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Abstract physical distribution and interactions of agents: each sales-

person is viewed as being involved in a local competition
(game) with the salespeople in geographically neighboring
regions. The graph may be used to represent organizational
structure: low-level employees are engaged in a game with
their immediate supervisors, who in turn are engaged in a
game involving their direct reports and their own managers,
and so on up to the CEO. The graph may coincide with the
topology of a computer network, with each machine nego-
tiating with its neighbors (to balance load, for instance).

1 INTRODUCTION There is a fruitful analogy between our setting and
Bayesian networks. We propose a representation that is
In most work on multi-player game theory, payoffs are rep-universal: any:-player game can be represented by choos-
resented inabularform: if n agents play a game in which ing the complete graph and the originaplayer matrices.
each player has (say) two actions available, the game islowever, significant representational benefits occur if the
given byn matrices, each of siz&", specifying the pay- graph degree is small: if each player has at ntost< n
offs to each player under any possible combination of jointneighbors, then each game matrix is exponential only in
actions. For game-theoretic approaches to scale to largather tham. The restriction to small degree seems insuffi-
multi-agent systems;ompactyet generalrepresentations cient to avoid the intractability of computing Nash equilib-
must be explored, along with algorithms that can efficientlyria. All of these properties hold for the problem of repre-
manipulate ther senting and computing conditional probabilities in a Bayes
net. Thus, as with Bayes nets, we are driven to ask the nat-
ural computationalquestion: for which classes of graphs
can we give efficient (polynomial-time) algorithms for the
computation of Nash equilibria?

We introduce a compact graph-theoretic repre-
sentation for multi-party game theory. Our main
result is a provably correct and efficient algo-
rithm for computing approximate Nash equilib-
ria in (one-stage) games represented by trees or
sparse graphs.

In this work, we introducegraphical modelsfor multi-
player game theory, and give powerful algorithms for com-
puting their Nash equilibria in certain cases. Asplayer
game is given by an undirected graphmwertices and a
set ofn. matrices. The interpretation is that the payoff to Our main technical result is an algorithm for computing
playeri is determined entirely by the actions of player Nash equilibria when the underlying graph is a tree (or
and his neighbors in the graph, and thus the payoff matrixan be turned into a tree with few vertex mergings). This
to playeri is indexed only by these players. We thus viewalgorithm comes in two related but distinct forms. The
the globaln-player game as being composed of interactingfirst version involves an approximation step, and computes
local games, each involving (perhaps many) fewer playersan approximation oéveryNash equilibrium. (Note that
Each player’s action may have global impact, but it occurdhere may be an exponential number of equilibria.) This
through the propagation of local influences. algorithm runs in time polynomial in the size of the rep-
resentation (the tree and the associated local game matri-

There are many common settings in which such graphlcatl:es), and constitutes one of the few known cases in which

models may naturally and succinctly capture the underly'equilibria can be efficiently computed for a large class of

Ing game structure.  The graph topology may model thegeneral—sum, multi-player games. The second version of
'For multistagegames, there is a large literature on compactthe algorithm runs in exponential time, but allows éxact
state-based representations for the different stages of the gamgomputation of all Nash equilibria in a tree. In an upcom-

such as st_ochastic games or extensive fo_rm games (Owen 1995},9 paper (Littman et al. (2001)), we will also describe a
Our focus is on representirane stage, multiplayer games.



polynomial-time algorithm for the exact computation of a M;(z1,...,x,) = M;(Z) specifies the payoff to player
single Nash equilibrium in trees. Our algorithms requirewhen the joint action of thes players is# € {0,1}" 3.
only local message-passing between vertices (and thus catus, eachl/; has2™ entries. If a game is given by simply
be implemented by the players themselves in a distributetisting the2™ entries of each of the matrices, we will say
manner). that it is represented i@bular form.

The actions 0 and 1 are thpeire strategie®f each player,
2 RELATED WORK while amixedstrategy for playei is given by the proba-

bility p; € [0, 1] that the player will play 0. For any joint
Algorithms for computing Nash equilibria are well-studied. mixed strategy, given by a product distributiginwe define
McKelvey and McLennan (1996) survey a wide variety of the expected payoff to playémsM; (P) = Ezp[M;(F)],
algorithms covering 2- and-player games; Nash equilib- where# ~ jindicates that each; is 0 with probabilityp;
ria and refinements; normal and extensive forms; computand 1 with probabilityl — ;-

ing either a sample equilibrium or exhaustive enumerationw o d h hich is th
and many other variations. They note thaplayer games  *© usepli - p;] to denote the vector which is the same as

are computationally much harder than 2-player games, i €XC€Pt 'n,the“th component, where the value has been
many important ways. The survey discusses approximaghangedfq’i' A Nash eqwhbnum‘or_the game is a mixed
tion techniques for finding equilibria in-player games. s:crategyp such that for apy lplayear, and for any value
Several of the methods described are not globally conver: € [0,1], M;(p) > ]\/{i(ﬁ[z  py]). (We say thap; is abe;t
gent, and hence do not guarantee an equilibrium. A methoff SPONSéo the rest ofs.) In other words, no player can im-

based on simplicial subdivision is described that convergeBOVe their expected payoff by deviating unilaterally from
to a point with equilibrium-like properties, but is not neces- & Nash equilibrium. The classic theorem of Nash (1951)

sarily near an equilibrium or an approximate equilibriumstates that for any game, there exists a Nash equilibrium in

In contrast, for the cases we consider, our algorithms prote SPace of joint mixed strategies.

vide running time and solution quality guarantees, even inye will also use a straightforward definition for approxi-
the case of general-sumsplayer games. mate Nash equilibria. Ar-Nash equilibriumis a mixed

Nash (1951), in the paper that introduces the notion of NasR' 29y such that for any pl_ayear; and for any value
equilibria, gives an example of a 3-player, finite-action?: € [0,1], Mi(p) + € > M;(pli ;piD' (We say thap;
game, and shows it has a unique Nash equilibria. Althougli® 2n€-Pest responsto the rest o) Thus, no player can
all payoffs are rational numbers, Nash shows that the play?"ProVe their expected pay_off by more tha*?)’ dgwatmg
ers’ action probabilities at the equilibrium are irrational. Unilaterally from an approximate Nash equilibrium.
This suggests that no finite algorithm that takes rationajan n-playergraphical gameis a pair(G, M), whereG
payoffs and transforms them using addition, subtractionjs an undirected graph om vertices andM is a set ofn
multiplication, and division will be able to compute exact matrices)M; (1 < i < n), called thelocal game matri-
equilibrium policies in general. Thus, the existence of ances Playeri is represented by a vertex labelgdn G.
exact algorithm for finding equilibria in games with tree- We useNg(i) C {1,...,n} to denote the set afieigh-
structured interactions shows that these games are somigors of playeri in G—that is, those vertices such that
what simpler than general-player games. It also sug- the undirected edgé, j) appears inG. By convention,
gests that approximation algorithms are probably unavoid#V, (i) always includes itself. The interpretation is that
able for generah-player games. each player is in a game with only their neighborsdn
Several authors have examined graphical representatiorj@us' 'f|NG(Z,)| - k the m_atgxMi haskk |nd|c§s, one for
of games. Koller and Milch (2001) describe an extension€ach Player ifVe (i), and if & € [0,1]%, M;(#) denotes
of influence diagrams to representingplayer games, and 1€ Payoff toi when hisk neighbors (which include him-
suggest the importance of exploiting graphical structure iree ) pIayI;;:._ The expected payoff under a mixed strategy
solving normal-form games. La Mura (2000) describes & € [0, 11" is deﬂne}? analogously. Note that in the two-
closely related representation, and provides globally conaction casel; has2® entries, which may be considerably
vergent algorithms for finding Nash equilibria. smaller thare™.

Since we identify players with vertices i@, and since
3 PRELIMINARIES it will sometimes be easier to treat vertices symbolically

(such asl, V and W) rather than by integer indices, we

An n-player, two-actioh game is defined by a set ofma- glso use\ly to denote the local game matrix for the player
trices M; (1 < i < n), each withn indices. The entry identified with vertex.
2For simplicity, we describe our results for the two-action  2For simplicity, we shall assume all payoffs are bounded in

case. However, we later describe an efficient generalization o&bsolute value by 1, but all our results generalize (with a linear
the approximation algorithm to multiple actions. dependence on maximum payoff).



Note that our definitions are entirely representational, and.; € [0, 1] of U;. The semantics of this table will be as fol-
alter nothing about the underlying game theory. Thus, eviows: for any pair(v, u;), T (v, u;) will be 1 if and only if
ery graphical game has a Nash equilibrium. Furthermorethere exists a Nash equilibrium foiU: | Mgi:v) in which
every game can be trivially represented as a graphical gamig; = u;. Note that we will slightly abuse notation by let-
by choosingG to be the complete graph, and letting the ting 7'(v, ;) refer both to the entire table sent fraif to
local game matrices be the original tabular form matricesV, and the particular value associated with the paii;),
Indeed, in some cases, this may be the most compact graphut the meaning will be clear from the context.

ical representation of the tabular game. However, exac“%incev andu; are continuous variables, it is not obvious
(2 ’

as for Bgy_e;ian networks af‘d oj[her graphical mode!s 1EO[hat the tableT'(v, u;) can be represented compactly, or
probabilistic inference, any time in which the local neigh- even finitely, for arbitrary vertices in a tree. As indicated

borhoods inG can be bounded by << n, exponential g -
spacesavings accrue. Our main results identify graphicalalready, for now we will simply assume a finite represen-
) tation, and show how this assumption can be met in two

structures for which significasbmputationabenefits may . : .

. different ways in later sections.
also be realized.
The initialization of the downstream pass of the algorithm
begins at the leaves of the tree, where the computation of
the tables is straightforward. If is a leaf and/ its only
child, thenT'(v,u) = 1 if and only if U = u is a best
In this section, we give an abstract description of our al-response td” = v (step 2c of Figure 1).

gorithm for computing Nash equilibria in trees (see Fig- ing for i . h h |
ure 1). By “abstract”, we mean that we will leave unspec-~SSUming for mductl(;)n t_gt ﬁacﬁh sends the htabe
ified (for now) the representation of a certain data struc—T(“’“i> to 1V, we now describe how’ can compute the ta-

ture, and the implementation of a certain computationaP!® (%, v) to pass to its childV" (step 2(d)ii of Figure 1).

step. After proving the correctness of this abstract algo! Of €ach paitw, v), T'(w, v) is setto 1 if and only if there

rithm, in subsequent sections we will describe two instan—EXi§tS a vector of mixed Etrateg'rés: (1, ..., u) (called
tiations of the missing details—yielding one algorithm that@Witness for the parent$/ = (Us, ..., Uy) of V such that
runs in polynomial time and computes approximations of B . )
all equilibria, and another algorithm that runs in exponen- 1. T(v,u;) = Lforall 1 <i < k; and

tial time and computes all exact equilibria. 2. V =vis abestresponse to = @, W = w.

4 ABSTRACT TREE ALGORITHM

If G is a tree, we can orient this tree by choosing an arbi—Note that there may be more than one witness for
trary vertex to be the root. Any vertex on the path from aT(w v) = 1. In addition to computing the valuB(w, v)
vertex to the root will be calledownstreanirom that ver- on tr,le down.stream pass of the algorittirwill also k:'-:ep
tex, and any vertex on a path from a vertex to a leaf will bea list of the witnessest for each pair(w, v) for which
calledupstreamfrom that vertex. Thus, each vertex other T'(w,v) = 1 (step 2(d)iiA of Figure 1) Th;ase witness lists
than the root has exactly one downstream neighbor (child)WiII t;e used on the upstream pass Again it is not obvious
and perhaps many upstream neighbors (parents). We u%e i '

Up(U) to denote the set of vertices@that are upstream ow to |m_plemer_1t the _des_crlbed _computaﬂonﬂ_(fw, v)
s . g and the witness lists, sinagkis continuous and universally
from U, includingU by definition.

quantified. For now, we assume this computation can be
Suppose that” is the child of U in G. We letGY de- done, and describe two specific implementations later.
note the the subgraph induced by the verticeBin. (U).

If v € [0,1] is a mixed strategy for player (verteX),
MY_, will denote the subset of matrices gl corre-
sponding to the vertices iUp,(U), with the modifica-
tion that the game matrid/y; is collapsed by one index
by fixing V' = v. We can think of a Nash equilibrium for
the graphical gaméGY, MY_ ) as an equilibrium “up-
stream” fromU (inclusive),giventhatV playswv.

To see that the semantics of the tables are preserved by the
abstract computation just described, suppose that this com-
putation yieldsI'(w, v) = 1 for some paifw, v), and letd

be a witness fofl (w,v) = 1. The fact thafl'(v,u;) = 1

for all i (condition 1 above) ensures by induction thal’'if
playsv, there are upstream Nash equilibria in which each
U; = u;. Furthermorey is a best response to the local set-
tingsU; = uq,...,Ur = ug, W = w' (condition 2 above).
Suppose some vertéx hask parentd/, ..., U, and the  Therefore, we are in equilibrium upstream frém On the
single childiW. We now describe the data structures sentother hand, ifl'(w,v) = 0 it is easy to see there can be no
from eachlU; to V, and in turn froml” to W, on the down-  equilibrium in whichW = w,V = v. Note that the exis-
stream pass of the algorithm. tence of a Nash equilibrium guarantees thétv,v) = 1

Each parentU; will send to V' a binary-valued table for at least ongw, v) pair.

T(v,u;). The table is indexed by the continuum of pos- The downstream pass of the algorithm terminates at the
sible values for the mixed strategiese [0,1] of V and  rootZ, which receives tableB(z, y;) from each parerit;.



Algorithm TreeNash
Inputs: Graphical gam@z, M) in whichG is a tree.
Output: A Nash equilibrium fo(G, M).

1. Compute a depth-first ordering of the vertice€of

2. (Downstream Pas¥For each verteX” in depth-first ordering (starting at the leaves):

(a) Letvertexi¥ be the child oft” (or nil if V' is the root).
(b) Initialize T'(w, v) to be 0 and the witness list f@r(w, v) to be empty for alkw, v € [0, 1].
(c) If Visaleaf:

i. Forallw,v € [0,1], setT'(w,v) to be 1if and only ift” = v is a best response #& = w
(as determined by the local game mathik).

(d) Else { is an internal vertex):
i. LetU = (Ui, ..., Us) be the parents df; let (v, u;) be the table passed frobh to V on
the downstream pass.
ii. Forallw,v € [0,1] and all joint mixed strategied = (u1, . .., ) for U:
A. If V = vis a best response i = w andU = i (as determined by the local game|

matrix My), andT (v,u;) = 1fori = 1,---,k, setT(w,v) to be 1 and add; to the
witness list forT' (w, v).

(e) Pass the tabl&(w,v) fromV toW.

3. (Upstream Pas} For each verteX” in reverse depth-first ordering (starting at the root):
@ Letl = (Un, ..., Us) be the parents df” (or the empty list ifV is a leaf); leti”” be the child of
V (or nil if V'is the root), andw, v) the values passed frol to V" on the upstream pass.
(b) LabelV with the valuev.
(c) (Non-deterministically) Choose any witnes$o T'(w, v) = 1.
(d) Fori =1,...,k, pass(v,u;) fromV to U;.

Figure 1: Abstract algorithrireeNashfor computing Nash equilibria of tree graphical games. The description is incom-
plete, as it is not clear how to finitely represent the talilés-), or how to finitely implement step 2(d)ii. In Section 5, we
show how to implement a modified version of the algorithm that computes approximate equilibria in polynomial time. In
Section 6, we implement a modified version that computes exact equilibria in exponential time.

Z simply computes a one-dimensional table:) such that  librium for the tree gaméG, M). Furthermore, the tables
T(z) = 1 if and only if for some witnesg, T'(z,y;) = 1 and witness lists computed by the algorithm represent all
for all i, andz is a best response b Nash equilibria of G, M).

The upstream pass begins Bychoosing any: for which

T(z) = 1, choosing any witnes§,...,yx) 0 T'(2) = 5 APPROXIMATION ALGORITHM
1, and then passing bothandy; to each parent;. The
interpretation is thaZ will play z, and is instructing; to
playy;. Inductively, if a verteXd/ receives a value to play
from its downstream neighbd?’, and the valuev thatWW
will play, then it must be thaf’(w,v) = 1. SoV chooses
a witnessi to T'(w,v) = 1, and passes each pardnt
their valueu; as well asv (step 3 of Figure 1). Note that
the semantics df'(w,v) = 1 ensure thal” = v is abest  Rather than playing an arbitrary mixed strategy[dni],
response t&/ = u, W = w. each player will be constrained to playlecretizedmixed
I_Etrategy that is a multiple of, for somer to be determined

In this section, we describe an instantiation of the miss-
ing details of algorithnTreeNashthat yields a polynomial-
time algorithm for computingpproximateNash equilibria
for the tree gaméG, M). The approximation can be made
arbitrarily precise with greater computational effort.

We have left the choices of each witness in the upstrea th vsis. Th laveol ' 0.7.9 1

pass non-deterministic to emphasize that the tables and wi y theé analysis. Thus, E ayeplaysg; € {. 7 To 8T+ }
ness lists computed represexlt the Nash equilibria. Of and the joint strategyy falls on the discretized-grid
course, a random equilibrium can be chosen by makinéO’T’ 27,....,1}". In algorithmTreeNash this will allow

these choices random. We discuss the selection of equ -ach tabldl'(v, u) (passed from verteX to child V') to be

S . S . represented in discretized form as well: only the? en-
libria with ir lobal properties in ion 7. . . : .
bria with desired global properties in Sectio tries corresponding to the-grid choices forU andV are

stored, and all computations of best responses in the algo-
Theorem 1 Algorithm TreeNash computes a Nash equi- rithm are modified to be approximate best responses. We



return to the details of the approximate algorithm after esProof:

tablishing an appropriate value for the grid resolution

To determine an appropriate choicerafwhich in turn will

determine the computational efficiency of the approxima-

tion algorithm), we first bound the loss in payoff to any
player caused by moving from an arbitrary joint strat@gy
to the nearest strategy on thegrid.

Fix any mixed strategy for (G, M) and any player index
i, and let|N¢(i)| = k. We may write the expected payoff

to: underp as:
) M;(Z), (1)

where we simply definev;(z;) = (p;)' =% (1 — p;)%
Note thato; (z;) € [0, 1] always.

M;(p)

>

Fe{0,1}*

(H aj(z;)

We will need the following preliminary lemma.

Lemma?2 Letp, ¢ € [0,1]* sat|sfy|pz —q;| < 7 forall
1 <i < k. Then provided- < 4/(klog®(k/2)),

n qu_

(klog k)T

Proof: By induction onk. The lemma clearly holds for
k = 2. Without loss of generality, assunkés even. Then

k/2 k
(n) ( I )
i=1 i=(k/2)+1

k/2
e

k
I »+
i=(k/2)+1

k

(sz) + 2(k/2)(log(k/2))T +

i=1

((k/2)(log(k/2))7)*

k

(H pi> +k(logk — 1)T +

i=1

((k/2)(log(k/2))7)*.

The lemma holds if—kr + ((k/2)(log(k/2))T)* < 0.
Solving forr yieldst < 4/(klog®(k/2)). O

k
H i
i=1

IN

(k/2)(log(k/2)) )x

(k/2)(10g(/€/2))7>

IN

Lemma 3 Let the mixed strategies ¢ for (G, M) satisfy
|ps —q;| < 7 forall i. Then provided < 4/(klog®(k/2)),

|Mi(5) — Mi()| < 2*(klog(k))T.

Applying Lemma 2 to each term of Equation (1)
yields

| M;(p) — Mi(q)]
k
> (] i)

k
- 118
#e{0,1}* |j=1 j=1

> (klog(k))r < 2¥(klog(k))r

ze€{0,1}k

| M; ()]

IN

where a;(z;) (p;)l (1 = py)t, Bilzy) =
(g;)**i(1 — ¢;)", and we have used/; ( 7)) <1. 0O
Lemma 3 bounds the loss suffered by any player in mov-
ing to the nearest joint strategy on thegrid. However,
we must still prove that Nash equilibria are approximately

preserved:

Lemma 4 Let 5 be a Nash equilibrium fofG, M), and
let ¢ be the nearest (irl.; metric) mixed strategy on the
r-grid. Then providedr < 4/(klog(k/2)), 7 is a
2k+1 (klog(k))r-Nash equilibrium for G, M).

Proof: Letr; be a best response for playéo ¢. We now
bound the differenc@/;(qli : r;]) — M;(¢) > 0, which is
accomplished by maximizing/; (¢fi : ;]) and minimizing
M;(q). By Lemma 3, we have

|M;(qli = 5]) — Mi(pli = m3])| < 2% (klog(k))T.
Sincep'is an equilibrium M;(p) > M;(p[i : r;]). Thus,

M;(qli = 7)) < Mi(p) + 2% (klog(k))r.

On the other hand, again by Lemma 3,

M;(q) > M;(p) — 2" (klog(k))r.
Thus, M; (i - ri]) — Mi(@) < 25+ (klog(k))T. O

Let us now choose to satisfy2¢*+1(klog(k))r < € and
7 < 4/(klog®(k/2)) (which is the condition required by
Lemma 3), or

r < min(e/ (2! (klog(k))), 4/ (k o> (k/2))).

Lemma 4 finally establishes that by restricting play to the
7-grid, we are ensured the existence ofeaash equilib-
rium. The important point is that needs to be exponen-
tially small only in thelocal neighborhoodsize %, not the
total number of players.

It is now straightforward to describe the details of our ap-
proximate algorithmApproximateTreeNash This algo-
rithm is identical to algorithnTreeNashwith the following
exceptions:

e The algorithm now takes an additional ingut



® ©

Table dimensions
e |:|_'|:h;||'li|i|:c of

playing action 0
=

Figure 2: An example game, and the tables computed by the downstream pass of algspitinoximateTreeNash Each vertex in

the tree is a player with two actions. Although we omit the exact payoff matrices, intuitively each “M” player maximizes its payoff by
matching its child’s action, while each “O” player maximizes its payoff by choosing the opposite action of its child. The relative payoff

for matching or unmatching is modulated by the parent values, and also varies from player to player within each vertex type. The grid
figures next to each edge are a visual representation of the actual tables computed in the downstream pass of the algorithm, with the
settingsr = 0.01 ande = 0.05; 1s are drawn as black and Os as gray. Approximate Nash equilibria for the game are computed from the
tables by the upstream pass of the algorithm. One example of a pure equilibiioyi,ig, 0,0, 1, 0, 0); the tables represent a multitude

of mixed equilibria as well.

e For any vertexU with child V, the tableT (u, v) will See Figure 2 for an example of the behavior of algorithm
contain only entries for andv multiples ofr. ApproximateTreeNash

e All computations of best responses in algorithm
TreeNashbecome computations efbest responses 6 EXACT ALGORITHM
in algorithmApproximateTreeNash
In this section, we describe an implementation of the miss-

Lemma 3 establishes that there will be such an approximat®g details of algorithmTreeNash that computes exact,
best response on thegrid, while Lemma 4 ensures that the rather than approximate, equilibria. In the worst case, the
overall computation results in aaNash equilibrium. For algorithm may run in time exponential in the number of
the running time analysis, we simply note that each tableertices. We remind the reader that even this result is
has(1/7)? entries, and that the computation is dominatednontrivial, since there are no finite-time algorithms known
by the downstream calculation of the tables (Step 2(d)ii offor computing exact Nash equilibria in general-sum, multi-
algorithmTreeNasH. This requires ranging over all table party games.

entries for allk parents, a computation of ordgit /7)2)*. As before, let/ = Uy, ..., Uy be the parents df , andW’

the child. We assume for induction that each tab(e, u;)
tpassed frond/; to V' on the downstream pass can be repre-
sented in a particular way—namely, that the setuQfu;)
pairs wherel'(v,u;) = 1 is a finite union of axis-parallel

7 < min(e/ (2 (klog(k))), 4/ (klog®(k/2))). rectangles (or line segments or points, degenerately) in the
unit square. We formalize this representation by assuming
eachT (v, u;) is given by an ordered list called thelist,

Theorem 5 Let (G, M) be a graph game in whict' is a
tree withn vertices, and in which every vertex has at mos
k parents. For any > 0, let

ThenApproximateTreeNashcomputes ara-Nash equilib-
rium for (G, M). Furthermore, foreveryexact Nash equi-
librium, the tables and witness lists computed by the algo- O0=v1 <2< <vpo1 S vy =1,
rithm contain ane-Nash equilibrium that is withim of this

exact equilibrium (inL; norm). The running time of the
algorithm is polynomial iri /¢, n and2*, which is polyno- ' '
mial in the size of the representatiofi, M). ty.urkt

defining intervals of the mixed strategy For eachv-
interval[vg, vey1] (1 < € < m), there is a subset ¢d, 1]



where each[]’r’ C [0,1] is an interval of|0, 1], and these

SinceA(#, w) is a linear function ofs;, it is a monotonic

intervals are disjoint without loss of generality. By taking function ofu;; we will use this property shortly.

the maximum, we can assume without loss of generalit)f\I
that the number of setsin the union associated with any
v-interval is the same. The interpretation of this represen-

tation is thatT'(v,u;) = 1if and only if v € [vg,vy1]
impliesu; € I"“U---UT‘. We think of eachuy, ve4 1] as
defining a horizontal strip df (v, u;), while the associated

union¢ U - -- U I}"* defines vertical bars where the table

is 1 within this strip.

We can assume that the tablEsv, u;) share a common
v-list, by simply letting this common-list be the merging
of the k separatev-lists. Applying algorithmTreeNash

ow by the continuity ofA (@, w) in w, w € W if and only
€ W> N W<, where

if w
Ws={wel0,1]:Id e x- - x I Ald,w) >0}
and

We ={wel0,1]: T el x - xI;; A(d,w)<0}.

First considedVs, as the argument foV< is symmetric.
Now w € W- if and only if maxger, x...xr, {A (@, w)} >
0. But sinceA(#@,w) is a monotonic function of each

to this representation, we now must address the followingt» this maximum occurs at one of thé extremal points

question for the computation @f(w, v) in the downstream
pass. Fix a-interval[v,, ve4+1]. Fix any choice ok indices
Jiy---dk € {1,...,t}. Aswe allowd = (uy,...,ux) to
range across the rectangular regidrf x - -- x I}*‘, what
is the sedV of values ofw for which somev € |vy, vq1]
is a best response tbandw?

Assumingu; # 0 andvgy1 # 1 (which is the more dif-

ficult case), a value i, ve41] can be a best response

to @ andw only if the payoff forVV = 0 is identical to
the payoff forV = 1, in which caseany value in [0, 1]

(and thus any value ifvg, vy 1]) is @ best response. Thus,

T (w,v) will be 1 across the regiohV x [vg,ve41], and
the union of all such subsets af x v across allm — 1
choices of thev-interval[v,, v, 1], and allt* choices of the
indicesjy,...,jr € {1,...,t}, completely defines where

T(w,v) = 1. We now prove that for any fixed choice of

v-interval and indices, the sV is actually a union of at
most two intervals ofv, allowing us to maintain the induc-

(vertices) of the regiorf; x --- x I. In other words,
if we let I; = [¢;,r;] and define the extremal sé =
{1,711} x - x {{y, 71}, we have

Ws = U {w : A(g@,w) > 0}.

[y )

For any fixedi, the set{w : A(@,w) > 0} is of the form
[0, z] or [z, 1] by linearity, and sV (andW< as well) is
either empty, an interval, or the union of two intervals. The
same statement holds fi¥ = V> NWV<. Note that by the
above argument$)’ can be computed in time exponential
in k by exhaustive search over the extremalSet ]

Lemma 6 proves that any fixed choice of one rectangular
region (where the table is 1) from ea€lw, u;) leads to at
most 2 rectangular regions whefgw, v) is 1. It is also
easy to show that the tables at the leaves have at most 3
rectangular regions. From this it is straightforward to show
by induction that for any vertex in the tree with childv,

tive hypothesis of finite union-of-rectangle representationsthe number of rectangular regions whére, u) = 1 is at

Lemma 6 Let V be a player in anyk + 2-player game
against opponent8/y,...,U, and W. Let My (v, @, w)

denote the expected payoffitounder the mixed strategies

V =v,U =4, andW = w, and defineA(a,w) =
My (0,4, w) — My (1,d,w). Letly,..., I each be con-
tinuous intervals if0, 1], and let

W={wel0,1]:Fae L x---x I, A(d,w)=0}.

ThenWV is either empty, a continuous interval j, 1], or
the union of two continuous intervals o, 1].

Proof: We begin by writing
A, w) =

>

#e€{0,1}*,y€{0,1}
(wly(l —w)Y

Note that for anyu;, A(@, w) is a linear function of;, as
each term of the sum above includes only eithesr 1 —u;.

(MV(07f7y> - MV(]-,f,y)) X

k
1=

() 7 (1~ Ui)“) :

1

most22= 3%+ wherea, andb, are the number of internal
vertices and leaves, respectively, in the subtree rooted at
This is a finite bound (which is at mo3t at the root of the
entire tree) on the number of rectangular regions required
to represent any table in algoritifreeNash We thus have
given an implementation of the downstream pass—except
for the maintainence of the witness lists. Recall that in the
approximation algorithm, we proved nothing special about
the structure of witnesses, but the witness lists were finite
(due to the discretization of mixed strategies). Here these
lists may be infinite, and thus cannot be maintained explic-
itly on the downstream pass. However, it is not difficult to
see that withesses can easily be generated dynamically on
the upstream pass (according to a chosen deterministic rule,
randomly, non-deterministically, or with some additional
bookkeeping, uniformly at random from the set of all equi-
libria). This is because givew, v) such thafl'(w,v) = 1,

a witness is simply any such thafl'(v, ;) = 1 for all .

Algorithm ExactTreeNashis simply the abstract algorithm
TreeNashwith the tables represented by unions of rectan-
gles (and the associated implementations of computations



use of the polytree algorithm on sparse, non-tree-structured
Bayes nets. As in that case, the main step is the merging of

] vertices (whose action set will now be the product action
space for the merged players) to convert arbitrary graphs

| ] into trees. To handle the merged vertices, we must en-
| sure that the merged players are playing approximate best
responses to each other, in addition to the upstream and
[ downstream neighbors. With this additional bit of com-
plexity (again proportional to the size of the representation

| of the final tree) we recover our result (Theorem 5).

As with the polytree algorithm, running time will scale ex-
ponentially with the largest number of merged players, so
Figure 3: Example of a table produced by the exact algorithm. it is vital to minimize this cluster size. How best to accom-

The table is the one generated for vertex 6 in Figure 2. BlackPlish this we leave to future work.

cells indicate where the exact table is 1, while dark gray cells : - . . .
indicate where the approximate table is 1 for comparison. We se§peCIaI Equilibria. The approximation algorithm has the

that the non-rectangular regions in Figure 2 are the result of th@roperty that it finds an approximate Nash equilibrium for
approximation scheme. every exact Nash equilibrium. The potential multiplicity

of Nash equilibria has led to a long line of research in-

_ o _ _ vestigating Nash equilibria satisfying particular properties.

described in this section), and witnesses computed on thgy appropriately augmenting the tables computed in the

upstream pass. We thus have: downstream pass of our algorithm, it is possible to identify
Nash equilibria that (approximately) maximize the follow-

Theorem 7 Algorithm ExactTreeNashcomputes a Nash ing measures in the same time bounds:

equilibrium for the tree gaméG, M). Furthermore, the
tables computed by the algorithm represent all Nash equi-
libria of (G, M). The algorithm runs in time exponential

in the number of vertices . e Social OptimumTotal expected reward, summed over
all players.

e Player OptimumExpected reward to a chosen player.

To provide a feel for the tables produced by the exact al-
gorithm, Figure 3 shows the exact table for vertex 6 in the e Welfare Optimum Expected reward to the player
graph game in Figure 2. whose expected reward is smallest.

7 EXTENSIONS Equilibria with any of these properties are known to be NP-
hard to find in the exact case, even in games with just two

We have developed a number of extensions and generalizBlayers (Gilboa and Zemel 1989).

tions of the results presented here. We describe some of

them briefly, leaving details for the long version of this pa- References
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