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Abstract. We consider the problem of online learning in settings in
which we want to compete not simply with the rewards of the best ex-
pert or stock, but with the best trade-off between rewards and risk.
Motivated by finance applications, we consider two common measures
balancing returns and risk: the Sharpe ratio [11] and the mean-variance
criterion of Markowitz [10]. We first provide negative results establish-
ing the impossibility of no-regret algorithms under these measures, thus
providing a stark contrast with the returns-only setting. We then show
that the recent algorithm of Cesa-Bianchi et al. [5] achieves nontrivial
performance under a modified bicriteria risk-return measure, and give
a modified best expert algorithm that achieves no regret for a “local-
ized” version of the mean-variance criterion. We perform experimental
comparisons of traditional online algorithms and the new risk-sensitive
algorithms on a recent six-year S&P 500 data set. To our knowledge
this paper initiates the investigation of explicit risk considerations in the
standard models of worst-case online learning.

1 Introduction

Despite the large literature on online learning and the rich collection of algo-
rithms with guaranteed worst-case regret bounds, virtually no attention has been
given to the risk (as measured by the volatility in returns or profits) incurred by
such algorithms. Partial exceptions are the recent work of Cesa-Bianchi et al. [5]
which we analyze in our framework, and the work of Warmuth and Kuzmin
[12] which assumes that a covariance matrix is revealed at each time step and
focuses on minimizing only risk, ignoring returns. Especially in finance-related
applications [8], where consideration of various measures of the volatility of a
portfolio are often given equal footing with the returns themselves, this omission
is particularly glaring.

It is natural to ask why one would like explicit consideration of volatility
or risk in online learning given that we are already blessed with algorithms
providing performance guarantees that track various benchmarks (e.g. best single
stock or expert) with absolute certainty. However, in many natural circumstances
the benchmark may not be sufficiently strong (e.g. tracking the best stock, as
opposed to a richer class of strategies) or the guarantees may be sufficiently
loose that realistic application of the existing online algorithms will require one
to incorporate additional, more traditional, risk criteria. For example, if one



2

applies the standard EG portfolio management algorithm [8] to the S&P 500
over a recent six year period, its returns are actually worse (for all positive
learning rates) than that of the simple uniform constant rebalanced portfolio
(UCRP), despite the theoretical guarantees on EG performance (see Section 7).
Thus for a variety of reasons, we are motivated to find algorithms that can enjoy
guarantees similar to those of the “traditional” approaches such as EG, but that
deliberately incorporate risk-return trade-offs. More generally, since such trade-
offs are an inherent part of the way Wall Street and the finance community view
investment performance, it is interesting to consider online learning through the
same lens.

The finance literature on balancing risk and return, and the proposed met-
rics for doing so, are far too large to survey here (see [2], chapter 4 for a
nice overview). Among the most common methods are the Sharpe ratio [11],
and the mean-variance (MV) criterion of which Markowitz was the first pro-
ponent [10]. Let rt ∈ [−1,∞) be the return of any given financial instrument
(a stock, bond, portfolio, trading strategy, etc.) during time period t. That is,
if vt represents the dollar value of the instrument immediately after period t,
we have vt = (1 + rt)vt−1. Negative values of rt (down to -1, representing the
limiting case of the instrument losing all of its value) are losses, and positive
values are gains. For a sequence of returns r = (r1, . . . , rT ), suppose µ(r) de-
notes the (arithmetic) mean and σ(r) denotes the standard deviation. Then the
Sharpe ratio of the instrument on the sequence is simply µ(r)/σ(r),1 while the
MV is µ(r) − σ(r). (The term mean-variance is slightly misleading since the
risk is actually measured by the standard deviation, but we use it to adhere to
convention.)

A common alternative is to use the mean and standard deviation not of the
rt but of the log(1 + rt), which corresponds to geometric rather than arithmetic
averaging of returns; we shall refer to the resulting measures as the geometric
Sharpe ratio and MV. Note that when rt is close to 0, (as it is generally in
finance applications) it is a good approximation of log(1 + rt), so maximizing
the arithmetic Sharpe ratio or MV is approximately equivalent to maximizing
their geometric counterparts. Although it is tempting to claim that log(1 + rt)
approximates rt minus the variance of rt, it actually approximates rt − r2

t /2,
which can be quite different even in financial applications.

Both the Sharpe ratio and the MV are natural, if somewhat different, meth-
ods for specifying a trade-off between the risk and returns of a financial instru-
ment. Note that if we have an algorithm (like Weighted Majority [9, 4]) that
maintains a dynamically weighted and rebalanced portfolio over K constituent
stocks, this algorithm itself has a sequence of returns and thus its own Sharpe
ratio and MV. A natural hope for online learning would be to replicate the
kind of no-regret results to which we have become accustomed, but for regret
in these risk-return measures. Thus (for example) we would like an algorithm

1 The original definition of the Sharpe ratio also considers the return of a risk-free
investment. This term can be safely ignored in analysis if we view returns as already
having been shifted by the rate of the risk-free investment.
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whose Sharpe ratio or MV at sufficiently long time scales is arbitrarily close to
the best Sharpe ratio or MV of any of the K stocks. The prospects for these and
similar results are the topic of this paper.

Our first results are negative, and show that the specific hope articulated in
the last paragraph is unattainable. More precisely, we show that for either the
Sharpe ratio or MV, any online learning algorithm must suffer constant regret,
even when K = 2. This is in sharp contrast to the literature on returns alone,
where it is known that zero regret can be approached rapidly with increasing
time. Furthermore, and perhaps surprisingly, for the case of the Sharpe ratio
the proof shows that constant regret is inevitable even for an offline algorithm
(which knows in advance the specific sequence of returns for the two stocks, but
still must compete with the best Sharpe ratio on all time scales).

The fundamental insight in these impossibility results is that the risk term
in the different risk-return metrics introduces a “switching cost” not present
in the standard return-only settings. Intuitively, in the return-only setting, no
matter what decisions an algorithm has made up to time t, it can choose (for
instance) to move all of its capital to one stock at time t and immediately begin
enjoying the same returns as that stock from that time forward. However, under
the risk-return metrics, if the returns of the algorithm up to time t have been
quite different (either higher or lower) than those of the stock, the algorithm
pays a “volatility penalty” not suffered by the stock itself.

These strong impossibility results force us to revise our expectations for on-
line learning for risk-return settings. In the second part of the paper, we examine
two different approaches to algorithms for MV-like metrics. First we analyze the
recent algorithm of Cesa-Bianchi et al. [5] and show that it exhibits a trade-off
balancing returns with variance (as opposed to standard deviation) that is addi-
tively comparable to a trade-off exhibited by the best stock. This approximation
is weaker than competitive ratio or no-regret, but remains nontrivial, especially
in light of the strong negative results mentioned above. In the second approach,
we give a general transformation of the instantaneous gains given to algorithms
(such as Weighted Majority) meeting standard returns-only no-regret criteria.
This transformation permits us to incorporate a recent moving window of vari-
ance into the gains, yielding an algorithm competitive with a “localized” version
of MV in which we are penalized only for volatility on short time scales.

In Section 7 we show the results of an experimental comparison of traditional
online algorithms with the risk-sensitive algorithms mentioned above on a six-
year S&P 500 data set.

2 Preliminaries

We denote the set of experts as integers K = {1, . . . ,K}. For each expert k ∈ K,
we denote its reward at time t ∈ {1, . . . , T} as xk

t . At each time step t, an
algorithm A assigns a weight wk

t ≥ 0 to each expert k such that
∑K

k=1 wk
t = 1.

Based on these weights, the algorithm then receives a reward xA
t =

∑K
k=1 wk

t xk
t .
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There are multiple ways to define the aforementioned rewards. In a financial
setting it is common to define them to be the simple returns of some underlying
investment. Thus if vt represents the dollar value of an investment following
period t, and vt = (1 + rt)vt−1 where rt ∈ [−1,∞), one choice is to let xt =
rt. When rt is close to 0, it is also a good approximation of log(1 + rt), so
maximizing the arithmetic average of rewards will be very close to maximizing
the geometric average. We assume that daily rewards lie in the range [−M, M ]
for some constant M ; some of our bounds depend on M .

Two well-known measures of volatility that we will refer to often are variance
and standard deviation. Formally, if R̄t(k, x) is the average reward of expert k
on the reward sequence x at time t, then

V art(k, x) =
1
t

t∑

t′=1

(xk
t′ − R̄t(k, x))2, σt(k, x) =

√
V art(k, x)

We define Rt(k, x) to be the sum of rewards of expert k at times 1, . . . , t.
Traditionally in online learning the objective of an algorithm A has been to

achieve an average reward at least as good as the best expert over time, yielding
results of the form

R̄T (A,x) =
T∑

t=1

xA
t

T
≥ max

k∈K

T∑
t=1

xk
t

T
−

√
log K

T
= max

k∈K
R̄T (k, x)−

√
log K

T

An algorithm achieving this goal is often referred to as a “no regret” algorithm.
Now we are ready to define two standard risk-reward balancing criteria, the

Sharpe ratio [11] and the MV of expert k at time t.

Sharpet(k, x) =
R̄t(k, x)
σt(k, x)

, MVt(k, x) = R̄t(k, x)− σt(k, x)

In the following definitions we use the MV , but all apply mutatis mutandis
to Sharpe ratio. We say that an algorithm has no regret with respect to MV if

MVt(A, x) ≥ max
k∈K

MVt(k, x)−Regret(t)

where Regret(t) is a function that goes to 0 as t approaches infinity. We say that
an algorithm A has constant regret C for some constant C > 0 (that does not
depend on time but may depend on M) if for any large t there exists a t′ ≥ t
and a sequence x of expert rewards for which the following is satisfied:

MVt′(A, x) > max
k∈K

MVt′(k, x)− C

Finally, the competitive ratio of an algorithm A is defined as

inf
x

inf
t

MVt(A, x)
maxk∈KMVt(k, x)

where x can be any reward sequence generated for K experts. We sometimes
refer to MVt(A,x)/ maxk∈KMVt(k, x) as the competitive ratio on x at time t.

Note that for negative concepts like constant regret, it is sufficient to consider
a single sequence of expert rewards for which no algorithm can perform well.
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3 A Lower Bound for the Sharpe Ratio

In this section we show that even an offline policy cannot compete with the best
expert with respect to the Sharpe ratio, even when there are only two experts.

Theorem 1. Any offline algorithm has constant regret with respect to Sharpe
ratio. Furthermore, for any T ≥ 30, there exists an expert reward sequence x of
length T and two points in time such that no algorithm can attain more than a
1− C competitive ratio on x at both points, for some constant C > 0.

We give a brief overview the proof here; details are provided in Appendix A.
The lower bound is proved in a setting where there are only two experts

and the performance of the algorithm is tested at only two points. The reward
sequence used is simple with each expert’s reward changing only twice. The
performance of the algorithm is tested when the second change occurs and at the
end of the sequence. If the algorithm reward at the first checkpoint is too high,
it will be the case that the competitive ratio at that point is bad. If it is lower,
the competitive ratio at the second checkpoint will be bad. We characterize the
optimal offline algorithm and show that it cannot compete with the best stock
on this sequence. This, of course, implies that no algorithm can compete.

4 A Lower Bound for MV

A similar bound can be shown for our additive risk-reward measure, the MV.

Theorem 2. Any online algorithm has constant regret with respect to the MV .

The proof will again be based on specific sequences that will serve as coun-
terexamples to show that in general it is not possible to compete with the best
expert in terms of the MV. We begin by describing how these sequences are
generated. Again we consider a scenario in which there are only two experts.
For the first n time steps, the first expert receives at each time step a reward
of 2 with probability 1/2 or a reward of 0 with probability 1/2, while at times
n + 1, ..., 2n the reward is always 1. The second expert’s reward is always 1/4
throughout the entire sequence. The algorithm’s performance will be tested only
at times n and 2n, and the algorithm is assumed to know the process by which
these expert rewards are generated.

This lower bound construction is not a single sequence but is a set of se-
quences generated according to the distribution over the first expert’s rewards.
We will refer to the set of all sequences that can be generated by this distrib-
ution as S. For any specific sequence in S, the optimal offline algorithm would
suffer no regret, but we will show by the probabilistic method that there is no
online algorithm that can perform well on all sequences in S at both checkpoints.
In contrast to “standard” experts, there are now two randomness sources: the
internal randomness of the algorithm and the randomness of the rewards.

We now give a high level overview. First we will consider a “balanced se-
quence” in S in which expert 1 receives an equal number of rewards that are
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2 and rewards that are 0. Assuming such a sequence, it will be the case that
the best expert at time n is expert 2 with reward 1/4 and standard deviation
0, while the best expert at time 2n is expert 1 with reward 1 and standard de-
viation 1/

√
2. Note that any algorithm that has average reward 1/4 at time n

in this scenario will be unable to overcome this start and will have a constant
regret at time 2n. Yet it might be the case on such sequences that a sophisticated
adaptive algorithm could have an average reward higher than 1/4 at time n and
still suffer no regret at time n. Hence, for the balanced sequence we first look
at the case in which the algorithm is “balanced” as well, i.e. the weight it puts
on expert 1 on days with reward 2 is equal to the weight it puts on expert 1 on
days with reward 0. We can later drop this requirement.

In our analysis we show that most sequences in S are “close” to the balanced
sequence. If the average reward of an algorithm over all sequences is less than
1/4 + δ, for some constant δ, then by the probabilistic method there exists a
sequence for which the algorithm will have constant regret at time 2n. If not, then
there exists a sequence for which at time n the algorithm’s standard deviation
will be larger than δ by some constant factor, so the algorithm will have regret
at time n. This argument will also be probabilistic, preventing the algorithm
from constantly being “lucky.” Details of this proof are given in Appendix B.

In fact we can extend this theorem to the broader class of objective functions
of the form R̄t(k, x) − ασt(A, x), where α > 0 is constant. The proof, which is
similar to the proof of Theorem 2, is omitted due to space limits. Both the
constant and the length of the sequence will depend on α.

Theorem 3. Let α ≥ 0 be a constant. The regret of any online algorithm with
respect to the metric R̄t(k, x)−ασt(A, x) is constant for some positive constant
that depends on α.

5 A Bicriteria Upper Bound

In this section we show that the recent algorithm of Cesa-Bianchi et al. [5] can
yield a risk-reward balancing bound. Their original result expressed a no-regret
bound with respect to rewards only, but the regret itself involved a variance term.
Here we give an alternate analysis demonstrating that the algorithm actually
respects a risk-reward trade-off. The quality of the results here depends on the
bound M on the absolute value of expert rewards as we will show.

We first describe the algorithm Prod which takes one parameter η. It main-
tains a set of K weights, one for each expert. The (unnormalized) weights w̃k

t

are initialized with w̃k
1 = 1 for every expert k and updated at each time step

according to w̃k
t ← w̃k

t−1(1 + ηxk
t−1). The normalized weights at each time step

are then defined as wk
t = w̃k

t /W̃t where W̃t =
∑k

j=1 w̃j
t .

Theorem 4. For any expert k ∈ K, for the algorithm Prod with η = 1/(LM)
where L > 2 we have at time t
(
LR̄t(A, x)

L− 1
− η(3L− 2)V art(A, x)

6L

)
≥

(
LR̄t(k, x)

L + 1
− η(3L + 2)V art(k, x)

6L

)
− ln K

η
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for any sequence x in which the absolute value of each reward is bounded by M .

The proof is given in Appendix C. The two large expressions in parentheses in
Theorem 4 additively balance rewards and variance of rewards, but with different
coefficients. It is tempting but apparently not possible to convert this inequality
into a competitive ratio. Nevertheless certain natural settings of the parameters
cause the two expressions to give quantitatively similar trade-offs. For example,
let x be any sequence of rewards which are bounded in [−0.1, 0.1] and let A be
Prod for η = 1. Then for any time t and expert k we have

1.11R̄t(A, x)− 0.466V art(A,x) ≥ 0.91R̄t(k, x)− 0.533V art(k, x)− (10 ln K)/t

This gives a relatively even balance between rewards and variance on both sides.
We note that the choice of a “reasonable” bound on the rewards magnitudes
should be related to the time scale of the process — for instance, returns on the
order of ±1% might be entirely reasonable daily but not annually.

6 No-Regret Results for Localized Risk

We now show a no-regret result for an algorithm optimizing an alternative ob-
jective function that incorporates both risk and reward. The primary leverage of
this alternative objective is that risk is now measured only “locally.” The goal
is to balance immediate rewards with how far these immediate rewards deviate
from the average rewards over some “recent” past. In addition to allowing us
to skirt the strong impossibility results for no-regret in the standard risk-return
measures, we note that our new objective may be of independent interest, as it
incorporates other notions of risk that are commonly considered in finance where
short-term volatility is usually of greater concern than long-term. For example,
this objective has the flavor of what is sometimes called “maximum draw-down,”
the largest decline in the price of a stock over a given, usually short, time period.

Consider the following risk measure for an expert k on a reward sequence x:

Pt(k, x) =
t∑

t′=2

(xk
t′ −AVG∗` (x

k
1 , ..., xk

t′))
2

where AVG∗` (x
k
1 , .., xk

t ) =
∑t

t′=t−`+1(x
k
t′/`) is the fixed window size average for

some window size ` > 0. The new risk-sensitive criterion at time t will be

Gt(A, x) = R̄t(A, x)− Pt(A, x)/t

. Observe that the measure of risk defined here is very similar to variance. In
particular, if for every expert k ∈ K we let pk

t = (xk
t −AVG∗t (xk

1 , .., xk
t ))2, then

Pt(k, x)/t =
t∑

t′=2

pk
t′

t
, V art(k, x) =

n∑

t′=2

pk
t′

t

(
1 +

1
t′ − 1

)

Our measure differs from the variance in two aspects. The variance of the se-
quence will be affected by rewards in the past and the future, whereas our mea-
sure depends only on rewards in the past, and for our measure the current reward
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is compared only to the rewards in the recent past, and not to all past rewards.
While both differences are exploited in the proof, the fixed window size is key.
The main obstacle of the algorithms in the previous sections was the “memory”
of the variance, which prevented switching between experts. The memory of the
penalty is now ` and our results will be meaningful when ` = o(

√
T ).

The algorithm we discuss will work by feeding modified instantaneous gains to
any best experts algorithm that satisfies the assumption below. This assumption
is met by algorithms such as Weighted Majority [9, 4].

Definition 1. An optimized best expert algorithm is an algorithm that guaran-
tees that for any sequence of reward vectors x over experts K = {1, . . . , K},
the algorithm selects a distribution wt over K (using only the previous reward
functions) such that T∑

t=1

K∑

k=1

wk
t xk

t ≥
T∑

t=1

xk
t −

√
TM log K,

where |xk
t | ≤ M and k is any expert. Furthermore, we also assume that decision

distributions do not change quickly: ‖wt −wt+1‖1 ≤
√

log(K)/t.

Since the risk function now has shorter memory, there is hope that a standard
best expert algorithm will work. Therefore, we would like to incorporate this
risk term into the instantaneous rewards fed to the best experts algorithm. We
will define this instantaneous quantity, the gain of expert k at time t to be
gk

t = xk
t − (xk

t − AV G∗` (x
k
1 , ..., xk

t−1))
2 = xk

t − pk
t , where pk

t is the penalty for
expert k at time t. Similarly the penalty for an algorithm A can be defined
as pA

t = (xA
t − AV G∗` (x

A
1 , ..., xA

t−1))
2. It is natural to wonder whether pA

t =∑K
k=1 wk

t pk
t ; unfortunately, this is not the case, but they are similar. To formalize

the connection between the measures, we let P̂ (A, x) =
∑T

t=1

∑K
k=1 wk

t pk
t be the

weighted penalty function of the experts, and P (A, x) =
∑T

t=1 pA
t be the penalty

function observed by the algorithm. The next lemma relates these quantities.

Lemma 1. Let x be any reward sequence such that all rewards are bounded by

M . Then P̂T (A, x) ≥ PT (A,x)− 2TM2`
√

log K
T−` .

Proof:

P̂T (A, x) =
T∑

t=1

K∑

k=1

wk
t (xk

t −AV G∗` (x
k
1 , .., xk

t ))2

≥
T∑

t=1

(
K∑

k=1

wk
t

(
xk

t −
∑`

j=1 xk
t−j+1

`

))2

=
T∑

t=1

(
K∑

k=1

wk
t xk

t −
∑K

k=1

∑`
j=1(w

k
t − wk

t−j+1 + wk
t−j+1)x

k
t−j+1

`

)2

=
T∑

t=1



(

K∑

k=1

wk
t xk

t −
∑K

k=1

∑`
j=1 wk

t−j+1x
k
t−j+1

`

)2

+

(∑K
k=1

∑`
j=1 εk

j xk
t−j+1

`

)2
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−2

(∑K
k=1

∑`
j=1 εk

j xk
t−j+1

`

)(
K∑

k=1

wk
t xk

t −
∑K

k=1

∑`
j=1 wk

t−j+1x
k
t−j+1

`

))

≥ PT (A, x)−
T∑

t=1

(
2M

∑K
k=1

∑`
j=1 |εk

j |M
`

)
≥ PT (A, x)− 2M2`T

√
log K

T − `

where εk
j = wk

t − wk
t−j+1. The first inequality is an application of Jensen’s in-

equality using the convexity of x2. The third inequality follows from the fact
that

∑K
k=1 |εk

j | is bounded by j
√

log K
T−j using our best expert assumption. ut

The following theorem is the main result of this section, describing a no-regret
algorithm with respect to the risk-sensitive function GT .

Theorem 5. Let A be a best expert algorithm that satisfies Definition 1 with
instantaneous gain function gk

t = xk
t − (xk

t − AV G∗` (x
k
1 , ..., xk

t−1))
2 for expert k

at time t. Then for large enough T for any reward sequence x and any expert k
we have for window size `

GT (A, x) ≥ GT (k, x)−O

(
M2`

√
log K

T − `

)

Proof: Using the best expert assumption and Lemma 1, we have

T ·G(k, x) =
T∑

t=1

xk
t −

T∑
t=1

(xk
t −AV G∗` (x

k
1 , .., yk

t ))2

≤
T∑

t=1

K∑

k′=1

wk′
t xk′

t −
T∑

t=1

K∑

k′=1

wk′
t (xk′

t −AV G∗` (x
k′
1 , .., xk′

t ))2 + M
√

T log K

≤ T ·G(A, x) + 2TM2`

√
log K

T − `
+ M

√
T log K

Dividing both sides by T yields the result. ut
Corollary 1. Let A be a best expert algorithm that satisfies Definition 1 with
instantaneous reward function gk

t = xk
t − (xk

t − AV G∗` (x
k
1 , ..., xk

t−1))
2. Then for

large enough T we have for any expert k and fixed window size ` = O(log T )

G(A, x) ≥ G(k, x)− Õ

(
M2

√
log K

T

)

7 Empirical Results 2

In order to judge how well algorithms with no-regret guarantees are able to
perform on real data sets with large numbers of experts, we implemented the
2 The section of experimental results in the version of this paper published in [6]

contains significant errors, and should be disregarded in favor of the corrected results
presented here. Briefly, the experimental results of [6] significantly overstate the
performance of the Weighted Majority and Modified Weighted Majority algorithms.
All theoretical results of [6] are unaffected by these errors.
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Fig. 1. Cumulative wealth (left) and annualized geometric Sharpe ratio (right) at the
end of the 1632-day period for each algorithm with a selection of positive learning rates.

standard Multiplicative Weights/Weighted Majority algorithm (WM) [9, 4, 7],
the modified risk-sensitive version of Weighted Majority (MWM) discussed in
Section 6, Prod [5], and the exponential gradient (EG) algorithm of Hembold
et al. [8]. We ran each of these algorithms with a wide variety of learning rates
on a data set consisting of the closing prices on the 1632 trading days between
January 4, 1999 and June 29, 2005 of the 469 S&P 500 stocks that remained in
the index for the duration of the period. For the modified risk-sensitive version
of Weighted Majority, we used a fixed window of size 40. Other similar window
sizes yielded similar performance results.

Figure 1 shows the cumulative wealth and the annualized geometric Sharpe
ratio of the four algorithms along with those of the uniform constant rebalanced
(UCRB) portfolio (in which the weight is split evenly over the K experts at every
time step). The x axis ranges over positive values of each algorithm’s learning
rate. Somewhat alarmingly, we find that all four algorithms are outperformed
by UCRB on this data set. This may be attributed in part to the large number
of stocks available, but could be a direct result of the mean-reverting nature of
the stock market. Similar results were noted by Borodin, El-Yaniv, and Gogan
[3] and by Agarwal et al.[1]

The second set of experiments was inspired by the form of the error in the
initial version of this paper and by a surprising phenomenon brought to our
attention by Cenk Ural who noticed that the performance of EG actually im-
proved when he attempted using negative learning rates.[13] Figure 2 shows the
cumulative wealth and annualized geometric Sharpe ratio of Weighted Majority,
our modified risk-sensitive Weighted Majority, and EG over a range of nega-
tive learning rates, along with the uniform constant rebalanced portfolio and
the best single stock (BSS) with respect to each metrics. 3 Indeed we see an

3 Due to the form of the update rule for Prod, it is not possible to test a large range
of negative learning rates while maintaining positive weights on each expert on this
data set, but we suspect something similar is going on there.
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Fig. 2. Cumulative wealth (left) and annualized geometric Sharpe ratio (right) at the
end of the 1632-day period for each algorithm with negative learning rates.

improvement in performance for all three algorithms, with our modified version
of Weighted Majority yielding significantly higher cumulative wealth than the
best single stock at some learning rates.

Simulations of this form raise a number of interesting questions about why
it might be beneficial to decrease the weight of experts that have historically
done well in favor of experts with a history of poor performance. This could
be explained by the common theory that the stock market is mean-reverting;
if the value of a stock climbs, it is likely to fall in the future and vice versa. It
would be interesting to examine the possible theoretical guarantees and empirical
performance of algorithms designed to perform well under assumptions of this
kind.
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A Proof of Theorem 1

We define an m-segment sequence as a sequence described by expert rewards at m
times, n1 < ... < nm, such that for all i ∈ {1, . . . ,m}, every expert’s reward in the
time segment [ni−1 + 1, ni] is constant, i.e. ∀t ∈ [ni−1 + 1, ni], ∀k ∈ K, xk

t = xk
ni

.
where n0 = 0. We say that an algorithm has a fixed policy in the ith segment if the
weights that the algorithm places on each expert remain constant between times
ni−1 + 1 and ni. The following lemma states that an algorithm with maximal
Sharpe ratio at time ni uses a fixed policy at every segment prior to i.

Lemma 2. Let x be an m-segment reward sequence. Let Ar
i (for i ≤ m) be the

set of algorithms that have average reward r on x at time ni. Then an algorithm
A ∈ Ar

i with minimal standard deviation has a fixed policy in every segment
prior to i. The optimal Sharpe ratio at time ni is thus attained by an algorithm
that has a fixed policy in every segment prior to i.

The intuition behind this lemma is that switching weights within a segment
can only result in higher variance without enabling an algorithm to achieve an
average reward any higher than it would have been able to achieve using a fixed
set of weights in this segment. The proof is omitted due to lack of space.

With this lemma, we are ready to prove Theorem 1. We will consider one
specific 3-segment sequence with two experts and show that there is no algorithm
that can have competitive ratio bigger than 0.71 at both times n2 and n3 on this
sequence. The three segments are of equal length. The rewards for expert 1 are
.05, .01, and .05 in intervals 1, 2, and 3 respectively. The rewards for expert 2
are .011, .009, and .05. 4 The Sharpe ratio of the algorithm will be compared to
the Sharpe ratio of the best expert at times n2 and n3. Analyzing the sequence
we observe that the best expert at time n2 is expert 2 with Sharpe ratio 10. The
best expert at n3 is expert 1 with Sharpe ratio approximately 1.95.

The intuition behind this construction is that in order for the algorithm
to have a good competitive ratio at time n2 it cannot put too much weight on
expert 1 and must put significant weight on expert 2. However, putting significant
weight on expert 2 prevents the algorithm from being competitive in time n3

where it must have switched completely to expert 1 to maintain a good Sharpe
ratio. The remainder of the proof formalizes this notion.

4 Note that since the Sharpe ratio is a unitless measure, we could scale the rewards
in this sequence by any positive constant factor and the proof would still hold.
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Suppose first that the average reward of the algorithm on the lower bound
Sharpe sequence x at time n2 is at least .012. The reward in the second segment
can be at most .01, so if the average reward at time n2 is .012 + z where z is
positive constant smaller than .018, then the standard deviation of the algorithm
at n2 is at least .002+z. This implies that the algorithm’s Sharpe ratio is at most
.012+z
.002+z , which is at most 6. Comparing this to the Sharpe ratio of 10 obtained
by expert 2, we see that the algorithm can have a competitive ratio no higher
than 0.6, or equivalently the algorithm’s regret is at least 4.

Suppose instead that the average reward of the algorithm on x at time n2

is less than .012. Note that the Sharpe ratio of expert 1 at time n3 is approx-
imately .03667

.018 > 1.94. In order to obtain a bound that holds for any algorithm
with average reward at most .012 at time n2, we consider the algorithm A which
has reward of .012 in every time step and clearly outperforms any other algo-
rithm.5 The average reward of A for the third segment must be .05 as it is the
reward of both experts. Now we can compute its average and standard devia-
tion R̄n3(A, x) ≈ 2.4667 and σn3(A, x) ≈ 1.79. The Sharpe ratio of A is then
approximately 1.38, and we find that A has a competitive ratio at time n3 that
is at most 0.71 or equivalently its regret is at least 0.55.

The lower bound sequence that we used here can be further improved to
obtain a competitive ratio of .5. The improved sequence is of the form n, 1, n for
the first expert’s rewards, and 1+1/n, 1−1/n, n for the second expert’s rewards.
As n approaches infinity, the competitive ratio of the Sharpe ratio tested on two
checkpoints at n2 and n3 approaches .5.

B Proof of Theorem 2

Recall that we are considering a two expert scenario. Until time n, expert 1
receives a reward of 2 with probably 1/2 and a reward of 0 with probability 1/2.
From n to 2n, he always receives 1. Expert 2 always receives 1/4. Recall that we
refer to the set of sequences that can be generated by this distribution as S.

In this analysis we use a form of Azuma’s inequality, which we present here
for sake of completeness. Note that we cannot use standard Chernoff bound since
we would like to provide bounds on the behavior of adaptive algorithms.

Lemma 3 (Azuma). Let ζ0, ζ1, ..., ζn be a martingale sequence such that for
each i, 1 ≤ i ≤ n, we have |ζi − ζi−1| ≤ ci where the constant ci may depend on
i. Then for n ≥ 1 and any ε > 0

Pr [|ζn − ζ0| > ε] ≤ 2e
− ε2

2
∑n

i=1
c2
i

Now we define two martingale sequences, yt(x) and zt(A,x). The first counts
the difference between the number of times expert 1 receives a reward of 2 and
the number of times expert 1 receives a reward of 0 on a given sequence x ∈ S.
The second counts the difference between the weights that algorithm A places
on expert 1 when expert 1 receives a reward of 2 and the weights placed on
5 Of course such an algorithm cannot exist for this sequence
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expert 1 when expert 1 receives a reward of 0. We define y0(x) = z0(A, x) = 0
for all x and A.

yt+1(x) =
{

yt(x) + 1, x1
t+1 = 2

yt(x)− 1, x1
t+1 = 0 , zt+1(A, x) =

{
zt(A, x) + w1

t+1, x1
t+1 = 2

zt(A, x)− w1
t+1, x1

t+1 = 0

In order to simplify notation throughout the rest of this section, we will often
drop the parameters and write yt and zt when A and x are clear from context.

Recall that R̄t(A, x) is the average reward of an algorithm A on sequence
x at time t. We denote the expected average reward at time t as R̄t(A,D) =
Ex∼D

[
R̄t(A, x)

]
, where D is the distribution over rewards.

Next we define a set of sequences that are “close” to the balanced sequence
on which the algorithm A will have a high reward, and subsequently show that
for algorithms with high expected average reward this set is not empty.

Definition 2. Let A be any algorithm and δ any positive constant. Then the
set Sδ

A is the set of sequences x ∈ S that satisfy (1) |yn(x)| ≤
√

2n ln(2n),
(2) |zn(A, x)| ≤

√
2n ln(2n), (3) R̄n(A,x) ≥ 1/4 + δ −O(1/n).

Lemma 4. Let δ be any positive constant and A be an algorithm such that
R̄n(A, D) ≥ 1/4 + δ. Then Sδ

A is not empty.

Proof: Since yn and zn are martingale sequences, we can apply Azuma’s in-
equality to show that Pr[yn ≥

√
2n ln(2n)] < 1/n and Pr[zn ≥

√
2n ln(2n)] <

1/n. Thus, since rewards are bounded by a constant value in our construction
(namely 2), the contribution of sequences for which yn or zn are larger than√

2n ln(2n) to the expected average reward is bounded by O(1/n). This implies
that if there exists an algorithm A such that R̄n(A,D) ≥ 1/4 + δ, then there
exists a sequence x for which the R̄n(A,x) ≥ 1/4+ δ−O(1/n) and both yn and
zn are bounded by

√
2n ln(2n). ut

Now we would like to analyze the performance of an algorithm for some
sequence x in Sδ

A. We first analyze the balanced sequence where yn = 0 with a
balanced algorithm (so zn = 0), and then show how the analysis easily extends
to sequences in the set SA. In particular, we will first show that for the balanced
sequence the optimal policy in terms of the objective function achieved has one
fixed policy in times [1, n] and another fixed policy in times [n + 1, 2n]. Due to
lack of space the proof, which is similar but slightly more complicated than the
proof of Lemma 2, is omitted.

Lemma 5. Let x ∈ S be a sequence with yn = 0 and let Ax
0 be the set of

algorithms for which zn = 0 on x. Then the optimal algorithm in Ax
0 with respect

to the objective function MV (A, x) has a fixed policy in times [1, n] and a fixed
policy in times [n + 1, 2n].

Now that we have characterized the optimal algorithm for the balanced set-
ting, we will analyze its performance. The next lemma (proof omitted) connects
the average reward to the standard deviation on balanced sequences by using
the fact that on balanced sequences algorithms behave as they are “expected.”
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Lemma 6. Let x ∈ S be a sequence with yn = 0, and let Ax
0 be the set of

algorithms with zn = 0 on x. For any positive constant δ, if A ∈ Ax
0 and

R̄n(A, x) = 1/4 + δ, then σn(A, x) ≥ 4δ
3 .

The following is a bound on the objective function at time 2n given high
reward at time n. The proof (again omitted) uses the fact the added standard
deviation is at least as large as the added average reward and thus cancels it.

Lemma 7. Let x be any sequence and A any algorithm. If R̄n(A, x) = 1/4 + δ,
then MV2n(A, x) ≤ 1/4 + δ for any positive constant δ.

Recall that the best expert at time n is expert 2 with reward 1/4 and standard
deviation 0, and the best expert at time 2n is expert 1 with average reward 1
and standard deviation 1/

√
2. Using this knowledge in addition to Lemmas 6

and 7, we obtain the following proposition for the balanced sequence:

Proposition 1. Let x ∈ S be a sequence with yn = 0, and let Ax
0 be the set of

algorithms with zn = 0 for s. If A ∈ Ax
0 , then A has a constant regret at either

time n or time 2n or at both.

We are now ready to return to the non-balanced setting in which yn and
zn may take on values other than 0. Here we use the fact that there exists a
sequence in S for which the average reward is at least 1/4 + δ −O(1/n) and for
which yn and zn are small. The next lemma shows that standard deviation of an
algorithm A on sequences in Sδ

A is high at time n. The proof, which is omitted,
uses the fact that such sequences and algorithm can be changed with almost no
effect on average reward and standard deviation to balanced sequence, for which
we know the standard deviation of any algorithm must be high.

Lemma 8. Let δ be any positive constant, A be any algorithm, and x be a
sequence in Sδ

A. Then σn(A,x) ≥ 4δ
3 −O

(√
ln(n)/n

)
.

We are ready to prove the main theorem of the section.
Proof: [Theorem 2] Let δ be any positive constant. If R̄n(A,D) < 1/4+ δ, then
there must be a sequence x ∈ S with yn ≤

√
2n ln(2n) and R̄n(A,x) < 1/4 + δ.

Then the regret of A at time 2n will be at least 1− 1/
√

2− 1/4− δ −O(1/n).
If, on the other hand, R̄n(A,D) ≥ 1/4 + δ, then by Lemma 4 there exists a

sequence x ∈ S such that R̄n(A, x) ≥ 1/4+δ−O(1/n). By Lemma 8, σn(A, x) ≥
4/3δ − O

(√
ln(n)/n

)
, and thus the algorithm has regret at time n of at least

δ/3 − O
(√

ln(n)/n
)
. This shows that for any δ we have that either the regret

at time n is constant or the regret at time 2n is constant. ut

C Proof of Theorem 4

The following facts about the behavior of ln(1 + z) for small z will be useful.
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Lemma 9. For any L > 2 and any v, y, and z such that |v|, |y|, |v + y|, and
|z| are all bounded by 1/L we have the following

z − (3L + 2)z2

6L
< ln(1 + z) < z − (3L− 2)z2

6L

ln(1 + v) +
Ly

L + 1
< ln(1 + v + y) < ln(1 + v) +

Ly

L− 1

Similar to the analysis in [5], we bound ln W̃n+1

W̃1
from above and below.

Lemma 10. For the algorithm Prod with η = 1/(LM) ≤ 1/4 where L > 2,

ln
W̃n+1

W̃1

≤ ηLRn(A,x)
L− 1

− η2(3L− 2)nV arn(A,x)
6L

at any time n for sequence x with the absolute value of rewards bounded by M .

Proof: Similarly to [5] we obtain,

ln
W̃n+1

W̃1

=
n∑

t=1

ln
W̃t+1

W̃t

=
n∑

t=1

ln

(
K∑

k=1

w̃k
t

W̃t

(1 + ηxk
t )

)
=

n∑
t=1

ln(1 + ηxA
t )

=
n∑

t=1

ln(1 + η(xA
t − R̄n(A, x) + R̄n(A,x)))

Now using Lemma 9 twice we obtain the proof. ut
Next we bound ln W̃n+1

W̃1
from below. The proof is based on similar arguments

to the previous lemma and the observation made in [5] that ln W̃n+1

W̃1
≥ ln

(
w̃k

n+1
K

)
,

and is thus omitted.

Lemma 11. For the algorithm Prod with η = 1/LM where L > 2, for any
expert k ∈ K the following is satisfied

ln
W̃n+1

W̃1

≥ − ln K +
ηLRn(k, x)

L + 1
− η2(3L + 2)nV arn(k, x)

6L

at any time n for any sequence x with rewards absolute values bounded by M .

Combining the two lemmas we obtain Theorem 4.


