty of using limit order books in our analysis. We 
then describe the experimental setup we use and point out 
its strengths and shortcomings. In Section IV, we 
introduce our analytical framework: how to quantify 
returns, risk, and the combination of the two. Section V 
contains a summary of our empirical results – a study 
across various stocks and trading conditions. We 
generalize our findings and suggest how more complex 
execution systems can be built upon them in Section VI. 

II. Related Work.
We believe that the main innovation in our approach is 

bringing together the subjects of efficient execution and 
limit order trading. While each area has received attention 
in academic literature, we are not aware of other studies 
that cast the execution problem within the context of an 
order-driven marketplace.

Both academics and professionals have long 
acknowledged the importance of execution optimization. 
An overview of a number of quantitative execution 
methods is presented in [Kissell and Glantz, 2003]. This 
book describes a comprehensive top-down approach to 
evaluating trading costs and optimizing execution. Other 
important works on the general trade execution are 
[Almgren and Chriss, 1999] and [Almgren and Chriss, 
2003]. [Bertsimas and Lo, 1998] suggest a dynamic 
programming approach to solving the execution problem,
which can be further extended to the portfolio setting. The 
majority of studies in this area concentrate on the market 
impact of trading, which is the most important aspect of 
execution. Their approach to quantifying this effect, 
however, is fundamentally different from ours: other 
studies look at the post-trade price changes, while we 
analyze the ex-ante pre-committed liquidity that we see 
on the order books.

Analyzing and modeling limit order trading is a part of 
the broader discipline of market microstructure, which 
studies interactions among market participants and the 
process of price formation. The extensive overview of the 
subject is [Harris, 2002], which includes the introduction 
to the order-driven market mechanisms. One of the first 
inquiries into the real-world limit order markets is [Bias et 
al., 1995], which develops a theoretical model of limit 
order submissions and conducts a comprehensive 
empirical study of the Paris Bourse. A number of papers 
try to explain the rationale behind using limit orders, 
modeling behavior of different types of traders: [Lo et al., 
2000] and [Hollifield et al., 2003].

Perhaps the closest in spirit to our work are the studies 
that perform empirical analyses of various order 
submission strategies. [Hasbrouck and Harris, 1996] and 
[Handa and Schwartz, 1996] compare market order and 
limit order trading strategies in different markets and 
confirm that limit orders can indeed enhance returns. It is 
this exact approach that we are applying to efficient 
execution.

III. Experimental Setup.
In our study, we used historical records from the Island 

Electronic Communication Network (ECN). Island 
(recently acquired by INET) is essentially an electronic 
and completely automated stock exchange which accounts 
for a significant volume of trading in NASDAQ stocks. In 
the Island files we can see every event that happened to a 
stock through a trading day – all order submissions, 
cancellations, and executions. Every action is time-
stamped, and since all transactions are recorded 
electronically, the exact sequence of order flow is 
unambiguous. These features allow us to precisely 
reconstruct buy and sell limit order books at any point in 
time.

We go through the record of order arrivals, 
cancellations, and executions, updating the state of limit 
order books after every event; at designated times, we 
insert into the order flow “artificial” orders that represent 
various trades we wish to investigate. We then perform all 
the executions and maintain order priorities in the same 
way it is done in the real ECN. Such a setup allows us to 
run “what-if” simulations in historical order books. In all 
simulations, we use one-and-a-half years of data – from 
January 2003 to June 2004 –, which is available for every 
stock traded on Island. While we have obtained results 
for a broad cross-section of stocks, for the purpose of 
brevity, we concentrate here on a single security –
Microsoft Corp. common stock (MSFT). For an extended 
version of our results, see [Nevmyvaka et al., 2004].

We investigate efficient execution by examining the 
pre-committed liquidity, which is precisely what limit
order books represent. When a trader submits a limit 
order, he provides an option to the rest of the market 
participants to transact at a pre-specified price up to the 
order’s size – i.e. other traders can “lift off” liquidity, 
while knowing ex-ante how much they are paying. This is 
crucial for our analysis – transaction costs in our model 
come from two sources: the bid-ask spread, and price 
concessions as payment for liquidity. When a trader 
submits a market order, he has to first “step over” the 
spread, and then pay increasingly disadvantageous prices 
the deeper in the opposing book he needs to reach to 
satisfy his liquidity demands. On the other hand, when he 
submits a limit order, he risks having the price move 
away from his order and then being forced to demand 
liquidity at the end of the interval. Historical limit order 



books allow us to quantify and compare these two 
dimensions of order submissions.

IV. Analytical Framework.
In this main section we present the essence of our 

approach to execution: first, we describe how to 
determine which limit order price results in the most 
advantageous execution price; second, we introduce risk 
into our analysis; and finally, we will combine the two to 
derive the “efficient pricing frontier”.

A. Expected Execution Price.
Let us re-visit the basic setting for our execution 

problem: a high-level investment strategy issues a 
directive to acquire V shares of some stock, and this 
position must be entered within T seconds.

This task can be executed using the following trading 
strategies: 

(1) submit a market order for the entire amount 
immediately – guarantees both the execution and the 
amount of cash paid (respectively, received), but has to 
pay for liquidity demanded;

(2) wait until the end of the time period, hoping for a 
favorable price move, and then go to the market with the 
entire amount – can achieve price improvement, but has 
exposure to price volatility and still has to pay transaction 
costs;

(3) submit a limit order at the beginning of the time 
period; this order may execute completely, partially, or 
not at all; then submit a market order for the remainder of 
shares (if any) at the end of the interval – can avoid 
paying transaction costs, otherwise becomes the worst 
case of Strategy 2.

All these strategies end up with the same position V 
after T seconds, but will have spent different amounts of 
cash. Therefore, if we plot levels of cash that each 
strategy spent (respectively, generated), we can find 
which one is the most efficient and if there is some 
general relationship between various strategies’ 
performance.

It is important to understand first what it is exactly that 
we are measuring. Although we are interested in 
comparing levels of cash, we cannot simply express our 
results in dollars. For example, if a stock traded at $5 in 
January 2003 and at $50 in June 2004, cost savings of 
$0.02 will have very different implications in the two 
cases. Therefore, the variable that we chose to optimize is 
the difference between the execution price (weighted by 
volume) and the mid-spread price at the beginning of the 
time period, expressed as a fraction of the initial mid-
spread price. Say the market at the beginning of the time 
period has a bid of  $24.12 and an ask of  $24.18, yielding 
a mid-spread price of $24.15. If we execute a buy order at 
the ask, our price differential is ($24.15 - $24.18)/$24.15 
= – 0.001242. We express these numbers in basis points (-
12 bp in this example) and for the lack of better 

terminology refer to them as “returns”; however, note that 
they are not returns in the conventional sense of the term. 

If during the execution the trader steps over the spread 
and demands liquidity from the other side of the market, 
returns are negative, thus representing transaction costs. If 
the trader’s limit order is priced below the initial mid-
spread and is later executed, then returns are positive 
(“transaction savings”).

We submit orders from high-priced to low-priced and 
record average returns for each strategy. As expected, 
these returns tend to peak around a certain price level, 
which consequently represents the optimal pricing level to 
achieve the most advantageous execution price. A typical
order price-return curve is shown below in Figure 1.

Figure 1. The peak in the curve represents pricing 
strategy that produces the most favorable expected 
execution price.

This is a realistic curve for many situations, but for 
concreteness, the above graph is a plot of a scenario 
where the task is to acquire 10,000 shares of MSFT 
within one hour. 

On the x-axis, we plot where the limit order stands 
relative to its own side of the market. For example, x = 70 
means that the order is submitted at a limit price of best 
bid minus 70 cents (in other words, it is 70 cents deep 
within the buy book); x = -10 means that the limit price is 
best bid + 10 – i.e. the order is submitted either within the 
bid-ask spread, or it is a “marketable” order, which 
transacts with the sell book until the specified number of 
shares is bought or the limit price is reached. In the later 
case, the shares that are not executed immediately get 
placed at the top of the buy book. On the y-axis, we plot 
the aforementioned “returns” from our execution 
strategies, expressed in basis points. They represent 
transaction costs of trading a given block and thus are 
negative. 

By this construction, the parts of the curve on the 
extreme left and right of the graph correspond to Strategy 
1 and Strategy 2 respectively: on the left, we have orders 
with high prices that get executed immediately and 
completely; on the right, orders are priced so far away 
from the inside market that they never get executed, thus 
forcing a market order at the end of the trial. The peaked 



shape in the middle of the graph supports our main thesis 
– superior execution price can be achieved by using 
carefully tuned limit orders. The maximum of the curve 
represents the lowest possible transaction cost that can be 
achieved, and the corresponding x-value is the optimal 
limit order price. Therefore, the main message of Figure 1 
should be interpreted as follows: if you want to acquire 
10,000 shares over 60 minutes and seek the most 
attractive expected execution price, you should submit a 
limit order at the best bid plus 5 cents. We discuss the 
shape and behavior of these curves in great detail in 
Section V.

Notice that the entirety of our return curve is below 
zero. This means that transaction costs are always present 
– i.e. limit orders help to “lose less money”, as opposed to 
generating profit opportunities on their own. While this 
may be somewhat counterintuitive, one has to remember 
that our results are averaged over many trials; therefore, 
in many cases limit orders end up not being executed, and 
the trader is forced to incur all the regular costs of a 
market order at the end of the time period.

B. Risk.
This brings us to the second major point – returns 

alone do not tell the entire story. While it may be 
tempting to just adopt the previous conclusion that the 
optimal order should be submitted exactly at the price 
where returns peak, we have to remember that higher 
returns come with higher risks. In our case, we are mostly 
concerned with the risk of non-execution and being forced 
to transact at a later time at an inferior price. And while 
risk of non-execution, mid-spread volatility, and volume 
volatility are all slightly different concepts, we study them 
jointly by defining risk as the standard deviation of 
returns.

Figure 2. Returns become more uncertain the further 
we move from the inside market.

A risk profile that corresponds to the returns curve 
from Figure 1 is shown in Figure 2. We simply plotted the 
standard deviation of returns (y-axis) – which are 
averaged in Figure 1 – for every limit order price (x-axis).

A couple of observations about the shape of the curve. 
First, it generally slopes upwards from left to right, which 
means that the deeper you hide your order in the book, the 

less likely it is to execute before the end of the allotted 
time interval, and the higher is the uncertainty around the 
final price.

This shape is partly a result of our choice of the 
scoring system. Since we "mark" our position to the 
beginning of the time period, the further in time we get 
from the starting point (time to execution is proportional 
to the distance from the inside market for limit orders), 
the wider becomes the distribution of our "returns". Thus 
the general upward trend in our risk profile.

The more curious aspect of the graph is the "dip" in 
risk between the pure market orders and the non-
marketable limit orders. This is partly an artifact of our 
simulation setup, but it is also grounded in reality. Market 
orders (e.g. limit orders with prices of bid plus several 
dollars) sweep the sell book for the entire size at once; 
therefore they trade through multiple price levels with 
volume getting smaller and more volatile as we move 
away from the inside market. The upside of this strategy 
is that execution is guaranteed. On the other hand, 
"marketable" limit orders (not as highly priced, with limit 
prices of bid plus a few cents) transact with the top of the 
sell book where volume is the highest and then leave the 
residual shares sitting on top of the buy book. The 
execution is still quasi-guaranteed, but the transaction 
price is now capped at some more reasonable level. 

C. Efficient Pricing Frontier.
Now that we have described both returns and risk 

profiles, we need a method for combining the two 
measures so that we can optimize them together to derive 
the actual optimal limit order price. 

In order to perform a meaningful comparison among 
alternative strategies, we borrowed a popular tool from 
the classic Finance Theory – the Markowitz efficient 
frontier [Markowitz, 1952]. This methodology was 
developed to show the trade-off between the risk and 
return in an investment portfolio: in order to achieve 
higher returns, investor has to assume more risk. The 
same holds true for our domain – to get price 
improvement the trader has to employ a riskier strategy. 

To plot a risk-return profile, we place every possible 
execution strategy on a two-dimensional graph, where x-
axis represents its standard deviation, and the y-axis its 
returns. By connecting all the strategies together, we get 
the plot presented in Figure 3. This profile is a 
combination of results from Figures 1 and 2. The semi-
circle shape of the graph can be explained by the “dip” in 
the risk function described above. 

This shape has one important implication: many 
trading strategies from our setup are sub-optimal. Only 
the top part of the risk-return profile where the increase in 
risk results in higher expected returns should be 
considered in the strategy selection process. This is what 
we call an “efficient pricing frontier” (a similar concept is 
used in [Kissell and Glantz, 2003]). In this example, this 



is the upward-sloping section of the curve, which 
connects the point of minimum risk (8, -18) to the point of 
maximum returns (29, -9). For any other point along the 
curve, we can always find either less risk for the same 
expected return, or higher expected return for the same 
level of risk, or both. In terms of actual trading strategies, 
we conclude that it only makes sense to price limit orders 
in the interval [best bid +5, best bid +11].

Figure 3. Trade-off between risk and return. Only the 
top portion where higher risk results in higher returns 
should be used for execution.

This is the pivotal part of our analysis: we run 
historical simulations to construct return and risk curves, 
combine the two into the risk-return profile, and 
ultimately extract the efficient pricing frontier. Using this 
frontier, the trader can do one of two things – pick a target 
level of returns (price improvement) and find a strategy 
that will deliver these returns in expectation with minimal 
risk; or he can select a level of risk he is comfortable with 
and get the strategy which will deliver the highest 
expected return for that level. Obviously, after picking a 
point on the frontier, we need to refer back to the returns 
and risk graphs to determine the corresponding limit 
price.

V. Results.
In this section we present a summary of our results. 

Our goal here is two-fold: to show practical applications 
of the suggested model, and to point out various 
microstructure variables that must be taken into account 
during the analysis. We first examine the effects of 
modifying the inputs of the execution strategy – order 
size, execution window, and time of the day, and then 
explore the real strength of our approach: conditioning the 
execution on the state of the market – trading volume and 
book depth in this case. For every variable we examine
we provide plots of returns, risk, and pricing frontiers.

A. Order Size.
Perhaps the most straightforward parameter of the 

execution strategy is the order size. Everything else kept 
constant, it is more expensive to trade larger orders. 
Figure 4 (last page) illustrates this point. All trading is 

done within one-hour period; solid line represents 1,000 
shares, dashed line – 5,000 shares, dash-dot line – 10,000 
shares. Trading a smaller volume is clearly less expensive 
than a larger quantity. Returns and frontier curves are 
therefore stacked horizontally without intersecting. 
Furthermore, trading larger orders is riskier, as we can see 
from the second graph in Figure 4 – larger orders put a 
larger dollar value at the risk of an adverse price 
movement during the execution period, thus again making 
large-order risk curves dominate those of smaller orders.

From the position of the peaks in return curves and 
from the shape of the pricing frontier (they are shifting to 
the left with increasing size), we can conclude that the 
trader has to price his orders more aggressively for larger 
quantities. While it is clear that trading large volumes is 
costly, it is difficult to propose a definite remedy – most 
of the time acquiring or selling of a significant block of 
securities is a necessity. One way to address this issue is 
to split a large order into several pieces and transact them 
sequentially.

B. Time Window.
If we are to divide a large order into multiple small 

orders, we must reduce the execution window for each 
smaller piece.  This effect is explored in Figure 5. Trading 
here is performed over 60 minutes (solid line), 10 minutes 
(dashed line), and 1 minute (dash-dot line); every 
transaction is for 1,000 shares. Not surprisingly, return 
graphs show that it is more expensive to transact over 
shorter time intervals – limit orders remain in the book 
only briefly thus making it less likely that transaction 
price will reach the limit level, forcing the trader to 
submit market orders and incur price impact. The case of 
the time window is not as clear-cut, however, as that of 
the order size. While transacting on longer time scale is 
less expensive, it is also more risky – the solid line 
dominates the others in both return and risk plots. This 
means that none of the three strategies is strictly superior, 
and therefore the choice of the time window depends on 
the trader’s attitude towards risk and return.

The efficient frontier plot illustrates this point: if the 
trader picks the target risk level of 15, then he should buy 
1,000 shares over 10 minutes (the dashed line corresponds 
to highest expected returns for that level of risk), whereas 
if the he can tolerate the risk level of 20, then he should 
transact over 60 minutes and expect higher returns
(smaller transaction costs). Final observation: similar to 
the order size, shorter execution time necessitates more 
aggressive order pricing.

C. Time of the Day.
One other variable that the trader can potentially 

control is the time of the day when the execution is 
performed. Temporal liquidity patterns are well 
documented: there is more volume right after the open 
and before the close than in the middle of the day. We are 
trying to answer a slightly different question: should we 



consider time of the day as a separate input variable, 
which can influence the outcome of our analysis? In other 
words, do curves differ significantly in the morning and in 
the afternoon? Figure 6 seems to suggest that time of the 
day indeed makes a difference. There we transact 1,000 
shares over 60 minute intervals starting at 11 am (solid 
line), 12 pm (dashed), and 2 pm (dash-dot). We avoided 
open and close on purpose, since it is widely believed that 
the price formation process and liquidity dynamics are 
different during those times. While Figure 6 does show 
that curves can differ significantly from one time period 
to another, it is impossible to make meaningful 
generalizations. It does not appear that trading at a 
particular time of the day is more profitable than at some 
other time.

When we trade during a 10-minute window, however, 
all curves are much closer together, which makes time of 
the day effect much less pronounced. Therefore, if the 
trader is planning on transacting over a long time period, 
he should take the time of trade into account; otherwise, 
this variable can be disregarded.

D. Market Conditions.
The real strength of our approach is presented in 

Figures 7 and 8, where we condition our optimization on 
the state of the market. In all the previous experiments, 
the optimal pricing frontiers that we have derived are 
“unconditional” – i.e. we use all the data available to us in 
order to construct the curves. It may be more informative 
and practical to condition our results on a specific state of 
the market by using only those parts of data that conform 
to desired conditions. In Figure 7, we create two sets of 
curves – for days with high and low transaction volume 
(solid and dashed line correspondingly). It appears that it 
is cheaper to trade on high-volume days, but it is also 
riskier. High volume means more liquidity and thus 
smaller market impact, but surges in volume are also 
correlated with higher volatility thus making adverse 
price movements more likely. Just as in the case of 
different execution windows, efficient pricing frontiers 
intersect in a non-trivial way, and thus the choice of an 
optimal pricing strategy depends on the trader’s risk 
tolerance. Also, orders should be priced more 
aggressively on low-volume days. This is consistent with 
our previous findings.

In Figure 8, we want to see how our results change 
when we submit our orders into “thick” (solid line) and 
“thin” (dashed line) books. (We define the depth of a 
book by the total volume within 20 cents from the inside 
market). Results are similar to those in the transaction 
volume conditioning experiments, but somewhat less 
clear. This leads us to believe that the depth of the book 
may be not as significant of a variable as trading volume, 
when it comes to limit order pricing. In any event, our 
goal here is to demonstrate how our optimization 
technique can be applied to specific market conditions. 

There are many other conditioning schemes that can be 
informative: low vs. high price volatility, low vs. high 
volume volatility, directional market, and so on. We 
explain how our model can be extended even further in 
the next section.

VI. Generalization and Future Directions.
While we spent the bulk of this paper laying out our 

basic methodology, it is important to remember that this 
analysis is only a building block, which can be expanded 
considerably. In all the experiments we have conducted, 
our trading strategies remained static – we submit a limit 
order at the beginning of the trial interval and then do not 
touch them until the last second. Such approach to trading 
is certainly unrealistic, but our findings can be extended 
to a more complex framework.

Say we have an hour to acquire 1000 shares of MSFT. 
We can look at the results of our experiments and figure 
out that, for example, the optimal strategy is to submit a 
limit order at the best bid minus one cent; which is what 
we do. But, as the time goes by, conditions may change: 
the inside market may move far away from our standing 
order, or our order may get partially executed, or the 
spread may widen, etc. But as all these events happen, at 
any point after the initial submission we have an option to 
re-evaluate our pricing strategy. We can use the shortened 
time horizon and updated order size to go through the 
same analysis as before, and then come up with a new 
optimal price and re-submit our order. If we perform this 
operation continuously, we can ensure that at every point 
in time we are trading at the lowest expected cost.

One way to envision this process is through a large 
look-up table as shown in Table 1. This matrix specifies 
the optimal order price for every possible combination of 
order size and time to execution. The table can be filled 
following the analysis from Section IV. The number of 
entries in Table 1 is likely exaggerated, as it can be built 
with an arbitrary resolution – i.e. sampling every 10 
minutes and every 100 shares probably makes more 
sense.

1000 s. 999 s. … 1 share
60 min Bid-10 Bid-11 … Bid-1
59 min Bid-9 Bid-11 … Bid -1
… … … … …
1 min Bid+100 Bid+99 … Bid+1
0 min market market … market

Table 1. Look-up table for optimal price updates.
While we can adopt this data-intensive approach and 

run a large number of experiments to construct the look-
up table exactly as described above, this is not very 
practical. First, it will take a significant amount of time, 
processing power, and raw data to create such table; then,
the resulting database will be very large and difficult to 
maintain and update; and, finally, most information will 
be repetitive and thus redundant because of the 



similarities in trading characteristics across stocks. 
Therefore, the most promising development direction is to 
try to come up with a functional description of the optimal 
order placement strategy.

So far, we have been deriving our optimal price by 
visually determining the peak of the curve. Through our 
experiments in Section V, we have already gained some 
key insights: the limit price of the optimal order is directly 
related to the size of the and inversely related to the time 
to execution, just to mention a few dependencies. There 
are other factors that clearly must be considered: bid-ask 
spread, liquidity, volume, volume volatility, price 
volatility, time of the day, etc. We can run a regression 
using these inputs and having the optimal limit price as 
output. From the technical standpoint, this essentially 
amounts to finding coefficients for the following 
equation:

Limit distance = α1*Volume + α2*Volatility + 
α3*Spread + α4*Size + α5*Time + …

The benefit of this approach is that we don’t have to 
use the entire universe of stocks to come up with an 
accurate model; and when we know the coefficients, we 
can revise our estimates of the optimal price on-line. The 
main challenge of doing this derivation is that it will 
require even more data analysis to be performed on a very 
large dataset – we will have to quantify and keep track of 
spreads, volumes, price volatility, volume volatility, etc. 
This can be a very data-intensive and challenging process. 

And, finally, to achieve even more precision and cost 
savings, we can introduce conditional optimality. This is 
essentially an extension of the conditioning experiments 
from Section V: in practice, we want to transact 
differently under different market conditions. For 
example, in a market with a pronounced trend we want to 
trade more aggressively than when a stock is essentially 
flat. Therefore, all our optimizations should be performed 
for the market conditions in which we are planning on 
executing. When we are building a look-up table as in 
Table 1 learning optimal prices for different times and 
sizes, we can either use all the available data, thus getting 
the “unconditionally optimal” prices, or we can use only 
those pieces of data that conform to our desired 
conditions. If we know beforehand that we will be 
transacting in a rising market, then we should use only the 
data from the prior rising markets, and thus learning 
optimal limit order prices conditioned on the uptrend in 
the stock. This should render our trading much more 
precise and efficient.

Conclusion.
In this paper, we propose a limit order book approach 

to efficient execution. We demonstrated how to estimate 
return curves, risk curves, and risk-return profiles by 
using historical data, and how to derive optimal pricing 
frontiers. Our quantitative method allows traders to 

optimally price their limit orders in order to minimize 
trading costs and control corresponding risks. Through 
many experiments we have studied the behavior of risk 
and return in this domain, highlighting the importance of 
a number of microstructure variables: order size, time 
window, liquidity, etc. And, finally, we suggested several 
ways how our methodology can be taken to the next level: 
continuous order revision, functional description of price 
curves, conditional optimization, and others.

We believe that our main contribution is making the 
first step towards a very important task of optimizing 
trade execution in order-driven markets. We introduce 
precision in the process of order submission, and more 
specifically, optimal limit order price determination. We 
emphasize, however, that our method is just a building 
block, which can be turned into much more significant 
research projects. In this regard, we remark that we are 
currently engaged in a large-scale application of the 
methods of reinforcement learning to optimized execution 
along the lines discussed in Section VI.
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Figure 4. Transacting larger orders is both more expensive and riskier.

Figure 5. Execution over shorter time periods can be more expensive, but less risky.

Figure 6. When executing over 60 minute period, time of the day should be used as one of the model’s inputs.

Figure 7. Transacting on a high-volume day is less expensive and less risky.

Figure 8. “Thick” book may be preferable to “thin” book.


