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Abstract: We initiate the study of local, sublinear time algorithms finding vertices with extreme
topological properties — such as high degree or clusterogfficient — in large social or other net-
works. We introduce a new model, called thenp and Crawmodel, in which algorithms are permitted
only two graph operations. TRempoperation returns a randomly chosen vertex, and is meanttizin
the ability to discover “new” vertices via keyword searchtie Web, shared hobbies or interests in so-
cial networks such as Facebook, and other mechanisms thatenan vertices that are distant from
all those currently known. Th€rawl operation permits an algorithm to explore the neighborsgf a
currently known vertex, and has clear analogous in many nmaaktworks.

We give both upper and lower bounds in the Jump and Crawl nfodgie problems of finding vertices
of high degree and high clustering coefficient. We considéhn larbitrary graphs, and specializations in
which some common assumptions are made on the global top@agh as power law degree distri-
butions or generation via preferential attachment). We alsamine local algorithms for some related
vertex or graph properties, and discuss areas for futuestigation.

Keywords: social networks; graph theory; algorithms

1 Introduction tive models for network formation [11].
Given the presence of such “interesting” indi-

The proliferation of very large social and techviduals in large networks, how would we actually
nological networks over the last decade or so find them — especially considering that for many
and the attendant scientific and cultural interesuch networks (including the Web, or for non-
they have attracted — has led to the documentatiefmployee researchers of online social networks
of certain local topological properties that are noguch as Facebook), there may not exist an acces-
believed to be quite common. Perhaps beginnisile, centralized description of the network? This
with earlier sociological interest iglobal struc- question is the topic of the current paper, and while
ture such as the “six degrees” phenomenon (smélere are a few prior works that touch on related
diameter) and structural holes, recent research fi@gics (see Related Work below), it appears there
further identifiedocal topological properties, suchhas been no systematic study of finding extremal
as individuals with extraordinarily high degregertices from only local operations. In this paper
(sometimes dubbed “connectors” or “hubs”), lowe initiate and partially populate such a study.
cal neighborhoods with a high degree of clustering We introduce a simple model for local graph ex-
(fraction of edges present) compared to the ovenoration that we call thdump and Crawmodel.
all edge density, vertices of high “centrality” forAs mentioned in the Abstract and detailed below,
various definitions of that term, and so on. Thettis model is meant to capture the two kinds of
is now a compelling dialogue in the literature besperations that seem to be commonly available in
tween empirical works documenting and refiningnany modern networks:
these various notions of extreme individuals and e Crawling. In many networks, once we are
neighborhoods, and theoretical works attempting aware of the existence or identity of a ver-
to explain their persistent emergence via genera- tex, we are also provided with links that al-



low us to examine any or all of its neigh-exploit rapid mixing results to obtain further im-
bors. For instance, in the Web we have textrovements in approximation.
hyperlinks allowing us to crawl to neighbor- In Section 3 we turn our attention to finding
ing pages. In Facebook (ignoring privacy setrertices of both high degree and high clustering
tings) and other social networks, knowing oneoefficient (densely connected neighborhood); re-
user’s profile lets us visit those of all theitaining the high-degree condition prevents trivial
friends. solutions such as a triangle of vertices. We pro-
e Jumping. Many modern networks also pro-vide a general impossibility result and a general
vide some sort of global search mechanisapproximation algorithm, as well as an improved
that permits the discovery of “new” verticesapproximation algorithm for power law networks
that may be quite distant from all those previwith some structural assumptions. We conclude by
ously known. Web search lets us enter texliscussing future research directions.
phrases and see relevant pages; Facebook’$Ve now more formally define the Jump and
“Friend Finder” and other mechanisms let€rawl model, mention some related work, and pro-
one similarly “jump” to new profiles. Ob- ceed with the technical development.
viously in such cases there is clear structure
or bias to the vertices returned in response %2 TheJump and Crawi Model
a query (since they are relevant to the query We assume a grap& of n vertices, with the
itself); for simplicity we assume the Jumpvalue ofn givenl. We assume that each vertex
operation produces a vertex uniformly chais identified by a unique and arbitrary label, with
sen at random from the entire network. Olno structure or relationship assumed between the
viously other distributional assumptions overtex labels and graph connectivity.
other Jump mechanisms should be consideredJpon visiting a vertex, we learn its label and
in future work. also the labels of all its neighbors (these are the
As the Web, Facebook and other networks ahg/perlinks of the Web or the friends’ profiles of
massive and growing, we would like to examinacebook), and nothing more. InJampopera-
algorithms in the Jump and Crawl model whosion, we visit a vertex uniformly chosen at random
running time scales slowly (certainly sublinearlyfrom then vertices. In &Crawl operation, we must
with the global network size. Within this frame{irst know the label of a given vertex and one of
work, we examine the problems of finding verticeiés neighbors inG, upon which we can then visit
of high degree, high clustering coefficient, and that neighbor via crawling. Our goal is to study al-

number of related properties. gorithms finding “interesting” individuals itr, as
discussed in the Introduction, using only Jump and
1.1 Summary of Results Crawl operations oii. The total number of such

In Section 2 we provide nearly tight upper andperations is our complexity measure of interest.
lower bounds for the problem of approximating the A little thought (and our subsequent results) will
maximum degree vertex in arbitrary graphs; theseveal that in general it is too much to expect algo-
bounds show a general trade-off between increas@étims can find truly extremal vertices in sublinear
Jump and Crawl operations and improved approtme. For this reason we introduce a natural notion
imation. of approximation.

Still considering high degree vertices, we then
proceed to show that considerably improved upp@gfinition 1 Given a numerical property of ver-
bounds can be obtained for more specific classediées (such as degree or clustering coefficient), let
graphs. For graphs with a power law degree distri~ be the vertex with the maximum value Br
bution, we prove that a sampling-based algorithihen if vertex is such thatP(v*) < k- P(v), we
enjoys an improved bound due to the assumed @&y thatv is a k-approximation tou*. A similar
gree structure. For networks generated accogfinition holds for the minimum.

ing to preferentlal attachment — which have @ 1in Appendix B we prove that knowledge efis necessary

power law deglr.ee distribution in expe(_:tation, Pt general, in that it cannot be approximated sublinearly/
also obey additional structural restrictions — wia the Jump and Crawl model.




1.3 Related Work 0 < B < 1, consider the goal of finding a vertex

While we are not aware of any systematic pridt Such thal* < degre¢v) - n' 7. In this section
studies of approximating extreme vertex propertiéé provide upper and lower bounds for this prob-
from only local operations, there are a number #Mm under a variety of assumptions on the network
related works that we now briefly survey. Schanructure, beginning with no assumptions.
et al. [16] are interested in estimating the average .
cluste£ing]] coefficient across tlemtirengtwork (in ! Arbl.trary Networks .
contrast to our interest in findingpdividual ver- L&t us first assume we know the valdein ad-
tices with high clustering, which is not implied by/@nc€, an assumption we eventually remove. One
a global approximation). The authors assume_pé’ss'ble strate_gy proceeds as follows: If the max-
model where Jump queries are allowed and therd7Um degree is smaller than! ~7, then any ver-

a constant time oracle that checks whether two végX would provide the necessary approximation. If
tices are connected by an edge. Under this mof@t: We notice that the expected size of a random
the authors provide a constant time randomized §8MPIe one has to take in order to see a neighbor
gorithm which computes an unbiased estimator f8f € maximum degree vertex is at megt We

the average clustering coefficient in the network1erefore sample abogt random vertices. If one
The estimator is based towards counting triangle§them has a degree more tha— we stop and

in the network, and thus not appropriate for findinggturn its degree. Otherwise, one of these vertices
extreme individual vertices. is a neighbor of the maximum degree vertex. This

Eubank et al. [8] are interested in computingtrategy, which we calFindHighDegreeVertexs
statistical properties of social networks, under farmalized below. Finally, to remove the assump-
model similar to the Jump and Crawl model. Théon thatd" is known, we are only left with simu-
authors provide a general method for estimatingting the possible values af . This is done with
the number of pairs of vertices that are at distant&garithmic overhead via a simple doubling trick.

1 from each other, given that the number of such

pairs is at least a constant fraction of all possibg'eorelm 1|(Uplpher BE-“TH)- F;])Ir:)any g\l/venO <
pairs. In general their method runs in linear tim » algorithm FindHighDegreeVertex uses

! . . . B i i
in the network size, in contrast to our interest iff 1087 JUMp and Crawl queries and approxi

sublinear algorithms. The authors also provider%ates th]? maxmfg:mﬁggree to an expected mult-
good estimation of the (again global) average cluBlicative factor ofO(n"=").

tering coefficient using a Iogarithmic query siz&oroof: Without loss of generality one may as-
based on random sampllng of vertices. sume the network size to be a power of two. Next,
Also somewhat related is the large literature qp, may assume tha, the highest degree in the
efficient search or message routing in social Nglavork. is known si’nce we may use a simple
works from local information [1, 2, 12], whereyq, pjing trick where we may simulate the possi-
messages are passed between network Verticeg|in o es of4* in multiplicative intervals of2,

search of a target or destination individual; byt,n 1 o 1. Algorithm FindHighDegreeVertex
again there is no direct interest in explicitly idengiven below, finds @ (n'~#) approximation, with
tifying extremal vertices. Similarly, the literature, s log 1 queries.

on property testing in large graphs often considers-l-he outer loop of the algorithm (line 5) costs at

local operations that are somewhat different thap o » log n and the inner loop (line 10) at most
d*

Jump and Crawl (such as testing fqr the presen%_ Therefore the total cost is bounded by their
of an edge between any pair of vertices) but agairi

. - B
focuses on global properties such as connectlvR{/EI)_(:IUCtO(@ log ”g hdis neiahb
rather than extreme vertices. € maximum degree vertex hds neighoors.

Therefore, the probability of hitting such a neigh-
L i bor by making a Jump query i% Therefore, by
2 Finding a High Degree Vertex making 2 logn Jump queries, we hit such a ver-
Given a network om vertices, denote the max-tex with probability at least — (1 — %)% logn >
imum degree in the network by*. Then given 1 — O(2).

n



A close inspection of the algorithm reveals the
by feeding it with a value ofl that differ by a fac- _ - ~
. . . With constant probability %
tor of two, the approximation value the algorithn|  teaigorithm wouid see
returns would change by at most a factor of at tw|  only vertices from this ¢
|
|

Clique subgraph on n'"P vertices

side of the network

As mentioned before, we end by using a sin Py PAIPY
ple doubling trick where we simulate all the pos
sible values ofi* as1,2,4,..., 5,n. This simu-
lation adds only a multiplicative factor afg n to Length n-2n"# ' Lengthn™®
the query complexity. By the previous lemma, for
one of the simulated values, we will find a vertex
of degree at least* - n' 7. [ |

We next show thaFindHighDegreeVerteis op-
timal (up to logarithmic factors).

Figure 1: The networkz(n, 3)

k = n —n1=%. Denote the set of vertices in the
Algorithm 1 FindHighDegreeVertex network byV = {v1.vs,...,v}. The network
Require: NetworkG, the maximum degree vaIueG(n’ﬂ) may be thought of as a concatenation of
oo barameteﬁ <,5 <1 a line subgraph with a star subgraph; see Fig-
N Ini'tialize a pointer p to. point to an arbitraryure 1. The line subgraph is made up of the vertices
' vertex v1,v9,. .., V5, Where two consecutive vertices are
o if d* < 1= then connected by an edge. The star subgraph is made

3:  Stop and return the vertex found with ondf @ vertexuy. i1 connected ton leaf vertices (de-

gree one verticeSyx12, Vg13, - -.,0,. The final
) Jump query. networkG(n, 3) is created by connecting, (the
4: else . . .
n . rightmost vertex of the line subgraph) with the hub
5 for - logn timesdo of the star subgraph, verte
6: Make a Jump query. Let be the vertex graph, K1
found. Now set
7: if degreév) > —< then
8: Stop and returm. S = {Uk—m, Vk—mt1s Vkmm+2s - -, Vs - - - Un }-
9: else
10: Make degree(v) Crawl queries from Clearly,|S| = 2n!~#. Therefore, using/’ Jump
to all of v’s neighbors to find the max-queries algorithmd would fail to sample a vertex
imum degree neighbor of, callitu.  from S with probability
11 if degreép) > degre¢u) then
12: Setp =u o nf
13: end if (1_2111 B) %i
14: end if n e
15:  end for
16:  Outputp Therefore, with constant probability, any Jump
17: end if query will return a degree vertex fromV — §

(namely, from the “left side” of the line subgraph).
Now in order for A to discover the hub vertex it

Theorem 2 (Lower Bound) Let A be an algo- Mustcross all the “right side” of the line subgraph,
rithm for approximating the maximum degre@amely the vertices iy, which is impossible since
property in the Jump and Crawl model. Let< the number of queries needed for doing so is more
ﬂ < 1. Then if A uses at moshﬁ querieS’A thannﬁ. Therefore, with constant prObabI|It)A

approximates the maximum degree to an expect¥guld see only degre® vertices, while the high-
multiplicative approximation Oﬂ(nl—ﬁ)_ est degree is'~? and we are done. We remark

that a similar construction t&/(n, 5) would give
Proof: We shall build, for any given values of an analogous lower bound for densely connected
and 3, a networkG(n, 3). First setm = n(!=7), graphs. [ |



2.2 Power Law Networks Lemma?2 Let G € Network(m,n,v) be a

Over the past decade researchers have discBgWer law network withy > 2 and letd < <.
ered that the degree distribution of many naturginered” is the maximum degree i@. Then the
networks resembles a power law. By this it is usﬁr-ac"'lOn of vertices with degree of at leastis
ally meant that for some constamj the fraction 0(zz=1)
of degreed vertices is “close” todl—w if dis “large
enough”. Both “close” and “large enough” are ofThe proof of the lemmas is given in appendix A.
ten left unspecified in the literature, but for rigor-
ous statements must be quantified. We thus suj4 A Faster Algorithm for Power Laws

gesta simple, rigorous definition of power law net- \yie now show that faster algorithms for the max-

works. Our definition formalizes the above intuyy,ym degree property exist when the network is a
ition and has the advantage that it treats all degr}ggwer law network with exponent

values in a unifying way.

. - Theorem 3 (Upper Bound) Let0 < § < 2=L,
2.3 Rigorous Definition Assumey > 2. Then algorithm FindHigp\De-
We first define a finite power law distribution. greeVerteXonPowerLaWS (See pseudocode) uses
O(n”logn) Jump and Crawl queries and approx-
Definition 2 (Finite Power Law Distribution) imates the maximum degree to an expected multi-
Letm < n be positive integers. Let > 1. We SaYJ)Iicative factor ofO(n%*ﬁ)_
the P is a finite power law distribution, denote
PL(TI’L, n, ’7)1 If . . 2
Proof: Sincey > 2 it follows thatl < Z < % so
| The support ofP is the integers betweem W€ May regard’ as a constant. The strategy be-
andn. hind the algorithm is to randomly sample the ex-
pected number of vertices needed in order to see

Il P(d) = (1/Z)% form < d < m, where a vertex of degree at leagt= n® 7. The al-
Z = Z(m,n,y) = Zz; +. gorithm makes9(d”~!logn) Jump queries. By
Lemma 2 the inverse probability of sampling a
Definition 3 (Power Law Network) Let G be a vertex of degree at least is ©(d~'). There-
network onn vertices. LetQ be its empirical de- fore, by a standard amplification argument, one
gree distribution, namelyQ(d) = 1 - v € G : indeed find such a vertex, wit(d”~!logn)
degree(v) = d|. LetP be afinite power law distri- Jump queries, with probability — O(). Since
butionP = PL(m, n,v). We say tha€ is a power the maximum 1degree in the network is at most
law network, denoted’ € Networkn, n, v), if: (71 +1 Zo(1))~, the approximation guarantee is

nyy i__B
1. The support of) is on the integers betweerP(‘Z) = O(n>~5-1) [ |
m andn.

2.5 Preferential Attachment Networks

1
2. Form < d < n,|Q(d) — P(d)] < 7 In this section we make the further assumption

It b iiv sh that h netw that the unknown network was created by pef-
't can be easlly snown that many such ne orlé?ential attachmenprocess of Barabasi [3]. In this
exist. _ model, one first fixes an integer paramete> 1.
Two useful properties of power law network§hen on each round, a new vertex is added and
are given below. is connected ton existing (previously added) ver-
tices; the probability the new vertex is connected
Levrcn;allvbetn C:W fk Ner_frzﬁo:]k(?;, n’%) hbet ad to existing vertex is proportional to the (current)
p?eeein ?he neetv\?ork.d* is 3 erebou?]dzz b edegree ofv. As was shown by Bollobas et al.
9 PP y[4], asymptotically, theexpecteddegree distribu-

(z(1+ Zo(1)))~. tion of the network is a power law with exponent



Algorithm 2 FindHighDegreeVertexOnPower-Algorithm 3 FindHighDegreeVertexOnPA

Laws Require: Preferential attachment netwoék pa-
Require: Power law network’s, the power law rametel) < 3 < %
network’s exponent, parameted < < 1. 1. |nitialize a pointer p to point to an arbitrary
1: Initialize a pointer p to point to an arbitrary  yertex.
vertex. _ 2: for n?logn timesdo
2: for n®logn timesdo 3:  Run alazy random walk from any arbitrary
3. Make a Jump query. Let be the vertex vertex for2 log® n steps via Crawl queries.
found. 4. Take the vertexw found at the end of the
4. if degreép) > degre¢v) then walk.
5: Letp=w 5. if degreép) > degreév) then
6: endif 6: Letp=wv
7: end for 7. endif
8: Outputp 8: end for
9: Outputp

~v = 3; but it is also known that the actually re-

alized degree sequence may be far from its expeSefinition 4 A lazy random walkon a connected

tation. However, for small degree values, the dg@etwork G (LRW for short) stays at the current

gree distribution is close to its expectation[6]. IRertex with probabilityl, and with probability2

this sense a preferential attachment network majbves to a uniformly chosen random neighbor.

be seen as a special family of power law networkshis random walk forms an ergodic Markov chain.

Moreover, the highest degree in a typical prefereije denote this chain bi. We denote by its

tial attachment network ig/n [9]. Thereforein or- ¢-th power, the stationary distribution df by ,

der to find a vertex with high degree one can apphhd the spectral gap ok asg = maz{\z, |An|}.

the techniques of the upper bound given in the pre-

vious section and getiaé ~ 7 approximationusing Note that the LRW requires only Jump and

a query size 00 (n” logn). Crawl queries in its operation. Algebraically,
However, due to additional network structure ithe LRW is more appealing than its random

herent in the preferential attachment process welk counterpart since all its eigenvalues are non-

can do even better, based on the following tweegative. We next state a few known facts about

facts. Fact 1: a Lazy Random Walk on the pret=RWs on connected networks (the proofs may be

erential attachment network is rapidly mixing (ifound in [7], pages 153-167):

polylog time inn) to the degree distribution; Fact

2: When sampling the degree distribution, the ex-1. The unique stationary distribution df is

pected time one has to wait in order to see a vertex 7(v) = %&;@)

of degree at least is d. These intuitions are for-

malized inFindHighDegreeVertexOnPéelow. 2. The spectral gap equals since all the eigen-

values of the LRW are nonnegative.
1

Theorem 4 (Upper Bound) Let 0 < 8 < =. K'(i,5) 1t
- L 11 . max; {72 — 1]} < gt
Then algorithm FindHighDegreeVertexOnPA uses I U 7 (5) Tmin
O(n”logn) Jump and Crawl queries and approx- B2
imates the maximum degree to an expected muli® 1 =92 %
plicative ratio ofO(nz 7). 5. The conductance
The first proof ingredient is to show that the ‘ > ies jese MK (i, 7)
preferential attachment network mixes, w.h.p., in h = ming(s)<1 (S)

poly logarithmic time. We start by defining the
lazy random walk oz and then proceed to show  is constant for preferential attachment net-
it is rapidly mixing. works.



Corollary 1 The mixing time for the lazy randongraphs the probability of sampling a vertex of de-
walk on a typical preferential attachment graph igreed or more, from any degree distribution is
t = O(logn). That is,ma:z:i_,j{|K;8’)j) — 1]} < always bigger then sampling such a vertex from
o(L) the uniform distribution. Thus, for any network
" where the LRW mixes in polylogarithmic time we

Proof: By the previous lemma we get that th&"&Y devise an analog algorithm to FindHighDe-

spectral gap is less than a constant smaller ﬂhangreeVertexOnPA. This algorlthm would give bet-.
Next, i — (1), and the corollary follows im- ter query results then an algorithm that samples di-
medi’at?gll):l n g rectly from the uniform distribution. [ |

The second proof ingredient is a theorem due e Comparing the Rates
Chung and Lu: ’

It is interesting to compare the approximation

rate achievable for arbitrary connected networks
Theorem 5 (Adapted from [6], page 7O)Let & with those possible for power law and preferen-

be a network ofn vertices created using the,
. . tial attachment networks. The relevant plots are
preferential attachment process with parameter. R .
. . given in Figure 2. The x-axis measures the num-

m. Lelmy,o the number of vertices with de_ber of queries used, and units are the log number of
gree k in the initial network. Then the number d ' 9

of verticesm,, with degreed is nMy + my.o + gueries divided by log network size (thus extract-

ing the exponent or root af). The y-axis mea-
O(\/(k +m —1)’nlogn), whereM,, = 2 and sures the approximation guarantee and is given in
My = O(k=3),fork > m + 1. units of log of approximation ratio divided by log
network size (again extracting the approximation
Next, we provide the proof sketch for Theorerixponent). As we proved, for arbitrary networks
4. Line 4 in the algorithm returns the last node vighe optimal algorithm may achieve with query ex-
ited in an LRW walk of lengthog? n queries. By ponent3 an approximation exponent of- 3. For
returning this node we are in fact sampling a nod®@wer law networks with given degree distribution
from the degree distribution of the network, agxponenty > 1 we could do better and achieve,
shown in Corollary 1. Consider small degree vaWith query exponentl, an approximation expo-
ues ofd, for which we know by the Chung and Lunent of > — %- This exponent is always better
theorem that the degree distribution is very cloggan thel — 3 exponent achievable for arbitrary
to its expected values.  Choose the maximumgraphs; we plot the achievable power law network
1 3 1 rates for two values of. For preferential attach-
such that,, \/(k T ﬂf —1)'nlogn < grer. The ment networks, with a query exponentive can
solution isk = o(n7r). Under such @& we con- achieve an approximation ratio 4f— 3, but could
clude, using Theorem 5, that the probability of segnly prove so for3 < 1/11, and thus this trade-
ing a vertex with degree exactly under the de- off is represented as a line fragment rather than a
gree distribution, isi- ¢ 5 - 5%~ ~ 2;. By Lemma fy]| line. We note that while power law and pref-
2, the probability of sampling a vertex of degrée erential graphs are of course subsets of the class
or more isO (Y-, jegree(v)>d =) = 0(3) (thisis of all graphs, they are not directly comparable to
true since sampling a smaller thanvertex is1 each other — as discussed above, preferential at-
minus the value given by the lemma). Next, nGachment graphs obey our definition of power law
tice that the maximum degree of a preferential agegree distributions only in expectation, and are

tachment network is abouy'n [9]. Now define known with high probability to violate this expec-
the degree d to be the solution io= n” (any tation at large degrees.

0 < B < 4 is valid). ThenFindHighDegreeV-
ertexONPA constructs, withn” log n queries, an . . .
expected multiplicative approximation ()fz%—ﬁ). 3 High Clustering Coefficient

Discussion: Random walks allow effective sam- The clustering coefficient (CC for short) of a
pling from the degree distribution of the prefergiven vertex measures how densely connected its
ential attachment network. In fact, for sparseeighbors are.




tex with the highest CC has only very few neigh-

=

A X arbitrar;/graphs bo_rs. Take the extreme case of a vertex with two
ool A, +  power lawgraphs it esporent 3 || N€IgNbors that are also connected to each other (a
7 A + power law graphs with exponent 10| | triangle). In this case the CC of would be the
@ 08f s O preferental atachment graphs |1 hjghest possible of 1. This motivates us to ask how
g 0l A . | hardis it to find a vertex witlsimultaneouslypigh
g A CC and high degree. We shall phrase this approx-
8 o6} o 1 imation problem as follows: given a degree lower
5053 A | boundd as input, find a vertex of degree not much
g o, A A smaller thani whose CC approximates the maxi-
204 "o A . mum CC among all vertices of degré®r larger.
E % A
503' T * oy . A A Definition 6 Given a graph om vertices, and a
@oz * % . A . degree valud, letv* be the vertex with the highest
2 oal * % « » | CC among vertices of degretor more. We say
I f Ty, A thatv is a(«, d, €)-approximation to the maximum
05 ” y 0‘.6; — *0;* — CCif degree(v) > a-dandCC(v*) < CC(v)+

e, for0 < o < 1and0 < e < 1. If there are no
vertices of degree at least - d in the network we

say that every vertex is @v, d, 0)-approximation.
Figure 2: Summary of achievable trade-offs between

Jump and Crawl query complexity and maximum degree | ot ;5 start by noting that since we are requiring

gggrtoe))((':?g:'ggt;?lrsv;r:g)gissgj::irgr?t'ons on the Ir]etworg’degree lower bound on the vertices found in addi-
' tion to high CC, it is natural to begin by attempting

to adapt our results for finding high degree ver-

Definition 5 (Clustering Coefficient) Given ~ a {ices to the CC problem. Indeed, a simple adap-
vertexv with degreed, the clustering coefficientt@tion of the lower bound for arbitrary networks

log(number of queries) / log(network size)

(CC) ofv is defined as given in Theorem 2 already yields similar diffi-
culty for the CC problem. Consider Figures 3 and

CCOW) = number of triangles containing 4, which are slight varia_nts of the_const.ructior? in
('21) ' Theorem 2. In each variant there is a single high-
degree vertex, butin one variant the CC of that ver-
If d = 0 we defineC'C(v) = 0. tex is O (the lowest possible) and in the other it is

1 (the highest possible). If an algorithm fails to

This definition is equivalent to the edge derfind this high-degree vertex, it cannot hope to ap-
sity (fraction of possible edges present) among tipeoximate the clustering coefficient by a nontrivial
neighbors ol (excluding itself). additive amount, thus establishing a lower bound

Many empirical papers have shown natural nef n' ~% queries on th¢l, n?, 1/2)-approximation
works often have vertices of high clustering coefsroblem for CC.
ficient (as well as high degree); see for instanceOn the other hand, it is unfortunatetyt clear
[11] Chapter for a detailed survey. In this sectiorhow to adapt thepper boundor the degree prob-
we examine the problem of finding such verticdem on arbitrary graphs given by Theorem 1 to the
in the Jump and Crawl model. Eubank et al. [8EC problem. The difficulty is that the algorithm
showed that the globaverageof the CC can be of that upper bound will only producgomever-
estimated quickly in a Jump and Crawl model usex of high degree — but if there are many such
ing standard Chernoff bounds. This immediatelertices, it provides no guarantee that the one pro-
provides a strategy to find a vertex with more thastuced will also have high CC. Therefore we next
the average CC value (using Markov’s inequalityisk whether &« d, ¢) is achievable for some non-
However, finding a vertex with a high CC may natrivial « < 1. In the following theorem we show
be that illuminating: it may be the case that the vethat at the expense of a logarithmic factor in the de-



With constant probability - A star subgraph on nd
oy vrcas fome | vetes
sideofhe network i ' Algorithm 4 FindHighCCHighDegreeVertex
¢ .T. ¢ Require: NetworkG, parametef < 3 < 1.
s i S 1: Take2n'~?log* n Jump queries and store the
Length n-2nf | Length n vertices found (including repetitions) in a mul-
tisetS.
2: for each node in the networkdo
Figure 3: The line-star networt, 3:  Computeneighbors[v] to be the number of
elements; in S s.t. w is a neighbor of.
4: end for
Clique subgraph on nP vertices 5: |nitialize T = @
the oot 6: for each node in the networkdo
onl verticas from tis 7. if neighbors[v] > log* n then
! 8: AddvtoT.
o 4@ o endif
| 10: end for
Length n-2nP 5 Length n 11: for each node in 7' do
12:  ComputeS, to equal the elements &f (in-
cluding repetitions) that are neighborswof
Figure 4: The line-clique networl's 13: ComputeOAC(v)=ApproxCCBySampIe(,SU)
14: end for R
gree, we can obtain arbitrarily small degradation o> reum argmay. {CC(v)}

the maximum clustering coefficient.

Theorem 6 (Upper Bound) For any given0 <
8 < 1, algorithm FindHighCCHighDegreeVer-
tex uses@(nl—ﬁ) Jump and Crawl queries and
returns a(@,nﬁ, m) approximation to the

maximum clustering coefficient, whp. In other

words, ifv* is the vertex with the higheStC' value Algorithm 5 ApproxCCBySample

between all vertices with degree at leastthe al-

Require: NetworkG, a vertexv, a multisetS, of

gorithm returns a vertex of degree at Ieasg’g—ﬁn elements that are neighbors:of
andce(v*) < CC(v) + 1, With probability of  1: Setcount = 0.
1-0(L). 2: for i = 1tolog®n do

3:  Find two elements:, w in S, that corre-
Proof: The algorithm makes all its queries in spond to different vertices of? and set
line 1 and therefore uses at masi{n'~?) Jump S, = S, — {u,w}. If there are none return
and Crawl queries. Let* = argmaz{CC(v) : EAIL.

degree(v) > d}. Then probability the* is added

if v is a neighbor ofv then
to T can be easily shown to be at least n= 108",

count = count + 1.

4:

5:
using Hoeffding bound. Next, verticeswith de- g endif
gree at mos{j?an are excluded fronT" with high  7: end for
probability. For such vertew the expected num- 8: return f(f;;g

ber of times a neighbor ofy is sampled is less
thenlog®n. Therefore, using Hoeffding bound
(see appendix C for restatement of the bound), the
probability that at leasiog®  neighbors ofw are



sampled and added t®is smaller them 22", We can then simulate the possible values using a
Using the union bound this probability is kept astandard doubling trick, starting from= loln up
n~1°8™ over all suchw’s. To finish up the ar- to 1, on the expense of an additional logarithmic
gument we need to show that for each vertex factor to the query time. Second, the number of
T the algorithm approximates its CC value to aqueries the algorithm makes@(d—@) sincey > 3
additive value of-L-. To show this we first no- andCC(v) > @. Next, we prove the correct-
tice that the projection o onto the set of neigh- ness of the algorithm. We use the following obser-
bors ofv, namelyS, is a random sample of sizevation : if a vertex of degre¢hasCC(v) = cthen

S, taken form the neighbors af. Next, it was at Ieast% of v's neighbors each has degree at least
shown that when one samples uniformly at rando%:{ (otherwise we get a contradictiéhC (v) < c).
from a set of» elements then with probability of atTherefore, by samplinéf;’“T" times from the LRW
leastl —n~! each element appears at mgEeE™- e are effectively sampling that much from its sta-
times (see for example [13] pag8). Therefore, tionary distribution which is the degree distribu-
S, contains at leaslog’ n distinct pairs and al- tion. The probability to sample a neighborofis
gorithm ApproxCCBySample, with high probabilyherefore at Ieas}i. Therefore. with?%2 sam-

; ; ; ; 5kn ! d?

ity, will not return FAIL. In that case, FindHIghC- 65 taken from the degree distribution we shall
CHighDegreeVertex computes a sum over '”d'cgamplev* with probability1 — e~2. Using Hoeffd-

tor functions where each indicator function checlfﬁg bound we conclude that with probability of at
if two randomly sampled vertices are connectqgasﬂ — n~log7 we shall not sample neighbors of

and form a triangle together with. By using g yertex with degree less thqnld‘ . Last, given
the additive Hoeffding bound we conclude that thg  artex, in a graph ofn verticé)ngpproxVertex-

CC of v will be estimated to an additive faCtorCCVaIue(see pseudocode) Wim(log3 n) Crawl
1 i il 1 ’
of 5,7 with probability of at leastl — 5. US- 4 eries, approximatess clustering coefficient to

ogn
ing tﬁe union bound the clustering coefficient aof , additive error of at mo%l with probability
each vertex inT" is indeed estimated to an ad- 1 . L ogn :
o 1 : . 1 — O(=%). Using the union bound the clustering
ditive factor of —— with probability of at least N L .
ogn coefficient of each vertex ifi’ is indeed estimated

1—1. Thus, algorithm FindHighCCHighDegreeVyq 4 additive factor o= with probability of at

B
ertexreturns a vertexof degree atleasf - and |east1 — 1. Last, by lemma 2 the network has at
CC(v*) < CC(v) + 1557, with probability of

mostn(1+ 0(1)(10%)7—1 nodes of degree at least

1- O(%)- —4_ s0 the algorithm, with high probability, won’t

g n . . .
For power law networks where the lazy randofiim FaIL andr will contain that many vertices.

walk converges fast_ we can do substantially bettqrhus, the algorithm returns a vertexof degree

Denote the mixing time as usual by at Ieastli andCC(v*) < CC(v) + =, with
ogn — ogn’

Theorem 7 (Upper Bound) Assume that the net-probabimgy ofl —e 2 —0O(2). [ ]

n

work at hand follows a power law with exponenising a standard amplification trick the success
7 = 3, and that the LRW mixes in timeover probability can be amplified to — O(L) on the
the network. Then for any giveh < 8 < 1, expense of an additional logarithmic factor in the
algorithm FingHighCCHighDegreeVertexForPowquery complexity.

erLaws use$)(n' ~27) . 7 Crawl queries and re- ~ As a sample application of this theorem to an-

tums a (1,n”, 1+) approximation to the max-other well-studied class of networks, we have:
imum clustering coefficient property. In other

words, ifv is the vertex with the highe6tC value Corollary 2 Taked = n” for 0 < 5 < 1. Then
between all vertices with degree at least the with O(n'~27) queries, algorithm FindHigh-
algorithm returns vertex of degree at least®, CCHighDegreeVertexForPowerLaws produces a
andCC(v*) < CC(v) + 157, with probability of node v of degree at least” and CC(v*) <
1—e2-0(L). CC(v) + =L, in the following cases.

logn’

Proof: First, without loss of generality we assume 1. Take a network created using the preferential
that the value”'C(v*) is known to the algorithm. attachment process. Then with high probabil-
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Algorithm 6 FindHighCCHighDegreeVertexFor-
PowerLaws

Require: Power

N o g A

o

10:
11:
12:
13:
14:
15:
16:
17:
18:

19:
20:

law  network G €
Network(m,n,v) with n vertices and
kn edges, mixing time-, a degree valué, the
clustering coefficient value
S =0.
: for for 222 times dodo
Run an LRW from an arbitrary vertex for
T steps via Crawl queries. Add the vertex
found at the end of the walk t6.
. end for
- Initialize a setl” = ().
. for each node in the networkdo
if there exists a vertexin S that is a neigh-
bor of v then
AddvtoTifv ¢ T.
end if
end for )
if size of 7' is bigger tharzn(*%62)" ™" then
return FAIL
end if
if Vo € T degreév) < d then
return FAIL
end if
for each node in T do
ApproximateC'C|v] directly by computing
C'C(v)=ApproxVertexCCValuef).
end for
return argm%T{CAC’(v) : degre¢v) > d}

ti

fi

ity over the process the LRW over the network

is O(logn) mixing and follows a power law

over degrees’ < n'l.
2. Consider the model of producing a random
graph with a given degree sequence of New-
man et al [14]. It was shown that with high
probability a random network would have a
O(log® n)-mixing time, if all the degrees are
bigger than2 (see [7] page 160 for more de-
tails). Take the given graph to be a power law
networkG € Network(3,n, ), fory > 3.

Thus, we again beat the hardness results for ar-

bitrary networks — by making structural assump-

ons that allow the additive error to go to 0 with

network size.

4 Future Research

In this work we initiated a study of local algo-

rithms for finding vertices with extreme topolog-
ical properties in large social or other networks.
The next property we wish to understand is lige
tweenness centralittand other common central-
ity measures). Betweenness centrality measures
how many shortest paths are passing through a
vertex. Vertices with high betweenness centrality
value may therefore be susceptible to many kinds
of attacks, or play important roles in organizations.
It is of interest to understand how quickly one can

nd such vertices in the Jump and Crawl model.
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Algorithm 7 ApproxVertexCCValue

Require: NetworkG, a vertexv.
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and Crawl model. Then if A use$,/n) queriesA < 2t exp ( fkiQ)
would fail to approximate the network size to any —/n 2n 7

finite factor. By the union bound the probability that some
queryi is bad, namely, the new vertex is close to
some previous vertex, ig1) and goes to zero as
goes to infinity. [ |

Proof: Fix an integers > 1. Take two cycle
networks one witlm nodes and the other with®
(a cycle network is another name foraregular
graph). We next show that wi n) queriesA . .
will fail to differentiate betweer%r\é—tavo networksAppend'X C: Concentration Bounds

First, without loss of generality, we may assum&heorem 9 (Additive Hoeffding Bound) [10]
that any given algorithm first make all its Jumpet X, X5, ..., X,, be a sequence af inde-
gueries before making its Crawl queries. We cgrendent Bernoulli trials, each with probability of
always simulate the behavior of the original algsucces#[X;] = p. Let,S = X1+ Xo+.. .+ X,,.
rithm by first taking all the Jump queries. The codtet0 < v < 1. Then,
(number of queries) of the simulation would be at
most twice of that the original algorithm. Saying pr[ﬁ > p+4 7] < exp(—2m~A?)
that, we now consider what strategy an algorithm m
may use on the cycle network (even when knovgl-nd,
ing in advance it is a cycle network). After the
Jump phase, the algorithm is only left with mak-
ing Crawl queries so it can move left or right from

each vertex fatind, a long the cyc_lg. We- next ShoW1eorem 10 (Multiplicative Chernoff Bound)
that not only there are no repetitions in the ve Bl Let X,. X X be a soutience of inde-
tices found in the Jump phase but that these ver: 1,42y .5 Sim a

. — p(?ndent Bernoulli trials, each with probability of
tices are spread around the cycle, with d'StancesouccesE[X-] o letS — X4 Xot. . +X
at leasto(y/n) between any pair of them. There; d=p Lo = A Az A

fore, any algorithm that uses\/n) queries will Lety 2 0. Then,

never see a vertex twice. This behavior would

still be true even if we replaced by n®. There- Pr{— > (1+7)p] < exp
fore, the algorithm cannot differentiate between

these two cases. To finish up the proof we agd,

left with the calculation of the distance between g 5
vertices found in the Jump phase. Lsgtbe the Pri= < (1-~)p] < exp(ﬂ)_
vertex found by the’'th Jump query. Letk be m 2

the total number of vertices found in the Jump

phase. We know thdt = o(y/n). Next we show

the probability that the distance between any two

such vertices is less thantends tol asn goes

to infinity. It is suffice to show that the comple-

ment probability goes to zero. LéL; be the event

that the vertex added by th&h Jump query is

closer thark to some of the vertices , v, . .., v,.

In particular we are interested in calculating

P’f‘(E‘ilﬁ G—Ty ey ﬁEQ, ﬁE‘l). This probabil—

ity is upper bounded by2k(1 — (=DEyq

(=2k) | (1 - k). Using the inequalityt — = <

n

exp(—x), we get,

S
Pr— <p-9]< exp(—2m~?).

(ﬂ)

—ki?
2n

2tk
Pr(E;|-Ei_1,...,mEy,~E;) < 76XP( )
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