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Abstract

We consider the problem of learning accurate models from multiple sources of “nearby” data.
Given distinct samples from multiple data sources and estimates of the dissimilarities between
these sources, we provide a general theory of which samples should be used to learn models for
each source. This theory is applicable in a broad decision-theoretic learning framework, and yields
general results for classification and regression. A key component of our approach is the develop-
ment of approximate triangle inequalities for expected loss, which may be of independent interest.
We discuss the related problem of learning parameters of a distribution from multiple data sources.
Finally, we illustrate our theory through a series of synthetic simulations.

Keywords: error bounds, multi-task learning

1. Introduction

We introduce and analyze a theoretical model for the problem of learning from multiple sources of
“nearby” data. As a hypothetical example of where such problems might arise, consider the follow-
ing scenario: For each web user in a large population, we wish to learn a classifier for what sites
that user is likely to find “interesting.” Assuming we have at least a small amount of labeled data for
each user (as might be obtained either through direct feedback, or via indirect means such as click-
throughs following a search), one approach would be to apply standard learning algorithms to each
user’s data in isolation. However, if there are natural and accessible measures of similarity between
the interests of pairs of users (as might be obtained through their mutual labelings of common web
sites), an appealing alternative is to aggregate the data of “nearby” users when learning a classifier
for each particular user. This alternative is intuitively subject to a trade-off between the increased
sample size and how different the aggregated users are.

We treat this problem in some generality and provide a bound addressing the aforementioned
trade-off. In our model there are K unknown data sources, with source i generating a distinct sample
S; of n; observations. We assume we are given only the samples S;, and a disparity® matrix D whose
entry D(i, j) bounds the difference between source i and source j. Given these inputs, we wish to

x. A preliminary version of this work appeared in Advances in Neural Information Processing Systems 19 (Crammer
et al., 2007).

1. We avoid using the term distance since our results include settings in which the underlying loss measures may not be
formal distances.
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decide which subset of the samples S; will result in the best model for each source i. Our frame-
work includes settings in which the sources produce data for classification, regression, and density
estimation (and more generally any additive-loss learning problem obeying certain conditions).

Our main result is a general theorem establishing a bound on the expected loss incurred by
using all data sources within a given disparity of the target source. Optimization of this bound
then yields a recommended subset of the data to be used in learning a model of each source. Our
bound clearly expresses a trade-off between three quantities: the sample size used (which increases
as we include data from more distant models), a weighted average of the disparities of the sources
whose data is used, and a model complexity term. It can be applied to any learning setting in which
the underlying loss function obeys an approximate triangle inequality, and in which the class of
hypothesis models under consideration obeys uniform convergence of empirical estimates of loss to
expectations. For classification problems, the standard triangle inequality holds. For regression we
prove a 2-approximation to the triangle inequality. Uniform convergence bounds for the settings we
consider may be obtained via standard data-independent model complexity measures such as VC
dimension and pseudo-dimension, or via more recent measures such as Rademacher complexity.

Recent work by Crammer et al. (2006) examines the considerably more limited problem of
learning a model when all data sources are corrupted versions of a single, fixed source, for instance
when each data source provides noisy samples of a fixed binary function, but with varying levels
of noise. In the current work, the labels on each source may be entirely unrelated to those on other
source except as constrained by the bounds on disparities, requiring us to develop new techniques.
Blitzer et al. (2007) study the related problem of training classifiers using multiple sources of data
drawn from different underlying domains but labeled using identical or similar labeling functions.
Wu and Dietterich (2004) study similar problems experimentally in the context of SVMs. The
framework examined here can also be viewed in the context of multi-task learning, or as a type of
transfer learning (Baxter, 1995; Ben-David, 2003; Maurer, 2005).

In Section 2 we introduce a decision-theoretic framework for probabilistic learning that includes
classification, regression, and many other settings as special cases, and then give our multiple source
generalization of this model. In Section 3 we provide our main result, which is a general bound on
the expected loss incurred by using all data within a given disparity of a target source. Section 4
discusses the most simple application of this bound to binary classification using VVC theory. In Sec-
tion 5, we give applications of our general theory to classification and regression using Rademacher
complexity, and show more generally how the theory can be applied for any Lipschitz loss function.
In Section 6 we discuss how to empirically estimate the disparity matrix from data. In Section 7,
we discuss the related problem of learning parameters of a distribution from multiple data sources.
Finally, in Section 8, we illustrate the theory through synthetic simulations.

2. Learning Models

Before detailing our multiple-source learning model, we first introduce a standard decision-theoretic
learning framework in which our goal is to find a model minimizing a generalized notion of empiri-
cal loss (Haussler, 1992). Let the hypothesis class # be a set of models (which might be classifiers,
real-valued functions, densities, etc.), and let f be the target model, which may or may not lie in
the class #/. Let z be a (generalized) data point or observation. For instance, in (noise-free) clas-
sification and regression, z will consist of a pair (x,y) where y = f(x). We assume that the target
model f induces some underlying distribution P; over observations z. In the case of classification
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or regression, Ps is induced by drawing the inputs x according to some underlying distribution P,
and then setting y = f(x) (possibly corrupted by noise).

Each setting we consider has an associated loss function £(h,z). For example, in classification
we typically consider the 0/1 loss: L£(h,(x,y)) =0 if h(x) =y, and 1 otherwise. In regression we
might consider the squared loss function £(h, (x,y)) = (y —h(x))2. In each case, we are interested
in the expected loss of a model g2 on target g, €(91,92) = Ezp, [£(92,2)]. Expected loss is not
necessarily symmetric.

In our multiple source model, we are presented with K distinct mutually independent samples or
sources of data Sy, ..., Sk, and a symmetric K x K matrix D. Each source S; contains n; observations
that are generated from a fixed and unknown model f;, and D satisfies max(e(f;, fj),e(fj, fi)) <
D(i, j). When D is unknown, it often can be estimated from a small amount of data; see Section 6 for
more details. Our goal is to decide which sources S; to use in order to learn the best approximation
(in terms of expected loss) to each f;.

While we are interested in accomplishing this goal for each f;, it suffices and is convenient
to examine the problem from the perspective of a fixed fi. Thus without loss of generality let us
suppose that we are given sources Sy, ...,Sk of size nq,...,nk from models fq,..., fx such that
e1=D(1,1) <e2=D(1,2) <--- <&k =D(1,K), and our goal is to learn f;. Here we have simply
taken the problem in the preceding paragraph, focused on the problem for f1, and reordered the
other models according to our estimations or their proximity to f1. To highlight the distinguished
role of the target f, we shall denote it f. We denote the observations in S; by z{,...,zh,. In all cases
we will analyze, for any k < K, the hypothesis hi minimizing the empirical loss éx(h) on the first k
sources Sy, ..., Sk, that is

k nj

- 1 .
hy = argminéy(h) = argmin — £(h,z}),
heH hert Nk ]Zlizi I

where ny.x = n1+ - -- +nk. We also denote the expected error of function h with respect to the first
k sources of data as

ex(h) = E[6c(h)] = i(”) e(fih).

N1:k

3. General Theory for the Multiple Source Problem

In this section we provide the first of our main results: a general bound on the expected loss of the
model minimizing the empirical loss on the nearest k sources. Optimization of this bound leads to
a recommended set of sources to incorporate when learning f = f;. The key ingredients needed to
apply this bound are an approximate triangle inequality and a uniform convergence bound, which
we define below. In the subsequent sections we demonstrate that these ingredients can indeed be
provided for a variety of natural learning problems.

Definition 1 For a > 1, we say that the a-triangle inequality holds for a class of models ¥ and
expected loss function e if for all g1,92,93 € F we have

e(91,92) < a(e(91,93) +€(93,92))-

The parameter a > 1 is a constant that depends on # and e.
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The choice o = 1 yields the standard triangle inequality. We note that the restriction to models
in the class F may in some cases be quite weak—for instance, when ¥ is all possible classifiers or
real-valued functions with bounded range—or stronger, as in densities from the exponential family.
Our results will require only that the unknown source models f4,..., fx lie in F, even when our
hypothesis models are chosen from some possibly much more restricted class # C F. For now we
simply leave ¥ as a parameter of the definition.

Definition 2 A uniform convergence bound for a hypothesis space # and loss function £ is a
bound that states that for any 0 < & < 1, with probability at least 1 — & for any h € #

€(h) —e(h)| <B(n,3),
1

where é(h) = = 1L, £(h,z) for n observations z, ..., z, generated independently according to dis-
tributions Py,...Ps, and e(h) = E[é(h)] where the expectation is taken with respect to z,...,z,.
Here B is a function of the number of observations n and the confidence &, and depends on # and

L.

This definition simply asserts that for every model in #, its empirical loss on a sample of size
n and the expectation of this loss will be “close” when (3(n,d) is small. In general the function 3
will incorporate standard measures of the complexity of #/, and will be a decreasing function of
the sample size n, as in the classical O(+/d/n) bounds of VC theory. Our bounds will be derived
from the rich literature on uniform convergence. The only twist to our setting is the fact that the
observations are no longer necessarily identically distributed, since they are generated from multiple
sources. However, generalizing the standard uniform convergence results to this setting is mostly
straightforward as we will see in the upcoming sections on applications of the bound.

We are now ready to present our general bound.

Theorem 3 Let e be the expected loss function for loss £, and let F be a class of models for which
the a-triangle inequality holds with respect to e. Let # C F be a class of hypothesis models for
which there is a uniform convergence bound 3 for L. LetK, f =1, fo,..., fk € T, {si}iK:l, {ni}iK:l,
and hy be defined as above. For any & such that 0 < & < 1, with probability at least 1 — &, for any
ke{l,...,K}

e(f,hy) < azrrEi}r}{e(f,h)} + (o +a?) é <nTk> & + 20B(N1k, 6/2K) .

Before providing the proof, let us examine the bound of Theorem 3, which expresses a natural
and intuitive trade-off. The first term in the bound is simply the approximation error, the residual
loss that we incur by limiting our hypothesis model to fall in the restricted class #. The second
term is a weighted sum of the disparities of the k < K models whose data is used with respect to
the target model f = f;. We expect this term to increase as we increase k to include more distant
sources. The final term is determined by the uniform convergence bound. We expect this term to
decrease with added sources due to the increased sample size. All three terms are influenced by the
strength of the approximate triangle inequality that we have, as quantified by a.

The bound given in Theorem 3 can be loose, but provides an upper bound necessary for opti-
mization and suggests a natural choice for the number of sources k* to use to estimate the target
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k .
k* = argmin ((a +0a?) Zl (n,) & + 2aB(N1x, 6/2K)> .
k 92 \ N1k
Theorem 3 and this optimization make the implicit assumption that the best subset of sources
to use will be a prefix of the sources—that is, that we should not “skip” a nearby source in favor of
more distant ones. This assumption will be true for typical data-independent uniform convergence
such as VC dimension bounds, and will be true on average for data-dependent bounds, where we
expect uniform convergence bounds to improve with increased sample size.
We now give the proof of Theorem 3.
Proof: (Theorem 3) By Definition 1, forany h € #, any k € {1,...K},andany i € {1,... .k},
n;

() e(f.h) < (n,) (ae(f, fj) +ae(fi,h)) .

N1:k N1:k

Summing over all i € {1,...,k}, we find

e(f,h) < i (”') (ae(f, ) +ae(f;, h))

N1:k

_ aé (nl) e(f, fi) + ué <nTk) e(fi.h) < aé (nl) & +oex(h) .

In the first line above we have used the a-triangle inequality to deliberately introduce a weighted
summation involving the f;. In the second line, we have broken up the summation using the fact that
e(f, fi) <g and the definition of ex(h). Notice that the first summation is a weighted average of the
expected loss of each f;, while the second summation is the expected loss of h on the data. Using the
uniform convergence bound, we may assert that with high probability ex(h) < ék(h) 4+ B(n1.,0/2K),
and with high probability

heH heH N1:k

k :
6c(hi) = min{&(h)} < min { > (”) e(fi,h) + B(nl:k,a/zm} .
i=
Putting these pieces together, we find that with high probability
k

e(f,h) < a;(nT:k>si+2a[3(n1;k,6/2K)+arr]2igp[{f <nr:k>e(fi,h)}

k

< ai; (nrl'k> & + 20 B (N1, 8/2K)

+a$iﬂr}{i§ (nrl'k> ae(fj, f)+i_i <nTk> ae(f,h)}

= (a+a?) i <nTk) & + 2aB(n1x, 5/2K) +a2$ijr{1{e(f,h)} .
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4. Simple Application to Binary Classification

We demonstrate the applicability of the general theory given by Theorem 3 to several standard
learning settings. As a warm-up, we begin with the most straightforward application, classification
using VC bounds.

In (noise-free) binary classification, we assume that our target model is a fixed, unknown
and arbitrary function f from some input set X to {0,1}, and that there is a fixed and unknown
distribution P on the X. Note that the distribution P over input does not depend on the target
function f. The observations are of the form z = (x,y) where y € {0,1}. The loss function
L(h,(x,y)) is defined as 0 if y = h(x) and 1 otherwise, and the corresponding expected loss is
€(91,92) = Eqxy)opy, [L£(92, (%,Y))] = Prx-p[d1(X) # g2(X)].

For 0/1 loss it is well-known and easy to see that the (standard) 1-triangle inequality holds.
Classical VC theory (Vapnik, 1998) provides us with uniform convergence as follows.

Lemma4 Let # : X — {0,1} be a class of functions with VC dimension d, and let L(h, (x,y)) =
ly —h(x)| be the 0/1-loss. The following function { is a uniform convergence bound for # and L
whenn >d/2:

B(n@:\/zs(dln(zen/d)+|n(4/e3))

n

The proof is analogous to the standard proof of uniform convergence using the VC Dimension
(see, for example, Chapters 2—4 of Anthony and Bartlett (1999)), requiring only minor modifications
to the symmetrization argument to handle the fact that the samples need not be uniformly distributed.
It relies heavily on Hoeffding’s inequality (Hoeffding, 1963), stated here for completeness.

Lemma 5 (Hoeffding’s Inequality) Let X be a set, Dy,---,Dmy, be probability distributions on X,
and fi,-- -, fm be real-valued functions on X such that f; : X — [aj,bj] fori=1,--- ,m. Then

" m 922
((3500)- (2B )

where the probability is over the sequence of values x; distributed according to D; for all i =
]_7 -ee,m,

With Lemma 4 in place, the conditions of Theorem 3 are easily satisfied, yielding the following
result.

Theorem 6 Let ¥ be the set of all functions from an input set X into {0,1} and let d be the VC
dimension of 7/ C 7. Let e be the expected 0/1 loss. LetK, f = fy, fa,..., fk € F, {&i}K,, {ni}K
and hy be defined as above in the multi-source learning model, and assume that n; > d /2. For any
o such that 0 < 6 < 1, with probability at least 1 — 9, for any k € {1,...,K}

A K _ .
e(f, i) < min{e(f.) +2 <nrlk>si+fz(d|n(2en1_kn/lc:jk)+|n(8}</5)) |
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Figure 1: Visual illustration of Theorem 6.

In Figure 1 we provide a visual illustration of the behavior of Theorem 3 applied to a simple clas-
sification problem. In this problem there are K = 100 classifiers, each classifier f; fori=1...100 s
defined by 2 parameters represented by a point in the unit square, such that the expected disagree-
ment rate between two such classifiers is proportional the L distance between their parameters.?
We chose the 100 parameter vectors f; uniformly at random from the unit square (the circles in
the left panel). To generate varying source sizes, we let n; decrease with the distance of f; from a
chosen “central” point at (0.75,0.75) (marked “MAX DATA” in the left panel); the resulting source
sizes for each model are shown in the bar plot in the right panel, where the origin (0,0) is in the
near corner, (1,1) in the far corner, and the source sizes clearly peak near (0.75,0.75). For every
function f; we used Theorem 6 to find the best sources j to be used to estimate its parameters. The
undirected graph on the left includes an edge between f; and f; if and only if the data from f; is
used to learn f; and/or the converse.

The graph simultaneously displays the geometry implicit in Theorem 6 as well as its adaptivity
to local circumstances. Near the central point, the graph is sparse and the edges quite short, corre-
sponding to the fact that for such models we have enough direct data (represented with high bars
in the right panel) that it is not advantageous to include data from distant models. Far from the
central point the graph becomes dense and the edges long, as we are required to aggregate a larger
neighborhood to learn the optimal model. In addition, decisions are affected locally by how many
models are “nearby” a given model, when there are many close functions f; to a given f; there is
no need to use “far” models, but when the neighborhood of a function is not populated with many
examples, there is a need for data from models far-away.

5. Bounds Using Rademacher Complexity

Given the interest in tighter, potentially data-dependent convergence bounds (such as maximum
margin bounds, PAC-Bayes, and others) in recent years, it is natural to ask how our multi-source
theory can exploit these modern bounds. We examine one specific case here using Rademacher

2. It is easy to create simple input distributions and classifiers that generate exactly this geometry. Let the input x
be a pair x = (p,b) where p € [0,1],b € {0,1} and let the hypothesis class consist of functions defined as pairs of
thresholds f = (t1,t2) where f(x) =1 if and only if (p >ty and b= 0) or (p >t and b = 1). The distribution of
x = (p,b) is a product of a uniform distribution for p and a fair coin for b.
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complexity (Bartlett and Mendelson, 2002; Bartlett et al., 2002; Koltchinskii, 2001; Koltchinskii
and Panchenko, 2000); analogs can be derived in a similar manner for other complexity measures.
We start by deriving bounds for settings in which generic Lipschitz loss functions are used, and then
discuss specific applications to classification and to regression with squared loss.

5.1 Rademacher Complexity and General Lipschitz-loss Bounds

If 7 is a class of functions mapping from a set X to IR, the empirical Rademacher complexity of A
on a fixed set of observations xi,..., X, is defined as

2 n
=Y aih(x)|]| ,
n i;

where the expectation is taken with respect to independent uniform {+1}-valued random vari-
ables 01, ...,0,. The Rademacher complexity for n observations can then be defined as Ry (#H) =
E [F'in(ﬂ-[)} where the expectation is with respect to observations x1, ..., x,. In the standard setting,
X1,...,Xn are drawn i.i.d. from a fixed distribution. In our setting, these observations will still be
independent, but not necessarily identically distributed. We will show that the standard uniform
convergence results still hold for this modified definition of Rademacher complexity.

Consider any setting in which each generalized data point z = (x,y) for some x € X andy € &
with y = f(x). A cost function for the loss L is a function ¢(y,a) : R — R such that L(h, (x,y)) =
@(y,h(x)) forall x € X,y € 9, and h € H. We will consider cost functions ¢ that are Lipschitz in
the second parameter. Define ¢f(y,a) = @(y,a) — @(y,0). Note that if @ is Lipschitz in the second
parameter with constant L then ¢ is also Lipschitz in the second parameter with the same constant
L.

Rn(H) =E [sup
heH

Lemma 8 below gives a uniform convergence bound for any loss function with a corresponding
Lipschitz cost function. The proof of this lemma is in Appendix A. It is analogous to the proof of
Theorem 8 in Bartlett and Mendelson (2002), which makes a similar claim in the i.i.d. setting, and
uses the following lemma from Bartlett and Mendelson (2002).

Lemma 7 If : R — Ris Lipschitz with constant L and @(0) = 0, then Ry (o H) < 2LR,(H).

Lemma8 Let £ be a loss function bounded in [0,1], and @: R — R a cost function such that
L(f,(x,y)) = @y, f(x)) where @ is Lipschitz in the second parameter with constant L. Let # :
X — 9 be a class of functions and let {(xi,yi) }{., be sampled independently according to some
probability distributed P. For any n, for any 0 < & < 1, with probability 1 — & over samples of
length n, every h € 4 satisfies

2In(2/9)

B(n,8) = 2LRn(H) + 1/ — -

5.2 Application to Classification Using Rademacher Complexity

Theorem 9 below follows from the application of Theorem 3 using the 1-triangle inequality and an
application of Lemma 8 with

1 if ya <0,
oy,a)=<{1-vya if0<ya<l,
0 ifya> 1.
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Notice first that if £ is the 0/1 loss, then for all x € X, y € {—1,1}, and h € X — {-1,1},
L(h,(x,y)) = @(y,h(x)), and furthermore that ¢ is Lipschitz with constant 1, so Lemma 8 can be
applied immediately.

Theorem 9 Let F be a set of functions from an input set X into {-1,1} and let Ry, (#) be the
Rademacher complexity of # C F on the first k sources of data. Let e be the expected 0/1 loss. Let
K, f=f,f... fke 7, {&}K, {n}<,, and hy be defined as in the multi-source learning model.
For any o such that 0 < & < 1, with probability at least 1 — &, for any k € {1,...,K}

2In(4K /3)
N1:k

~ . K Nj
e(f,hy) < {E'}}{e(f’h)} +2i; (nl:k> §+2 +4Rn,, (H) .

Before moving on, let us briefly examine the behavior of this bound. Similarly to the VC-based
bound given in Theorem 6, as k increases and more sources of data are combined, the second term
will grow while the third will shrink. The behavior of the final term Ry, (), however, is less
predictable and may grow or shrink as more sources of data are combined.

Note that for the special case of classification with 0/1 loss, it is possible to get tighter bounds
with better dependence on Ry, by using a more careful analysis than the one in the proof of
Lemma 8. Such bounds are given in an earlier version of this paper (Crammer et al., 2007); we

choose not to present these alternate bounds here to simplify presentation.

5.3 Regression

We now turn to (noise-free) regression with squared loss. Here our target model f is any function
from an input class X into some bounded subset of R. (Frequently we will have X C RY, but
this is not required.) Our loss function is £(h, (x,y)) = (y —h(x))?, and the expected loss is thus

e(91,92) = Exy)~r, [£(92, (%,¥))] = Exer [(92(X) — g2(x))?].
For regression it is known that the standard 1-triangle inequality does not hold. However, a
2-triangle inequality does hold and is stated in the following lemma.

Lemma 10 Given any three functions 91,092,093 : X — R, a fixed and unknown distribution P on the
inputs X, and the expected loss e(g1,92) = Exp [(91(X) — 92(x))?],

e(91,92) <2(e(91,93) +€(093,01)) -

Proof: By Jensen’s inequality and the convexity of x — x2, for any g, gz, and gs,
e(01.92) = Exep[(02() ~02(x))?]
~ Ece [4 (50200~ 0200) + 5 020 92(X))>2]
< v [2001060 ~ 0560 + 200500 — 62(x))7) = 2(e(01,09) + e(gs.01) -

We can derive a uniform convergence bound for squared loss using Rademacher complexity as
long as the region 9 is bounded.
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Lemma 11 Let # : X — [-B,B] be a class of functions, and let £(h, (x,y)) = (y —h(x))? be the
squared loss. The following function 3 is a uniform convergence bound for # and L:

B(n,5) = 8BRy(#1) + 487 2"2/0)

Proof: We cannot apply Lemma 8 directly using the squared loss function, since it may output
values outside of the range [0,1]. Instead, we apply the Lemma 8 using the alternate loss function

L'(h, (x,y)) = @y, h(x)) where

;(y+B)? ifa< —B,
(y—a)* if-B<a<B,
a2 (y+B)? ifa>B.

oy,a) =

&8
W|— @~ T
N N

It is easy to see that ¢ always outputs values in the range [0,1]. Furthermore, for any y € [-B,B], @
is Lipschitz in the second parameter with parameter 1/B. For any [a,b] € [-B,B],

0,2) 0D = g |y (y-b)| = gy [0 b2+ 2y(b-a)
2 2
< rBz\a—b“sz’y(a b)|
1
< — < Zla=bl.
< 4lea+bHa b\+282|y(a b)| < g la—Db|

Applying Lemma 8 gives a uniform convergence bound of (2/B)Rn(#) ++/2In(2/d)/n for L'.
Scaling by 4B? yields the bound for L. [ ]

Combining this with Lemma 10 and applying Theorem 3 yields the following.

Theorem 12 Let F be the set of functions from X into [—B,B], gnd H C F. Let e be the expected
squared loss. LetK, f=f1, fo,..., fk € T, {si}iK:l, {ni}iKzl, and hy be defined as in the multi-source
learning model. For any & such that 0 < & < 1, with probability at least 1 — 9§, for any k € {1,...,K}

o) < i {e(1.1)} 63 (- i+ 320R, (30 + 1087 [ ZNEC/S)

5.4 Remarks on the Use of Data-Dependent Complexity Measures

The following lemma, which relates the true Rademacher complexity of a function class to its
empirical Rademacher complexity, follows directly from Theorem 11 of Bartlett and Mendelson
(2002), the proof of which does not require samples to be identically distributed.

Lemma 13 Let # be a class of functions mapping to [—1,1]. For any integer n, for any 0 < 6 < 1,
with probability 1 — 9,

Ro(20) ~ Ro(s)| < 12202,
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This lemma immediately allows us to replace Rn(#) with that data-dependent quantity Ry, in
any of the bounds above for only a small penalty.

While the use of data-dependent complexity measures can be expected to yield more accurate
bounds and thus better decisions about the number k* of sources to use, it is not without its costs
in comparison to the more standard data-independent approaches. In particular, in principle the
optimization of a data-dependent version of the bound given in Theorem 9 to choose k* may actually
involve running the learning algorithm on all possible prefixes of the sources, since we cannot
know the data-dependent complexity term for each prefix without doing so. In contrast, the data-
independent bounds can be computed and optimized for k* without examining the data at all, and
the learning performed only once on the first k* sources. This is especially useful in the case that
labels are not free but must be purchased at a price.

6. Estimating the Disparity Matrix

A potential drawback of the theory presented here is the need to estimate the disparity matrix D
when it is unknown. However, it is often the case that this matrix can be estimated with many fewer
labeled samples than are required for learning. In this section, we discuss how D can be estimated
in the classification setting.

As before, consider the scenario in which each target function is a fixed, unknown and arbitrary
function from some input set X to {—1,1}, and assume that there is a fixed and unknown distribution
P over X. Suppose we are given m data points labeled by a pair of functions f; and f;, and let é(f;, f;)
be the fraction of points on which the labels disagree. By Hoeffding’s inequality, with probability
1-9,

In(2/¥)
2m

&(fi, fj) —e(fi, f) <

Thus in order to approximate e( fi, f;) with an error no more than ¢, only In(2/&') /(2€?) commonly
labeled points are needed. Applying the union bound gives us the following lemma.

Lemma 14 Let F be a set of functions from X into {—1,1}, and suppose f1,...,fx € F. Lete be
the expected 0/1 loss. Suppose that for each pair i, j € {1,---,K}, there exist m; j > mg examples
distributed according to P commonly labeled by f; and f;j, where

Mo — 2In(K)24;2In(2/6)

for any dsuchthat 0 <& <1, and let é(f;, f;) be the fraction of commonly labeled examples on which
fi and f; disagree. Then with probability 1 -6, for all i, j € {1,--- K}, [é(fi, fj) —e(fi, fj)| <e.

Using the lemma we set the upper bound on the mutual error e(fj, f;) between the pair of func-
tion fi and f; to be D; j = é(f;, f;) + €. With probability at least 1 — & these bound holds simultane-
ously for all i, j.

Note that in general, log(K) will be significantly smaller than the dimension d of . Thus many
fewer labeled examples are required to estimate the disparity matrix than to actually learn the best
function in the class.

The assumption that there exist commonly labeled points for each pair of functions is natural
in many settings. Consider, for example, the problem of predicting whether or not users will enjoy
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certain movies using ratings from other users. It is often the case that pairs of users will have seen
many of the same movies. These commonly rated movies can be used to determine how similar
each pair of users are, while ratings of additional movies can be reserved to learn the prediction
functions.

7. Estimating the Parameters of a Distribution

We now proceed with the study of the related problem of estimating the unknown parameters of
a distribution from multiple sources of data. As in the previous sections, we provide a bound on
the diversity of an estimator based on the first k sources from the target. Up until this point, we
have measured the diversity between two functions by using the expected value of a loss function.
The loss is a function of two specific observations. Thus, although two functions may not agree on
many points, the diversity between them could be zero (if the measure of their disagreement points
is zero). In this section we use a more direct way to measure the diversity between two functions by
computing the distance between the parameters used to specify these distributions.
Before stating the problem formally we provide with some illustrative examples for intuition.

Example 1 We wish to estimate the bias 8 of a coin given K sources of training observations
N1,...,Nk. Each source Nk contains ng outcomes of flips of a coin with bias 8. The only infor-
mation we are given is that 6y € [0 — &, 0 + &J.

In the next example we consider the simple generalization to the multinomial distribution, which
involves more than a single parameter.

Example 2 We wish to estimate the probability ©(P) of a die to fall on its pth side (out of D possible
outcomes) given K sources of training observations N1, ..., Nx. Each source Ni contains nx outcomes

using a die with parameters @f(p). The only information provided is a bound on the ¢ distance

between the parameter sets, maxp, ]Ol((p) — 0P| = |6k —0|o < &

Formally, let Pr[X|@] be a parametric family of distributions such that X € RY and © € RP. We
assume that there exists a vector function W such that

E[q;(p)(x)] Yol forp=1,...,D.

This assumption is met, for example, by any member of the exponential family. In the two examples
we have discussed, the function W is simply an identity or indicator. This function is useful because
it allows us to estimate the parameters of the distribution from data. Let X4,---, X, be a sequence
of n i.i.d. samples from such a distribution, where the function W is known. Then the estimator
obtained by the method of moments is given by the empirical mean

. 1.
0==-S WYX).
- i; (Xi)
In our setting, we wish to estimate the parameters © of a parametric distribution Pr[X|©] given K
sources of training observations Ny, ..., Nk. Each source Nk contains ng outcomes from a distribution
with parameters O, that is, Pr[X|®]. The only information we are given is a bound on the /.

distance between the parameter sets, ||© — Okl|o < &k
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We first bound the deviation of this estimation from the true parameters using Hoeffding’s in-
equality. Fix the value of the index p=1,...,D. We assume that there exist A and B > 0 such
that,

WP (X)e[AA+B] fori=1,...,n

pr[[E[6%)] -6 > ¢] <2600 <_z“§> |

Setting the right hand-side of the inequality equal to & and solving for €, we get

br ’E[@m}_@(m)z BZ'Znn(eZs) <5,

Then,

We can use the union bound to bound on this difference for all D parameters at once and get

Pr|3p : ‘E[C:)(P)]_é(p)‘> BZ'”(iD

m
U \

25

This proves the following lemma.

Lemma 15 Let X1,..., X, be a sequence of i.i.d. random variables. Let © = %zi”:l W(X;) and
© = E [©], where both © and © are D-dimensional vectors. Assume that W(P)(X;) € [A,A+ B] for
i=1,...,n, p=1,...,D, for some Aand B > 0. Then, for any & € (0, 1) the following bound holds.

len(%)

00| >
| oo > o

We now turn our attention to the problem of choosing the best sources. We define the estimator

using the first k sources to be,
OPRL
n1 k

where as before ny.x = z!‘zlni. We denote the expectation of this estimate by

— N 1 kK
Ok=E|Ok| =—) n0G;.
k [ k] N1k £ i
We now bound the deviation of the estimate O, from the true set of parameters © using the expec-
tation ©y,

||@—ék||oo = ||@—Gj(+6k__ékHoo
< [1© =Bl + |Gk — Oklleo
K Ni||© — Bj||e

< Z—————%W@—éﬂm
i= N1k
K .

< Zl—sk+||@k—@klloo :
i= N1k
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Figure 2: Simulation of the multiple source error bounds.

Let B=maxk=1. k SUpX||%¥(X)||w. We can then use Lemma 15 to bound the second term above,
yielding the following theorem.

Theorem 16 Let O be the estimate of © obtained by using only the data from the first k sources,
where both © and © are D-dimensional vectors. Assume that —B < W(P)(X;) < B. Then for any
0 > 0, with probability > 1 —  we have

4B2 In(%X)
2n1:x

|©—06x|leo < Zl—si—l-
i= N1:k
simultaneously forallk =1,...,K.

As we did with Theorem 3, we can convert Theorem 16 into an algorithm for selecting data
sources. Given the K sources of data we simply compute the bounds provided by these theorems for
each prefix of the sources of length k and select the subset of sources that yields the smallest bound.
A bound for the special case of Example 1 was developed and presented in previous work (Crammer
et al., 2006). That bound has the same form as the bound given here in Theorem 16 but with better
constants.

8. Synthetic Simulations

In this section, we illustrate the bounds of our main theorem through a simple synthetic simulation.
Our hypothesis class # consists of all linear separators through the origin in 15 dimensions. The
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goal is to learn thirty classifiers from this class using only limited amounts of data. These data
points are drawn uniformly at random from inside the 15-dimensional unit sphere. In this restricted
setting, it is easy to calculate the disparity between two functions. Representing each function f
by a unit weight vector w such that f(x) = sign(w-x), the distance between functions w and w’ is
simply 6/mtwhere 8 = arccos(w - w’) is the angle between w and w'.

In each simulation we ran, the linear classifiers were generated as follows. First, three base
classifiers were generated by choosing weight vectors uniformly at random from the surface of the
15-dimensional sphere. Each of the thirty classifiers was then generated by randomly choosing
one of the base classifiers, perturbing each coordinate of its weight vector, and renormalizing the
perturbed weights.

The number of training samples available for each function was generated from a Poisson dis-
tribution with a mean of 8. Each data instance was then sampled from inside the 15-dimensional
unit sphere via rejection sampling and labeled by the corresponding classifier, and 500 test samples
for each function were generated in the same manner.

To predict the optimal set of training data sources to use for each model, we calculated an
approximation of the multiple-source VC bound for classification. It is well known that the constants
in the VC-based uniform convergence bounds are not tight. Thus for the purpose of illustrating how
these bounds might be used in practice, we have chosen to show approximations of our bounds with
a variety of constants. In particular, we have chosen to approximate the bound with

K/ ng (dIn(2enyk /d) +In (8K /d))
23 (% Yacrcy/

N1:k

with 6 = 0.001 for different values of C. These approximations yield curves that are closer in shape
and magnitude to the actual error than a curve generated using the precise, overly conservative
constants of Theorem 6.

The set of plots shown in Figure 2 illustrates the results of a single multiple source simulation.
(Results from repeated versions of this experiment and experiments with different source sizes were
similar.) Each individual plot represents a particular target function. On the x axis is the number of
data sources used in training. On the y axis is error. The solid blue curves show test error of a model
trained using logistic regression. Dashed red curves show our multiple source error bound with C
set to 1/4 in the lowest curve, 1/2 in the middle curve, and 1/+/2 in the highest curve. The x on
each curve marks the minimum value.

These plots clearly show the trade-off that exists. When too few sources are used, there is not
enough data available to learn a 15-dimensional function. When too many sources are used, the
labels on the training data often will not correspond to the labels that would have been assigned by
the target function. The optimal amount of data lies somewhere in between.

Although the VC bounds remain loose even after constants have been dropped, the bounds tend
to maintain the appropriate shape and thus predict the optimal set of sources quite well. In general,
when C is set to small values, the predicted error values for small amounts of data (low k) tend to be
quite accurate, while predicted values for larger amounts of data overestimate the true error. AsC is
set to larger values, the predictions become much larger in magnitude than the true error curves, but
the shape of the prediction curves become more similar to the true error. In both cases, although the
bounds are loose, they can still prove useful in determining the optimal set of sources to consider.
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Appendix A. Proof of Lemma 8

The proof relies on McDiarmid’s inequality (McDiarmid, 1989), which is stated here for complete-
ness.

Lemma 17 (McDiarmid’s inequality) Let x1,...,Xn be independent random variables taking on
values in a set A and assume that f : A" — R satisfies

sup  |fF(Xa,..oyXn) — F(X1ye ooy Xiz1, Xiry Xik, - - Xn) | < G
X1, X0, X €A

for every 1 <i <n. Then for everyt > 0,
Pr{f (X0, Xn) — E[f(Xe,...,%n)] > 1] < exp 272
Here we show one direction of the bound, namely that with probability 1 — /2, for all h € A,

2In(2/3)

e(h) < &(h) + 2LRn(#) + -

The proof of the other direction is nearly identical. For i€ {1,...,n}, let (x;,y;) be the ith train-
ing instance, distributed according to P;, and let (x{,y;) be independent random variables drawn

according to P;. Note that for all h € #,

e(h) = e(h)+é(h)—é(h) <é(h)+ sup (e(h’)—é(n))
WeH

. 10 )
= e<h)+sug[<5{w [ Zlcp(y., Xi ]—nizlcp(yhh(xi)))
= &(h)+ sup (E{w}, [ Zlcrf yi,h'(x)) +alyi, )]
h/
—i;d(yi,h’(xi))ﬂp(yi,o)) :

When only one instance (xi,yi) changes, the sup term can change by at most 2/n. Thus we can
apply McDiarmid’s inequality to see that with probability at least 1 — /2,

13 ! h (v 13 / 2In(2/9)
Sup (E [ni;d(yiah (Xi))] —ﬁizlfd(yi,h (Xi)))] + e

where the outer expectation is with respect to set of training instances {(x;,yi)}{"; and the inner
expectation is with respect to the set of random variables {(x{,y;)}!' ;. Now it suffices to show that

e(h) <é(h)+E
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this middle term is bounded by 2LRn (). Using the fact that the supremum of an expectation is
less than or equal to the expectation of a supremum, we find that

SR L%gg{ (mem [i;d (yi’,h’(xi’))] - ii;d (yi,h’(Xi))>]

1 ! W (v /
< Bl K LSEE{“.Z (@O0 () — @(yi.h (Xi)))]
1 A ! W (v /
= Bl s doiy Ls,gg{n 20 (@i, () — @ (yi.h (Xi)))]
2 n
< Bloomiadon, LS,‘EJE{ n 2,09 (ynh’<><i))] =Rn(@o 7).

i=
Lemma 7 implies that Ry (@ o H) < 2LR, () since @is Lipschitz with parameter L. The result
follows.
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