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Abstract. We investigate the problem nfodel selectiom the setting of supervised learning of boolean functions

from independent random examples. More precisely, we compare methods for finding a balance between the
complexity of the hypothesis chosen and its observed error on a random training sample of limited size, when the
goal is that of minimizing the resulting generalization error. We undertake a detailed comparison of three well-
known model selection methed— a \ariation of Vapnik’'sGuaranteed Risk MinimizatiofGRM), an instance of
Rissanen’Minimum Description Length PrincipigMDL), and (hold-out) cross validation (CV). We introduce a
general class of model selection methods (cghedalty-basednethods) that includes both GRM and MDL, and
provide general methods for analyzing such rules. We provide both controlled experimental evidence and formal
theorems to support the following conclusions:

e Even on simple model selection problems, the behavior of the methods examined can be both complex and
incomparable. Furthermore, no amount of “tuning” of the rules investigated (such as introducing constant
multipliers on the complexity penalty terms, or a distribution-specific “effective dimension”) can eliminate
this incomparability.

e Itis possible to give rather general bounds on the generalization error, as a function of sample size, for penalty-
based methods. The quality of such bounds depends in a precise way on the extent to which the method
considered automatically limits the complexity of the hypothesis selected.

e Foranymodel selection problem, the additional error of cross validation comparauytother method can
be bounded above by the sum of two terms. The first term is large only if the learning curve of the underlying
function classes experiences a “phase transition” betykeny)m andm examples (wherg is the fraction
saved for testing in CV). The second and competing term can be made arbitrarily small by inceasing

e The class of penalty-based methods is fundamentally handicapped in the sense that there exist two types of
model selection problems for which every penalty-based method must incur large generalization error on at
least one, while CV enjoys small generalization error on both.

Keywords: model selection, complexity regularization, cross validation, minimum description length principle,
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1. Introduction

In the model selection problem (sometimes also known as complexity regularization), we
must balance the complexity of a statistical model with its goodness of fit to the training data.
This problem arises repeatedly in statistical estimation, machine learning, and scientific
inquiry in general. Instances of the model selection problem include choosing the best
number of hidden nodes in a neural network, determining the right amount of pruning to
be performed on a decision tree, and choosing the degree of a polynomial fit to a set of
points. In each of these cases, the goal is not to minimize the error on the training data, but
to minimize the resulting generalization error.

The model selection problem is coarsely prefigured by Occam’s Razor: given two hy-
potheses that fit the data equally well, prefer the simpler one. Unfortunately, Occam’s Razor
does not explicitly address the more complex, more interesting and more common problem
in which we have a simple model with poor fit to the data, and a complex model with good
fit to the data. Such a problem arises when the data is corrupted by noise, or when the
size of the data set is small relative to the complexity of the process generating the data.
Here we require not a qualitative statement of a preference for simplicity,quératitative
prescription— a formula or algorithm — specifying the relative merit of simplicity and
goodness of fit.

Many model selection algorithms have been proposed in the literature of several different
research communities, too many to productively survey here. Various types of analysis
have been used to judge the performance of particular algorithms, including asymptotic
consistency in the statistical sense (Vapnik, 1982; Stone, 1977), asymptotic optimality
under coding-theoretic measures (Rissanen, 1989), and more seldom, rates of convergence
for the generalization error (Barron & Cover, 1991). Perhaps surprisingly, despite the
many proposed solutions for model selection and the diverse methods of analysis, direct
comparisons between the different proposals (either experimental or theoretical) are rare.

The goal of this paper is to provide such a comparison, and more importantly, to describe
the general conclusions to which it has led. Relying on evidence that is divided between
controlled experimental results and related formal analysis, we compare three well-known
model selection algorithms. We attempt to identify their relative and absolute strengths
and weaknesses, and we provide some general methods for analyzing the behavior and
performance of model selection algorithms. Our hope is that these results may aid the
informed practitioner in making an educated choice of model selection algorithm (perhaps
based in part on some known properties of the model selection problem being confronted).

Outline of the Paper

In Section 2, we provide a formalization of the model selection problem. In this formal-
ization, we isolate the problem of choosing the appropiateplexityfor a hypothesis or
model. We also introduce the specific model selection problem that will be the basis for our
experimental results, and describe an initial experiment demonstrating that the problem is
nontrivial. In Section 3, we introduce the three model selection algorithms we examine in
the experiments: Vapnik's Guaranteed Risk Minimization (GRM) (Vapnik, 1982), an in-
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stantiation of Rissanen’s Minimum Description Length Principle (MDL) (Rissanen, 1989),
and Cross Validation (CV).

Section 4 describes our controlled experimental comparison of the three algorithms. Using
artificially generated data from a known target function allows us to plot complete learning
curves for the three algorithms over a wide range of sample sizes, and to directly compare
the resulting generalization error to the hypothesis complexity selected by each algorithm.
Italso allows us to investigate the effects of varying other natural parameters of the problem,
such as the amount of noise in the data. These experiments support the following assertions:
the behavior of the algorithms examined can be complex and incomparable, even on simple
problems, and there are fundamental difficulties in identifying a “best” algorithm; there is
a strong connection between hypothesis complexity and generalization error; and it may be
impossible to uniformly improve the performance of the algorithms by slight modifications
(such as introducing constant multipliers on the complexity penalty terms).

In Sections 5, 6 and 7 we turn our efforts to formal results providing explanation and
support for the experimental findings. We begin in Section 5 by upper bounding the error of
any model selection algorithm falling into a wide class (capetalty-basedlgorithms)
that includes both GRM and MDL (but not cross validation). The form of this bound
highlights the competing desires for powerful hypotheses and controlled complexity. In
Section 6, we upper bound the additional error suffered by cross validation compared to
any other model selection algorithm. This quality of this bound depends on the extent to
which the function classes have learning curves obeying a classical power law. Finally, in
Section 7, we give an impossibility result demonstrating a fundamental handicap suffered
by the entire class of penalty-based algorithms that does not afflict cross validation. In
Section 8, we give a summary and offer some conclusions.

2. Definitions

Throughout the paper we assume that a fixed booleayet functionf is used to label
inputs drawn randomly according to a fixed distribution For any boolean functioh, we
define thegeneralization errof

e(h) = esp(h) E Proeplh(z) # f(2)] (1)

We useS to denote the random variatfe= (x1,b1), . . ., (., by), Wwherem is thesample
size eachz; is drawn randomly and independently accordingxoandb; = f(z;) @ ¢;,

where the noise bit; € {0,1} is 1 with probabilityn; we calln € [0,1/2) thenoise rate
In the case that # 0, we will sometimes wish to discuss the generalization errarwith

respect to the noisy examples, so we define

¢"(h) € Proepolh(z) # f(z) ® d, 2)

wherec is the noise bit. Note tha{h) ande”(h) are related by the equality

¢"(h) = (1 —=n)e(h) +n(1 —e(h))
= (1 —2n)e(h) +n. (3)
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Thus,e”(h) is simply a “damped” version @f 1), and both quantities are minimized by the
sameh. For this reason, we use the teganeralization errolinformally to refer to either
guantity, making the distinction only when it is important.

We assume a nested sequenchygfothesis classgsr model3? F; C --- C F; C ---.
The target functiorf may or may not be contained in any of these classes, so we define

def

hg argmin,cp, {€(h)} and e,pi(d) = €(ha) (4)

(similarly, e, (d) def €"(hq)), where we assume for simplicity that there exists a minimum
value ofe(h) achievable by a function in the clagg. If this were not the case we could
slightly alter the definition ot(h) so that it have some bounded precision. The function
hq is the best approximation tb (with respect taD) in the class;, ande,,, (d) measures
the quality of this approximation. Note thaj,.(d) is a non-increasing function afsince
the hypothesis function classes are nested. Thus, larger valdesaofonly improve the
potentialapproximative power of the hypothesis class. Of course, the difficulty is to realize
this potential on the basis of a small sample. Note that in these definitions, we can think of
the function class index as an abstract measure of the complexity of the functiods;in

With this notation, the model selection problem can be stated informally: on the basis of
arandom sampl# of a fixed sizen, the goal is to choose a hypothesismplexityd, and a
hypothesis: € F;, such that the resulting generalization ewr@r) is minimized. In many
treatments of model selection, including ours, it is explicitly or implicitly assumed that the
model selection algorithm has control only over the choice of the compléxibut not
over the choice of the final hypothedis= Fj;. Itis assumed that there is a fixed algorithm
that chooses a set oindidatehypotheses, one from each hypothesis class. Given this set
of candidate hypotheses, the model selection algorithm then chooses one of the candidates
as the final hypothesis.

To make these ideas more precise, we definértiring error

e(h) = és(h) & [{{xi,bi) € S : h(w;) # bi}l/m, 5)
and theversion space

VS(d) = VSs(d) < {heFy:e(h)= Jmin {¢(1)}}. (6)
Note thatVS(d) C F; may contain more than one function iy — several functions
may minimize the training error. If we are lucky, we have in our possession a (possibly
randomized)earning algorithmL that takes as input any sampeand any complexity
valued, and outputs a membéy, of V.S(d) (using some unspecified criterion to break ties
if |VS(d)| > 1). More generally, it may be the case that findamgy function in V.S(d)
is intractable, and that is simply a heuristic (such as backpropagation or ID3) that does
the best job it can at finding, € F,; with small training error on inpu§ andd. In this
paper we will consider both specific problems for which there is an efficient algorithm
for selecting a function from the version space, and the more abstract case infwhih
be arbitrary. In either case, we define
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ha Y L(S,d) and é(d) = é1.5(d) L e(h). Q)

Note that we exped(d), like ¢, (d), to be a non-increasing function éf— by going to
a larger complexity, we can only reduce our training error. Indeed, we may even expect
there to be a sufficiently large valdg ,x (determined by the sequence of function classes,
the learning algorithm, the target function and distribution) suchdtaat.x) = 0 always.

We can now give a precise statement of the model selection problem. First of all, an
instanceof the model selection problem consists of a tudle,; }, f, D, L), where{F;} is
the hypothesis function class sequentés the target functionD is the input distribution,
andL is the underlying learning algorithm. Theodel selection problei then: Given the
sampleS, and the sequence of functiohs = L(S,1),..., hq = L(S,d), ... determined
by the learning algorithr, select a complexity valuésuch thaﬁg minimizes the resulting
generalization error. Thus, a model selection algorithm is given both the s&hapié the
sequence of (increasingly complex) hypotheses derivédftym S, and must choose one of
these hypotheses. Notice that “special” model selection criteria that incorporate knowledge
about the behavior of the learning algoritlinmay be appropriate in certain cases; however,
we hold thatgood general model selection algorithms should at least perform reasonably
well in the case thal is actually a training error minimization procedure.

The current formalization suffices to motivate a key definition and a discussion of the
fundamental issues in model selection. We define

€(d) = er,s(d) = e(ha). (8)

Thus, ¢(d) is a random variable (determined by the random varigfl¢hat gives the

true generalization erroof the functionh, chosen byL from the classF,;. Of course,

e(d) is not directly accessible to a model selection algorithm; it can only be estimated or
guessed in various ways from the sam§leA simple but important observation is that no
model selection algorithm can achieve generalization error lessithaf{¢(d)}. Thus the
behavior of the function(d) — especially the location and value of its minimum — is in
some sense the essential quantity of interest in model selection.

The prevailing folk wisdom in several research communities posits the following picture
for the “typical” behavior ot(d), at least in the optimistic case that the learning algorithm
implements training error minimization. (In the ensuing discussion, if there is classification
noise the quantitiesﬁpt ande” should be substituted feg,; ande). First, for small values
of d (d << m), e(d) is large, due simply to the fact thag,;(d) is large for smalki, and
e(d) > eopt(d) always holds. Atsuch small training errors will be close to generalization
errors (that is¢(h) ~ ¢(h) for all h € F; — also known asiniform convergencer small
“variance™), and VS (d) will contain only functions whose true generalization error is near
the best possible if;. But this best generalization error is large, because we have poor
approximation power for small (that is, we have a strong “bias”). For large values of
d (usuallyd =~ m), ¢(d) is again large, but for a different reason. Here we expect that
€0pt(d) may actually be quite small (that is, we have a weak “bias”, Bndontains a good
approximation to the target functigf). But becausé’; is so powerful, V.S (d) will contain
many poor approximations as well (that 185 (d) contains functiong with é(h) << e(h)

— so uniform convergence doasthold in F;;, or we have large “variance®)
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As a demonstration of the validity of this view, and as an introduction to a particular model
selection problem that we will examine in our experiments, we call the reader’s attention
to Figure 1. In this model selection problem (which we shall refer to amtbevals model
selection problemthe inputdomain is simply the real line segmignt ], and the hypothesis
classF, is simply the class of all boolean functions oyer1] in which we allow at most
d alternations of label; thusj; is the class of all binary step functions with at mdgg
steps. For the experiments, the underlying learning algorittitrat we have implemented
performs training error minimization. This is a rare case where efficient minimization is
possible; we have developed an algorithm based on dynamic programming that runs in
nearly linear time, thus making experiments on large samples feasible. The sahmate
generated using the target functionfifly, that divides|0, 1] into 100 segments of equal
width 1/100 and alternating label. (Details of the algorithm and the experimental results of
the paper are provided in the Appendix.) In Figure 1 we gld}, ande” (d) (which we can
calculate exactly, since we have chosen the target function) Wheemsists ofn = 2000
random examples (drawn from the uniform input distribution) corrupted by noise at the rate
n = 0.2. For our current discussion it suffices to note th@k) (similarly, €”(d), which is
a linear function ok(d)) does indeed experience a nontrivial minimum. Not surprisingly,
this minimum occurs near (but not exactly at) the target complexity of 100.

In Figure 2, we instead plot the differeng@l) — € (d) for the same experiments. Notice
that there is something tempting about the simplicity of this plot. More precisely, as a
function of d/m it appears thaé(d) — €7(d) has an initial regime (fod << 100, or for
thism, d/m < 100/2000 = 0.05) with behavior that is approximately(,/d/m), and a
later regime (ford/m >> 0.05) in which the behavior is linear id/m. Unfortunately,
the behavior near the target complexity= 100 does not admit easy characterization.
Nevertheless, Figure 2 demonstrates why one might be tempted to posit a “penalty” for
complexity that is a function off/m, and to simply add this penalty &id) as a rough
approximation ta"(d).

According to Figure 1 and conventional wisdom, the best choicé should be an
intermediate value (that isiotd ~ 0 or d ~ m). But how should we chooséwhen the
most common empirical measure of generalization ability — the funétiégn— simply
decreases with increasidgand whose straightforward minimization will therefore always
result in a large value of that causes overfitting? This is the central question raised by the
model selection problem, and many answers have been proposed and analyzed. We review
three of them in the following section.

We conclude this section with a list of the various error measures that were presented in
the section, and which are used extensively throughout the paper.

¢ ¢(h)denotesthe generalization error of a hypothgsisth respect to the target function
f and the distributiorD. Namely,e(h) def Pryeplh(z) # f(x)]. Similarly, for noise

raten > 0, €"(h) def Pryep.clh(z) # f(x) & ], wherec is the noise bit which ig
with probabilityn, and0 with probability 1 — 7.

e ¢(h) is the training error oh on sampleS. Namely,é(h) = és(h) = |[{{x;,b;) € S :
(x;) # b;}|/m, wherem is the size ofS.
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o ¢,p(d) is the minimum generalization error taken over all hypothesds;irfNamely,
copt(d) % e(hq), wherehy ' argming,c ., {e(h)}. Similarly, ¢, (d) ' ¢?(hy).

e ¢(d) is the generalization error of the hypothesis chosen by the learning algatithm

in hypothesis clas$y;, given sampleS, andé(d) is the training error of the chosen

hypothesis. Namely(d) = ¢, s(d) def e(hg), andé(d) = é1,.s(d) & é(hg), where

hqg = L(S,d). €'(d) is defined analogously.

3. Three Algorithms for Model Selection

The first two model selection algorithms we consider are members of a general class that
we shall informally refer to agenalty-basedlgorithms (and shall formally define shortly).
The common theme behind these algorithms is their attempt to construct an approximation
to €(d) solely on the basis of the training erréd) and the complexityl, often by try-
mg to “correct” é(d) by the amount that it underestimates) through the addition of a
“complexity penalty” term.
In Vapnik's Guaranteed Risk Minimizatiqg@RM) (Vapnik, 1982) is chosen according
to the rule

J:argmind{ (d) + (d/m) (1—1— \/1—1—67)} 9)

where we have assumed thiais the Vapnik-Chervonenkis dimension (Vapnik & Chervo-
nenkis, 1971; Vapnik, 1982), of the claBy; this assumption holds in the intervals model
selection problem. Vapnik's original GRM actually multiplies the second term inside the
argmin{-} above by a logarithmic factor intended to guard against worst-case choices from
VS(d), and thus has the following form:

- . d(2m 4 q) édym
d = argmin, {e(d) + dT (1 + \/l + d(%Tl) (10)

However, we have found that the logarithmic factor renders GRM uncompetitive on the
ensuing experiments, and hence in our experiments we only consider the modified and quite
competitive rule given in Equation (9) whose spirit is the same. The origin of this rule can
be summarized informally as follows (where for sake of simplicity we ignore all logarithmic
factors): it has been shown (Vapnik, 1982) that with high probability for edeapd for

everyh € Fy, /d/mis an upper bound dié(h) —e(h)| and henc¢€( ) e(d)] < +/d/m.

In fact, the stronger uniform convergence property holé&:) — e(h)| < \/d/m for all

h € Fy; the analogous statement holds #h) ande(h) in then # 0 case. Thus, by
simply adding,/d/m to é(d), we ensure that the resulting sum upper bowtds$, and if

we are optimistic we might further hope that the sum is in fact a close approximation to
e(d), and that its minimization is therefore tantamount to the minimizatioa(®f. The
actual rule given in Equation (9) is slightly more complex than this, and reflects a refined
bound onjé(d) — e(d)| that varies fromd/m for é(d) close to 0 to,/d/m otherwise.
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The next algorithm we consider, tinimum Description Length Principi@DL) (Ris-
sanen, 1978; Rissanen, 1986; Rissanen, 1989; Barron & Cover, 1991, Quinlan & Rivest,
1989) has rather different origins than GRM. MDL is actually a broad class of algorithms
with a common information-theoretic motivation, each algorithm determined by the choice
of a specificcoding scheme for both functions and their training errors. This two-part
code is then used to describe the training santpleThe familiar MDL motivation re-
gards each potential hypothesis function as a code fdatiedsin the sample5, assuming
the code recipient has access only to the inputS:irthus, the “best” hypothesis is the
one minimizing the total code length for the labels in the given coding scheme (the num-
ber of bits needed to represent the hypothesis function, plus the number of bits needed
to represent the labels given the hypothesis function). To illustrate the method, we give
a coding scheme for the intervals model selection problerhet i be a function with
exactlyd alternations of label (thug, € Fj). To describe the behavior afon the sam-
ple S = {(x;,b;)}, where we assume, without loss of generality, that the examples are
ordered, we can simply specify thkinputs whereh switches value (that is, the indices
i such thath(z;) # h(ziy1)) 6. This takeslog (") bits; dividing by m to normalize,
we obtain(1/m)log (}) ~ H(d/m) (Cover & Thomas, 1991), whefk(-) is the binary

def

entropy function (i.eH(p) = — (plogp + (1 — p)log(1 — p)) ). Now givenh, the labels

in S can be described simply by coding the mistake& ¢that is, those indiceswhere
h(z;) # f(z;)), at a normalized cost df(¢(h)). Technically, in the coding scheme just
described we also need to specify the valueg ahdé(h) - m, but the cost of these is neg-
ligible. Thus, the version of MDL that we shall examine for the intervals model selection
problem dictates the following choice df

d = argmineg /9 {H(€(d)) + H(d/m)}. (11)

In the context of model selection, GRM and MDL can both be interpreted as attempts to
modele(d) by some function o(d) andd. More formally, a model selection algorithm of
the form

d = argmin {G(é(d),d/m)} (12)

shall be called aenalty-basedlgorithm whereG(-, -) is referred to as @enalty-based
function’. Notice that an ideal penalty-based function would ob6&y(d),d/m) ~ €(d)
(or at leasiG(é(d), d/m) ande(d) would be minimized by the same valued)f

The third model selection algorithm that we examine has a different spirit than the penalty-
based algorithms. laross validation(CV) (Stone, 1974; Stone, 1977), rather than attempt
to reconstructe(d) from é(d) andd, we instead settle for a “worse({d) (in a sense made
precise shortly) that we calirectly estimateMore specifically, in CV we use only a fraction
(1 —~) of the examples i$ to obtain the hypothesis sequerigec Fi, ..., hq € Fy,. ..
—thatis,hy isnowL(S’, d), whereS’ consists of the firsfl — v)m examples in5. Here
v € [0,1] is a parameter of the CV algorithm whose tuning we discuss briefly later. For
simplicity we assume thatm is an integer. CV choosebaccording to the rule

d = argmin,{ég (hq)} (13)
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whereég: (BJ,,) is the error ofh, on S”, the lastym examples ofS that were withheld
in selectinghy. Notice that for CV, we expect the quantityd) = ¢(hg) to be (perhaps
considerably) larger than in the case of GRM and MDL, becausemowas chosen on

the basis of only(1 — v)m examples rather than alh examples. For this reason we

wish to introduce the more general notatioh(d) ef e(hq) to indicate the fraction of the

sample withheld from training. CV settles fef (d) instead ofe®(d) in order to have an
independent test set with which to directly estimatéd).

In practice, it is typical to use various formsrofilti-fold cross validationin which many
(either disjoint or overlapping) training set/test set splits are selected from the original
sample, and the test set errors are averaged. The main advantage of multi-fold methods
is that each sample point is used for training on some splits; the main disadvantage is
the computational expense, and that the test sets are no longer independent. While we
expect that for many problems, this lack of independence does not introduce diminished
performance, we are unable to prove our general theoretical results for multi-fold methods,
and thus concentrate on the basic cross-validation method outlined above. For this reason it
is probably fair to say that we err on the side of pessimism when evaluating the performance
of CV-type algorithms throughout the investigation.

4. A Controlled Experimental Comparison

Our results begin with a comparison of the performance and properties of the three model
selection algorithms in a carefully controlled experimental setting — namely, the intervals
model selection problem. Among the advantages of such controlled experiments, at leastin
comparison to empirical results on data of unknown origin, are our ability to exactly measure
generalization error (since we know the target function and the distribution generating the
data), and our ability to precisely study the effects of varying parameters of the data (such
as noise rate, target function complexity, and sample size), on the performance of model
selection algorithms. The experimental behavior we observe foreshadows a number of
important themes that we shall revisit in our formal results.

We begin with Figure 3. To obtain this figure, a training sample was generated from
the uniform input distribution and labeled according to an intervals function [Ovef
consisting of 100 intervals of alternating label and equal Widie sample was corrupted
with noiserate) = 0.2. In Figure 3, we have plotted theiegeneralization errors (measured
with respect to the noise-free source of examptes):, enpr, @andecy (Using test fraction
~ = 0.1 for CV) of the hypotheses selected from the sequénce. ., hg, . . . by each the
three algorithms as a function of the sample sizevhich ranged from 1 to 3000 examples.

As described in Section 2, the hypotheggswere obtained by minimizing the training
error within each clasg);. Details of the code used to perform these experiments is given
in the appendix.

Figure 3 demonstrates the subtlety involved in comparing the three algorithms: in partic-
ular, we see thatone of the three algorithms outperforms the others for all sample sizes.
Thus we can immediately dismiss the notion that one of the algorithms examined can be
said to be optimal for this problem in any standard sense. Getting into the details, we see
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that there is an initial regime (for. from 1 to slightly less than 1000) in whiehyp,, is the
lowest of the three errors, sometimes outperfornaigg, by a considerable margin. Then
there is a second regime (for about 1000 to about 2500) where an interesting reversal of
relative performance occurs, since new,; is the lowest error, considerably outperform-
ing empr, Which has temporarily leveled off. In both of these first two regiragsremains

the intermediate performer. In the third and final regimg,;, decreases rapidly to match
eqrym and the slightly largetcy, and the performance of all three algorithms remains quite
similar for all larger sample sizes.

Insight into the causes of Figure 3 is given by Figure 4, where for the same runs used
to obtain Figure 3, we instead plot the quantiti®g;, dupr anddqy, the value ofd
chosen by GRM, MDL and CV respectively (thus, the “correct” value, in the sense of
simply having the same number of intervals as the target function, is 100). Here we
see that for small sample sizes, corresponding to the first regime discussed for Figure 3
above,dqry is slowly approaching 100 from below, reaching and remaining at the target
value for aboutn = 1500. Although we have not shown it explicitly, GRM is incurring
nonzero training error throughout the entire rangenofin comparison, for a long initial
period (corresponding to the first two regimesf, MDL is simply choosing the shortest
hypothesis that incurs no training error (and thus encodes both “legitimate” intervals and
noise), and consequenttp;, grows in an uncontrolled fashion. It will be helpful to
compute an approximate expressiondgi,;, during this “overcoding” period. Assuming
that the target function is equally spaced intervals, an approximate expression for the
number of intervals required to achieve zero training error is

dy 2n(1 —n)m + (1 — 2n)?s. (14)

For the current experimest= 100 andn = 0.2. Equation (14) can be explained as follows.
Consider the event that a given pair of consecutive inputs in the sample have opposite labels.
If the two points belong to the same interval of the target function, then this event occurs
if and only if exactly one of them is labeled incorrectly, which happens with probability
2n(1 —n). If the two points are on opposite sides of a target switch in the target function,
then this event occurs either if both of them are labeled correctly or if both of them are
labeled incorrectly, which happens with probabilify + (1 — n)2. Since the expected
number of pairs of the first type i& — s, and the expected number of pairs of the second
type iss, we obtain (ignoring dependencies between the different pairs) that the expected
number of switch points in the sample is roughly

A —n)(m—s)+ 0" +1-n?s = 2n(L —n)m+ (1 —4n+4n*)s  (15)
= 29(1 —m)m+ (1 -2n)*s = do . (16)

In the first regime of Figures 3 and 4, the overcoding behaigy, ~ dy of MDL is
actually preferable, in terms of generalization error, to the initial “undercoding” behavior
of GRM, as verified by Figure 3. Onag;z\ approaches 100, however, the overcoding
of MDL is a relative liability, resulting in the second regime. Figure 4 clearly shows that
the transition from the second to the third regime (where approximate parity is achieved)
is the direct result of a dramatic correctiondgy;, from dy (defined in Equation (14)) to
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the target value of 100. Finally., makes a more rapid but noisier approach to 100 than
daru, and in fact also overshoots 100, but much less dramaticallycingn This more

rapid initial increase again results in superior generalization error compared to GRM for
smallm, but the inability ofd.y to settle at 100 results in slightly higher error for larger

In a moment, we shall further discuss the interesting behavids;of anddyp,, but first
we call attention to Figures 5 to 12. These figures, which come in pairs, show experiments
identical to that of Figures 3 and 4, but for the smaller noise rates0.0,0.1 and the
larger noise rateg = 0.3,0.4; these plots also have an increased sample size range,
m = 1...6500. (Thus, the scale of these figures is different from that of Figures 3 and 4.)
Notice that ag) increases, the initial period of undercoding by GRM seems to increase
slightly, but the initial period of overcoding by MDL increases tremendously, the result
being that the first regime of generalization error covers approximately the same values of
m (about 1 to 1000), but the second regime covers a wider and wider ramgeunttil at
n = 0.4, dypr, has not corrected to 100 evenmat= 6500 (further experiments revealed
thatm = 15000 is still not sufficient).

The behavior of the Iengthi;GRM anddyp,, in Figure 4 can be traced to the form of the
total penalty functions for the two methods. For instance, in Figures 13, 14, and 15, we
plot the total MDL penaltyH (é(d)) + H(d/m) as a function of complexity for the fixed
sample sizesn = 500, 2000 and4000 respectively, again using noise rate= 0.20. At
m = 500, we see that the rather dramatic total penalty curve has its global minimum at
approximatelyd = 200, which as expected (we are in the MDL overcoding regime at this
small sample size) igy, the point of consistency with the noisy sample. However, a small
local minimum is already developing near the target valué ©f100. By m = 2000, this
local minimum is quite pronounced, and beginning to compete with the global consistency
minimum (which for this noise rate and sample size has now moved out to approximately
dy = 650). At m = 4000, the former local minimum af = 100 has become the global
minimum.

The rapid transition of\in;, that marks the start of the final regime of generalization error
discussed above (approximate parity of the three methods) is thus explained by the switch-
ing of the global total penalty minimum frody to d = 100. From the expression given in
Equation (14) we can infer that this switching of the minimum is governed by a competi-
tion between the quantitis (2n(1 — ) + (s/m)(1 — 2n)?) andH(n) + H(s/m). The
first quantity is the expected value of the total penalty of MDL for the chdice d,
(where the hypothesis chosen is consistent with the data and no training error is in-
curred), while the second quantity is the total penalty of MDL for the (correct) choice
d = s. As an interesting digression, in Figures 16, 17 and 18, we plot the difference
H (2n(1 —n) + (s/m)(1 — 2n)?) — (H(n) + H(s/m)) as a function of) for s /m = 0.01
ands/m = 0.04. Note that if this function is negative, we predict that MDL will prefer
d = dy (overcoding), and if it is positive, we predict that MDL will prefér= s. For
s/m = 0.01, we see that the function is positive for small noise rates and negative for
larger noise rates. Thus, make the intuitively reasonable prediction that for this value of
the ratios/m, increasing the noise rate can only degrade the behavior, by forcing the re-
versal of the global minimum frormd = s to d = dy. Curiously, however, the difference
exhibits nonmonotonic behavior as a functiorsgfn. For the case/m = 0.04, this non-
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monotonicity has a subtle but dramatic effect, since it causes the difference to move from
negative to positive at smajl Thus we predict that for very small valuesp{less than
0.015), by increasingthe noise rate slightly (that is, by adding a small amount of additional
classification noise), we can actually cause the global minimum to shift fremd, to

d = s, and consequently improve the resulting generalization error. These predictions are
in fact confirmed by experiments we conducted.

In Figures 19, 20, and 21, we give plots of the total GRM penalty for the same three
sample sizes and noise rate. Here the behavior is much more controlled — for each sample
size, the total penalty has the same single-minimum bowl shape, with the minimum starting
to the left ofd = 100 (the minimum occurs at roughty= 40 for m = 500), and gradually
moving overd = 100 and sharpening for large.

A natural question to pose after examining these experiments is the following: is there
a penalty-based algorithm that enjoys the best properties of both GRM and MDL? By this
we would mean an algorithm that approaches the “corréatédlue (whatever it may be
for the problem in hand) more rapidly than GRM, but does so without suffering the long,
uncontrolled “overcoding” period of MDL. An obvious candidate for such an algorithm
is simply a modified version of GRM or MDL, in which we reason (for example) that
perhaps the GRM penalty for complexity is too large for this problem (resulting in the
initial reluctance to code), and we thus multiply the complexity penalty term in the GRM
rule (the second term inside thegmin{-}) in Equation (9) by a constant less than 1 (or
analogously, multiply the MDL complexity penalty term by a constant greater than 1 to
reduce overcoding). The results of an experiment on such a modified version of GRM
are shown in Figures 22 and 23, where the original GRM performance is compared to a
modified version in which the complexity penalty is multiplied by 0.5. Interestingly and
perhaps unfortunately, we see that there is no free lunch: while the modified version does
indeed code more rapidly and thus reduce the smajéneralization error, this comes at the
cost of a subsequent overcoding regime with a corresponding degradation in generalization
error (and in fact a considerably slower returndto= 100 than MDL under the same
conditionsy. The reverse phenomenon (reluctance to code) is experienced for MDL with
an increased complexity penalty multiplier, as demonstrated by Figures 24 and 25. This
observation seems to echo recent results (Schaffer, 1994; Wolpert, 1992) which essentially
prove that no learning algorithm can perform well on all problems. However, while these
results show that for any given learning algorittimere exisiearning problems (typically
in which the target function is chosen randomly from a large and complex space) on which
the performance is poor, here we have giveregplicit and very simple learning problem
on which no simple variant of GRM and MDL can perform well for all sample sizes.

Let us summarize the key points demonstrated by these experiments. First, none of
the three algorithms dominates the others for all sample sizes. Second, the two penalty-
based algorithms seem to have a bias either towards or against coding that is overcome
by the inherent properties of the data asymptotically, but that can have a large effect on
generalization error for small to moderate sample sizes. Third, this bias cannot be overcome
simply by adjusting the relative weight of error and complexity penalties, without reversing
the bias of the resulting rule and suffering increased generalization error for some range of
m. Fourth, while CV is not the best of the algorithms for any valugpft does manage to
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fairly closely track the best penalty-based algorithm for each value, @nd considerably
beats both GRM and MDL in their regimes of weakness. We now turn our attention to our
formal results, where each of these key points will be developed further.

5. A Bound on the Error for Penalty-Based Algorithms

We begin our formal results with a bound on the generalization error for penalty-based
algorithms that enjoys three features. First, it is general: it applies to practically any
penalty-based algorithm, and holds for any model selection problem (of course, there is a
price to pay for such generality, as discussed below). Second, for certain algorithms and
certain problems the bound can give rapid rates of convergence to small error. Third, the
form of the bound is suggestive of some of the behavior seen in the experimental results.
Our search for a bound of this type was inspired by work of Barron and Cover (1991),
Barron and Cover give bounds of a similar form (which they callitttex of resolutioh
on the generalization error of MDL in the context of density estimation.

For a given penalty-based algorithm, &te the function that determines the algorithm
as defined in Equation (12). In Theorem 1 we give a bound on the generalization error of
such an algorithm, where the only restriction made on the algorithm i&thatcontinuous
and increasing in both its arguments. The bound we give consists of two terms. The
first term, denoted byRs(m), is a function of the sample size;, and asm — oo it
approaches the minimum generalization error achievabéjrof the classed’;. This
minimum value, by definition, is a lower bound on the generalization error achieved by
any possible method. Since the bound we give applies to quite a wide range of model
selection algorithms, we are not able to provide a general statement concerniatg thfe
convergence oR(m) to the optimal error, and this rate strongly depends on the properties
of G. The general form of?(m) (as a function ofG as well asm) is described in the
proof of Theorem 1. Following the proof we discuss what properties dukaive in
order thatR(m) converge at a reasonable rate to the optimal error. We also give several
examples of the application of the thearem in which the exact forRygdfn) and hence its
convergence rate become explicit. The second term in the bound is a functioasoivell,
and it decreases very rapidly asincreases. However, it is also an increasing function of
the complexity chosen by the penalty-based algorithm, and thus, similarly to the first term,
is dependent on the properties@f We return to discuss this bound following the formal
theorem statement below. We state the bound for the special but natural case in which the
underlying learning algorithni is training error minimization. Towards the end of this
section we present a straightforward analogue for more gehéfdeorem 2). In addition,
we give a generalization of Theorem 1 to the noisy case (Theorem 3). In both theorems
the bound given on the generalization error has a very similar form to the bound given in
Theorem 1.

THEOREM 1 Let({Fy}, f, D, L) be an instance of the model selection problem in which

L performs training error minimization, and whergis the VC dimension of;. Let

G : Rx R — Rbe afunctionthatis continuous and increasing in both its arguments, and let
ec(m) denote the random variable whose value is the generalization error of the hypothesis
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chosen by the penalty-based model selection algorithaargmin,{G(é(d),d/m)} on a
training sample of size.. Then for any gived > 0, with probability at leasti — ¢

EG(m) < RG (m) + B(Ja m, 6) s (17)

where R (m) approacheaning{e,p:(d)} asm — oo, and wheregs(-, -, -) is defined as
follows: ford < m,

d In 2em 4 I 9m
B(d, m, ) defz\/ e e (18)
m

and ford > m, 8(d, m, 6) defy,

Before proving Theorem 1, let us further discuss the form of the bound given in the
theorem. The first termR(m), approaches the optimal generalization error withify
in the limit of largem, and the second term directly penalizes large complexity. If we want
the sumof the two terms in the bound to be meaningful, then we should be able to give a
bound onﬂ(&,m, 6) that decays to 0 witn, preferably as rapidly as possible. In other
words,we must be able to argue that the complexity of the hypothesis chosen is.limited
If we can do so, then combined with the bound on the first term we have a proof of the
method’sstatistical consistencfthat is, approach to the optimal error in the large sample
limit), and may even have a nice rate of approach to the optimal error. If we cannot do so,
then we are forced to consider the possibility that our method is simply fitting the sample,
and incurring large error because as a result. Such a possibility was clearly realized in the
experimental results for MDL, where a long period of unbounded hypothesis complexity
directly caused a long period of essentially constant generalization error as a function of
m. We return to this issue after the proof of Theorem 1.

In order to prove Theorem 1, we shall need to following uniform convergence bound
which is due to Vapnik (1982).

Uniform Convergence Bound Let F; be a hypothesis class with VC dimensibr: m.
Then, for everyn > 4 and for any giverd > 0, with probability at leastl — 6,

|6(h)_€(h)|<2\/d(ln2%+l)+ln% 19)

m

for everyh € F;. If the sample is noisy, then the same bound holds™gr)!°.

Proof of Theorem 1: Sinced is chosen to minimizé (é(d), d/m), we have that for every
d

G (e(&),d/m) < G (&d),d/m). (20)

Using the uniform convergence bound stated above we have that for anyigiven, with
probability at least — 6/m,

dl 2em 1 Im
le(h) — é(h)| < 2\/nd+n§ (21)
m




A COMPARISON OF MODEL SELECTION METHODS 21

for all h € F,;. Thus, with probability at least — §, the above holds for all < m. For

d > mwe can use the trivial bound that for evéryle(h) — é(h)| < 1, and together we have
that with probability atleast— ¢, for everyd, and for allh € Fy, |e(h)—é(h)| < B(d, m, ),
wheres(-, -, -) was defined in the statement of Theorem 1. If we now use the faattha

is increasing in its first argument, we can replace the occurrenéglpbn the left-hand
side of Equation (20) by(d) — ((d, m, ) to obtain a smaller quantity. Similarly, since
é(d) < é(hq) (recall thathy e argming ez {€(h)}), andé(hq) < e(ha) + B(d,m, ) =
€opt(d) + B(d, m,6), we can replace the occurrence éfl) on the right-hand side by
€opt(d) + B(d, m, ) to obtain a larger quantity. This gives

G (e(&) — B(d,m,$), J/m) < G (eopt(d) + B(d,m, 8),d/m). (22)

Now becausé&(-, -) is an increasing function of its second argument, we can further weaken
Equation (22) to obtain

G(e(&)—ﬁ(d,m,é),()) < G (eope(d) + B(d,m, 8),d/m) . (23)

If we defineGy(x) = G(x,0), then sinceZ(-, -) is increasing in its first argumer, ' ()
is well-defined, and we may write

e(d) < Gyt (G (eopt(d) + B(d,m,8),d/m)) + B(d, m, §). (24)

Now fix any small value- > 0. For thisr, letd’ be the smallest value satisfyiag,;(d') <
ming{e,p(d)} + 7 — thus,d’ is sufficient complexity to almost match the approxima-
tive power of arbitrarily large complexity. Examining the behaviof' (G (e,pt(d’) +
B(d',m,6),d' /m)) asm — oo, we see that the arguments approach the geipt(d’), 0),
and so

Gal(G<EOPt (d/) + ﬁ(dlv m, 6)7 d//m)) - Gal(G(EOPt (d/)’ 0)) (25)
= eopt(d) < min{eope(d)} +7 (26)

by continuity of G(+, -), as desired. By defining

Re(m) & wmin {G51 (G (eopi(d) + B(d,m,8),d/m))} (27)

we obtain the statement of the theorem. O
Given the definition ofRs(m) in Equation (27), we can now examine the two terms
Rg(m) andﬁ(c?, m, 6) more carefully and observe that they may be thought of as competing.

In order for R (m) to approachning{e,,.(d)} rapidly and not just asymptotically (that
is, in order to have a fasate of convergence) (-, -) should not penalize complexity too

strongly, which is obviously at odds with the optimization of the tq&(ﬂ, m, ). For
example, considet(é(d),d/m) = é(d) + (d/m)“ for some powerx > 0. Assuming
d < m, this rule is conservative (large penalty for complexity) for smaalland liberal
(small penalty for complexity) for large. Thus, to make(d, m, §) small we would liker
to be small, to prevent the choice of laigeHowever, by definition oR(m) we have that
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for the functionG in questionR ¢ (m) = ming{eqp:(d) + 5(d, m, ) + (d/m)*}, which
increases aa decreases, thus encouraging lasig@beral coding).

Ideally, we might wantG(-, -) to balance the two terms of the bound, which implicitly
involves finding an appropriatelyontrolled but sufficientlyrapid rate of increase .

The tension between these two criteria in the bound echoes the same tension that was seen
experimentally: for MDL, there was a long period of essentially uncontrolled growth of
(linearinm), and this uncontrolled growth prevented any significant decay of generalization
error (Figures 3 and'4). GRM had controlled growth af, and thus would incur negligible

error from our second term — but perhaps this growth teascontrolled, as it results in

the initially slow (smallm) decrease in generalization error.

To examine these issues further, we now apply the bound of Theorem 1 to several penalty-
based algorithms. In some cases the final form of the bound given in the theorem statement,
while easy to interpret, is unnecessarily coarse, and better rates of convergence can be
obtained by directly appealing to the proof of the theorem.

We begin with asimplified GRM variant (SGRM), defined bg(é(d),d,m) = é(d) +
B(d,m, ). Note that SGRM does not have the exact form required in Theorem 1. However,
as we shall show below, its generalization error can be bounded easily using the same
techniques applied in the proof of Theorem 1. We first observe that we can avoid weakening

Equation (22) to Equation (23), because h@rée(ci) — B(d,m, $),d, m) = ¢(d). Thus

the dependence ahin the bound disappears entirely, resulting in the following bound in
eserv(m): With probability at least — 6,

esarm(m) < m{}n {€opt(d) +28(d, m, )} . (28)

This is not so mysterious, since SGRM penalizes strongly for complexity (even more so
than GRM). This bound expresses the generalization error as the minimum of the sum of
the best possible error within each cldgsand a penalty for complexity. Such a bound
seems entirely reasonable, given that it is essentially the expected value of the empirical
quantity we minimized to choosegin the first place. Furthermore, df,,.(d) + 5(d, m, 6)
approximates(d) well, then such a bound is about the best we could hope for. However,
there is no reason in general to expect this to be the case.

As an example of the application of Theorem 1 to MDL we can derive the following
bound oreypy, (m) (where for anyr > 1 we defineH(x) to bel): With probability at least
1-46,

ewpi(m) < min {H™" (K (€ops(d) + B(d,m, 6)) + H(d/m))} + B(dor, m, §) (29)
< min {H (eopi(d) + B(d,m. 6)) + H(d/m)} + Bldyor,m,8) - (30)
< min {H(copi(d)) + H(B(d:m, 6)) + H(d/m)} + B(dypr,m,8)  (31)
< min {H(eops(d)) + 2H(B(d m, 6))} + By, m, 6) (32)

where we have used ~!(y) < y to get Equation (30) an#(x + y) < H(z) + H(y) to
get Equation (31). Again, we emphasize that the bound given by Equation (32) is vacuous
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without a bound oy, which we know from the experiments can be of ondeHowever,

by combining this bound with an analysis of the behaviaf,@f;. for the intervals problem

as discussed in Section 4 (see Equation (14) and the discussion following it), it is possible
to give an accurate theoretical explanation for the experimental findings for MDL.

As a final example, we apply Theorem 1 teariant of MDL in which the penalty for
coding is increased over the original, namélye(d), d/m) = H(e(d)) + 1/ \2H(d/m)
where)\ is a parameter that may depend @andm. Assuming that we never choode
whose total penalty is larger than 1 (which holds if we simply add the “fair coin hypothesis”

to ), we have that{(d/m) < \2. SinceH(z) > =z, forall 0 < = < 1/2, it follows that
\/d/m < . For anyé > exp(—A?m) we then have that

B(d,m, ) < 2\/ d In2em) £mA\Inm 0 33)

m

If \'is some decreasing function of (say,m~“ for some0 < « < 1), then the bound on
e(d) given by Theorem 1 decreases at a reasonable rate.

We conclude this section with two generalizations of Theorem 1. The firstis for the case in
which the penalty-based algorithm uses a learning algorithmhich does not necessarily
minimize the training error, and the second is for the case in which the sample is corrupted
by noise.

For Theorem 2 we need the following definition. We say that a learning algotitiisn
adequatef it has the following property. There exists a functiop : ' x N x [0,1] —

[0,1], such that for every give, with probability at leastl — 8, |éL(d) — €ope(d)| <

pr(d,m,6) for all d, whereé def minger,{é(h)}. Thatis,é,y is the minimum training
error (on the samplg) achievable inF;. Furthermore, asm — oo, pr(d, m,6) — [r,
whereiz, is some constant which depends bn Thus, if iy, is not very large, then in

the limit of largem, L does not perform much worse than the training error minimization
algorithm. We would like to note that many other definitions of adequacy are appropriate,
and can lead to statements similar to the one in Theorem 2 below.

THEOREM 2 Let({Fy}, f, D, L) be an instance of the model selection problem in which

L is an adequate learning algorithm, and whetas the VC dimension of;. LetG :

R x ® — R be a function that is continuous and increasing in both its arguments, and let
ec(m) denote the random variable whose value is the generalization error of the hypothesis
chosen by the penalty-based model selection algoritheargmin, {G(é(d),d/m)} on a
training sample of size:. Then

eqg(m) < Rg(m) + ﬁ(ci, m,6/2) (34)
whereR¢ (m) approachesning{e,,;(d)} + i, asm — oo, and is defined as follows:

Re(m) “ min {Gy ™ (G (ope(d) + pr(d.m, 8/2) + B(d,m, 8/2)) ,d/m)} (35)

whereGo(-) % G(-,0).
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Proof Sketch: The proof is very similar to the proof of Theorem 1 and hence we need
only point out the differences. As in the proof of Theorem 1 we have that for any value of
dG (g(d), ci/m) < G (é(d),d/m). Itis still true that with probability at least — 6/2,

é(d) is bounded from below by(d) + ((d,m,5/2), however, we cannot bourk{d)

by €opi(d) + B(d, m,6/2) since it is not true any longer thatd) is the minimal error
achievable inF;. Instead we have that with probability at ledst- /2, for everyd,

é(d) < éopt(d) + p(d, m, 6/2), and hence with probability at lealst- 6, é(d) < eopi(d) +

wu(d, m,6/2) + 3(d,m,6/2). The rest of the proof follows as in Theorem 1 where we get
that for everyd

e(d) < Gy (G (eopt(d) + p(d,m,8/2) + B(d,m,6/2),d/m)) + B(d, m,6/2).
(36)

Using our assumption on the adequacy.ofie have that as» — oo,

min {G31 (G (eope(d) + p(d,m, 6/2) + B(d,m, 6/2),d/m))} — min{eop(d)} + i,
37)

as required. O

THEOREM 3 Let({F,}, f, D, L) be an instance of the model selection problem in which

L performs training error minimization, and whergis the VC dimension ofy. Let

G : RxR — Rbeafunctionthatis continuous and increasing in both its arguments, and let
ec(m) denote the random variable whose value is the generalization error of the hypothesis
output by the penalty-based model selection algorithe argmin,{G(é(d),d/m)} on a
training sample of sizer, and in the presence of noise at rateThen

1 ~
5, 0 m.0) (38)

ea(m) < Rg(m,n) +

whereR¢ (m, n) approachesning{e,,:(d)} asm — oo, and is defined as follows:

def
RG(ma 77) = 1

5 min (G (G (1= 2n)eopu(d) + 1+ B(d.m. ) d/m)} — 1
(39)

def

whereGy(-) = G(-,0).

Proof Sketch: The proof of Theorem 3 follows the same sequence of inequalities as
the proof of Theorem 1, except that each occurrence(-9fshould be exchanged with
¢(-), and each occurrence af,;(-) should be exchanged witf] . (-). Thus, similarly to
Equation (24), we have that

€'(d) < Gy' (G (el (d) + B(d,m,8),d/m)) + B(d,m,6). (40)

If we now apply the equality”(h) = (1 — 2n)e(h) + n we get that for everyl
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(G5 (G (1 = 2n)eopi(d) + 1+ B(d, m, 8),d/m)) + B(d,m, 8)] = n.
(41)

1-2n

Again, similarly to the proof of Theorem 1, we have thathas— o,

Indil’l {GSI (G ((1 - 277)€opt(d) +n+ ﬁ(d’mv 6)>d/m))} - (1 - 277) min{eopt(d)} +n,
(42)

and thus we get the desired bound. Note that the rate of convergenceref(of, n) to
the optimal error depends now on the sizeyais well as onz. The same is true for the
penalty complexity term in the bound. It is not very surprising, thaj approaches /2,
the bound worsens. O

6. A Bound on the Additional Error of CV

In this section we state a general theorem bounding the additional generalization error
suffered by cross validation compared to gyynomial complexitynodel selection algo-

rithm M. By this we mean that given a sample of sizgalgorithm A/ will never choose

a value ofd larger thann* for some fixed exponerit > 1. We emphasize that this is a

mild condition that is met in practically every realistic model selection problem: although
there are many documented circumstances in which we may wish to choose a model whose
complexity is on the order of the sample size, we do not imagine wanting to choose, for
instance, a neural network with a number of noegsonentiain the sample size. For the

next theorem, recall that the parametet [0, 1] denotes the fraction of examples withheld

for testing by the CV algorithm, and that we assume thatis an integer.

THEOREM 4 Let M be any polynomial complexity model selection algorithm, and let
({Fa}, f, D, L) be any instance of model selection. lkgim) and eqy(m) denote the
generalization error of the hypotheses chosen\byand CV respectively. Then for any
givens$ > 0, with probability at least — 6:

ecv(m) < ey((1 —~v)m)+ O ( M) ) (43)

ym
In other words, the generalization error of CV enexamples is at most the generalization
error of M on (1 — v)m examples, plus the “test penalty terr@(\/In(m/6)/(ym)).

Proof: LetS = (5,5”) be a random sample of examples, whergS’| = (1 — v)m
and|S”| = ym. Letd, .., = ((1 —v)m)* be the polynomial bound on the complexity
selected byM, and leth} € Fi,..., R, € Fy,,, be determined by, = L(S',d).
By definition of CV,d is chosen according = argmin,{és~ (h);)}. For a given/;, we
know by Hoeffding’s Inequality (Hoeffding, 1963) that for aany> 0,

Pr[

e(hly) — ésu(ﬁ'd)‘ > a] < 2exp(—2a%ym). (44)
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The probability that somé:i deviates by more than from its expected value is therefore
bounded by2m* exp(—2a?ym). It follows that for any givery, with probability at least
1 — é over the draw of5”,

) — s ()| = 0 (w“‘;’#) (45)

for all d < d,,... Therefore with probability at leagt— ¢

€cy = mdln{e(%)} +0 ( M) . (46)

ym

But as we have previously observed, the generalization erranyfodel selection algo-
rithm (including /) on inputS’ is lower bounded bynind{e(ﬁji)}, and our claim directly
follows. O

Note that the bound of Theorem 4 daexclaimecy (m) < ey (m) for all m (which would
mean that cross validation is an optimal model selection algorithm). The bound given is
weaker than this ideal in two important ways. First, and perhaps mostimportarnty,—
~)m) may be considerably larger thaa(m). This could either be due to properties of the
underlying learning algorithni, or due to inherenphase transitiongsudden decreases)
in the optimal information-theoretic learning curve (Seung, Sampolinsky, & Tishby, 1992,
Haussler, Kearns, Seung, & Sampolinsky, 1994) — thus, in an extreme case, it could be
that the generalization error that can be achieved within some Elaby training onm
examples is close to 0, but that the optimal generalization error that can be achidyed in
by training on a slightly smaller sample is nda®. This is intuitively the worst case for
cross validation — when the small fraction of the sample saved for testing was critically
needed for training in order to achieve nontrivial performance — and is reflected in the first
term of our bound. Obviously the risk of “missing” phase transitions can be minimized by
decreasing the test fraction but only at the expense of increasing the test penalty term,
which is the second way in which our bound falls short of the ideal. However, unlike the
potentially unbounded differeneg; ((1 — v)m) — ey (m), our bound on the test penalty
can be decreased without any problem-specific knowledge by simgigasingthe test
fraction~y.

Despite these two competing sources of additional CV error, the bound has some strengths
that are worth discussing. First of all, the bound does not simply compare the worst-case
error of CV to the worst-case error 6f over a wide class of model selection problems; the
bound holds foany fixed model selection problem instan¢ef,; }, f, D, L). We believe
that giving similarly general bounds for any penalty-based algorithm would be extremely
difficult, if not impossible. The reason for this belief arises from the diversity of learning
curve behavior documented by the statistical mechanics approach (Seung, Sampolinsky, &
Tishby, 1992, Haussler, Kearns, Seung, & Sampolinsky, 1994), among other sources. Inthe
same way that there is no universal learning curve behavior, there is no universal behavior
for the relationship between the functiof{g)) ande(d) — the relationship between these
guantities may depend critically on the target function and the input distribution (this point
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is made more formally in Section 7). CV is sensitive to this dependence by virtue of its
target function-dependent and distribution-dependent estimate ofln contrast, by their
very nature, penalty-based algorithms proposmizersalpenalty to be assigned to the
observation of erroé(h) for a hypothesig of complexityd.

A more technical feature of Theorem 4 is that it can be combined with bounds derived for
penalty-based algorithms using Theorem 1 to suggest how the paransatarld be tuned.
For example, lettingl/ be the SGRM algorithm described in Section 5, and combining
Equation (28) with Theorem 4 yields

cov(m) < escru((1—7)m) + v/In(2dyax(m)/6)/2ym (47)

In(2dyax(m)/6)
2vym

< mgn {eopt (d) + 26(d7 (1 - V)m’ 6)} + (48)
If we knew the form ofe,,;(d) (or even had bounds on it), then in principle we could
minimize the bound of Equation (48) as a functiory®d derive arecommended training/test
split. Such a program is feasible for many specific problems (such as the intervals problem),
or by investigating general but plausible bounds on the approximatior Jatel), such
ase,p(d) < ¢o/d for some constant, > 0. For a detailed study of this line of inquiry,
see Kearns (Kearns,1995). Here we simply note that Equation (48) tells us that in cases
for which the power law decay of generalization error within eAgiolds approximately,
the performance of CV will be competitive with GRM or any other algorithm. This makes
perfect sense in light of the preceding analysis of the two sources for additional CV error:
in problems with power law learning curve behavior, we have a power law bound on
em((1 — v)m) — em(m), and thus CV “tracks” any other algorithm closely in terms of
generalization error. This is exactly the behavior observed in the experiments described in
Section 4, for which the power law is known to hold approximately.

We conclude this section with a noisy version of Theorem 4, whose correctness directly
follows from the proof of Theorem 4, together with the equadith) = (1 — 2n)e(h) + .

THEOREM 5 Let M be any polynomial complexity model selection algorithm, and let
({Fa}, f, D, L) be any instance of model selection. lkgtm) and eqyv(m) denote the
expected generalization error of the hypotheses chosér bypd CV respectively when the
sample is corrupted by noise at raje Then for any gived > 0, with probability at least
1—-46

1
1-2n

covlim) < (1= 7)) + O (/)70 ) (49)

7. Limitations on Penalty-Based Algorithms

Recall that our experimental findings suggested that it may sometimes be fair to think of
penalty-based algorithms as being either conservative or liberal in the amount of coding
they are willing to allow in their hypothesis, and that bias in either direction can result in

suboptimal generalization that is not easily overcome by slight adjustments to the form of the



28 M. KEARNS, ET AL.

rule. Inthis section we develop this intuition more formally, giving a theorem demonstrating
some fundamental limitations on the diversity of problems that can be effectively handled
by any fixed penalty-based algorithm. Briefly, we show that there are (at least) two very
different forms that the relationship betwe®n) ande(d) can assume, and that any penalty-
based algorithm can perform well on only one of these. Furthermore, for the problems we
choose, CV canin fact succeed on both. Thus we are doing more than simply demonstrating
that no model selection algorithm can succeed universally for all target functions, a statement
that is intuitively obvious. We are in fact identifying a weakness thapecialto penalty-

based algorithms. However, as we have discussed previously, the use of CV is not without
pitfalls of its own. We therefore conclude the paper in Section 8 with a summary of the
different risks involved with each type of algorithm.

THEOREM 6 For any sample sizen, there are model selection problem instances
({F}, f1, D1, L) and ({F§}, f2, Do, L) (where the algorithml, performs empirical er-
ror minimization for the respective function classes in both instances) and a constant
(independent ofz) such that for any penalty-based model selection algorighreither

e (m) > mdin{el(d)} + A
or

S (m) > mdin{eg(d)} + A

Heree; (d) is the generalization errar(d) for instance € {1,2}, ande (m) is the expected
generalization error of algorithndz for instancei. Thus, on at least one of the two model
selection problems, the generalization error®is lower bounded away from the optimal
valueming{¢;(d)} by a constant independentof.

Proof: For ease of exposition (and deviating from our conventions in the rest of the paper),
in the proof we usé;(d) ande; (d) (i € {1,2}) to refer to the expected values. Thég)

is the expected training error of the functionfif that minimizes the training error, and
€;(d) is the expected generalization error of this same function.

We start with a rough description of the properties of the two problems (see Figure 26).
In Problem 1, the “right” choice aof is 0, and any additional coding directly results in larger
generalization error; but the training erréy(d), decays steadily witd. The idea is that
even though the training error suggests that we make progress towards approximating the
unknown target by increasing the complexity of our hypothesis, in reality we are best off
by choosing the simplest possible hypothesis.

In Problem 2, a large amount of coding is required to achieve nontrivial generalization
error; but the training error remains largedisicreases (until. = m/2, when the training
error drops rapidly). The idea here is that the training error suggests that we make little or
no progress towards approximating the unknown target by increasing the complexity of our
hypothesis, even though that is exactly what we should do for optimal generalization.

Thus in both problems, the training error is a misleading indicator of generalization. The
proof exploits the fact that if a penalty-based algorithm manages to compensate for the
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misleading behavior of the training error in one problem, it cannot do so in the other (since
the relationship between training and generalization error in the two problems is reversed).
More precisely, we will arrange things so that Problem 1 has the following properties:

1. The expected training errér(d) lies above the linear functiofi(d) = n1 (1 — 1) —
d/(2m), whosey-interceptis); (1—7; ), and whose-interceptin, (1-n;)m < m/2;

2. The expected generalization eregfd) is minimized atd = 0, and furthermore, for
any constant we havee; (cm) > ¢/2.

Heren; will be the rate at which classification noise corrupts the examples for Problem 1.
We will next arrange that Problem 2 will obey:

1. The expected training errés(d) = a; for 0 < d < 2m1(1 — n1)m < m/2, where
m(l—m) > a;

2. The expected generalization eregfd) is lower bounded by, for 0 < d < m/2, but
ea(m/2) = 0.

In Figure 26 we illustrate the conditions @fx) for the two problems, and also include
hypothetical instances éf (d) andé;(d) that are consistent with these conditions (and are
furthermore representative of the “true” behavior oféfx functions actually obtained for
the two problems we define in a moment).

We can now give the underlying logic of the proof using the hypothetidal) andé, (d).
Let d; denote the complexity chosen By for Problem 1, and lef; be defined similarly.
First consider the behavior 6f on Problem 2. In this problem we know by our assumptions
on ez(d) that if G fails to choosel, > m/2, €§ > a, already giving a constant lower
bound one§’ for this problem. This is the easier case; thus let us assumédthatm /2,
and consider the behavior 6f on Problem 1. Let us defin& by ¢, (dy) = a;. Referring
to Figure 26, we see that for< d < d, we haveg; (d) > é(d), and thus

For0 < d < dy, G(é1(d),d/m) > G(és(d),d/m) (50)

(because penalty-based algorithms assign greater penalties for greater training error or
greater complexity). Since we have assumeddhat m /2, we know that

Ford < m/2, G(éy(d),d/m) > G(éx(d),da/m) (51)

and in particular, this inequality holds for< d < dy. On the other hand, by our choice of
€1(d), é1(d2) = 0 (and thustz(d2) > €1(dz)). Therefore,

G(&(dy),dz/m) > G(&1(dz),dz/m) . (52)
Combining the three inequalities above (Equations (50), (51) and (52)), we have that
For0 < d <dy, G(é(d),d/m) > G(é1(dy),dy/m) (53)

from which it directly follows that in Problem 15 cannotchoose) < d; < dy. From the
definition of f(d) in our first condition on Problem 1, it follows thdy > 2(n; (1 — 1) —
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a1) m. Using the second condition on Problem 1 we getdfiat ¢, (do) > 01 (1—m1)—ay,
and thus we have a constant lower boundn

Now we describe the two problems used in the proof, and briefly argue why they have
the desired properties. We are in fact already familiar with the first problem: the class
F¢ is simply the class of ali-alternation functions ovep), 1], the target function is the
O-alternation function that classifies all examples as negative, the input distrilition
uniform over[0, 1], and we may choose any constant noise rate Now clearly under
these settings we haw§”*(0) = ¢,(0) = 0 (where we lete””*(d) denotee,,:(d) for
problems), ande; (d) > 0 for anyd > 0 (because the noise in the sample will cause us
to code “false alternations”). Furthermore, each additional false interval that is coded will
result in an additiona®(1/m) generalization error, thus resulting in the desired property
e1(cm) > ¢/2. Finally, we obviously expeat; (0) = 1, and using the same argument
applied in the explanation of Equation (14) (where in our case 0), we have that the
expected number of label alternations required to achieve training err@n@(is— 7, )m.
Furthermore, for every < 2n;(1 — n1)m, é1(d + 2) < &(d) — 1/m (since by adding
two switch points, at least one additional sample point can be labeled consistently). Hence,
¢1(d) must lie above the linear function whose slope-is/ (2m) and whosex-intercept is
2m1 (1 — m1)m, as required.

For the second problem, let us begin with the input sdace}” for some valueV >>
m. The function classy consists of all parity functions in which only the variables
x1,...,xqare permitted to appear, the target functfoa F2’”/2 IS f(Z) = 21®- - - DLy 2,
and the input distributio®, is uniform over{0, 1}*. The noise rat@, = 0 (larger values
will work as well). Under these settings, it holds (since the probability of disagreement

between every two different parity functions ig2) that e5?*(d) = 1/2 for 0 < d <

m/2, thus implying thats(d) > 1/2 in the same range. Furthermore, sinfee F3"/?,

esP*(m/2) = 0 and with high probability (for a large enough samplgyn/2) = 0 and
é2(d) = 1/2for 0 < d < m/2. Note that we have almost satisfied the desired conditions
on Problem 2, using the valug = 1/2; however, the conditions on Problem 2 and the
lower bound argument given above require further that — n;) > a;. We can easily
arrange this final condition by simply scaling down by adding a “special” point to the
domain on which all functions i agree (details are omitted). Referring to Figure 26,
notice that the “optimal” setting aof; is determined by the trade-off between (which
lower bounds the error of algorithms failing on Problem 2) dgndn (which lower bounds
the error of algorithms failing on Problem 1). This concludes the proof of Theorem 6.
U

There are a number of limitations to Theorem 6, including the fact that the two problems
must be “tuned” for a particular sample size and the fact that Problem 2 relies on the
dramatic properties of the parity learning curve, which one might argue are atypical of
learning curves found in practice. However, we believe that the essential message of the
theorem remains relevant:

e Thereisnouniversal (thatis, holding for all target functions, distribution, and hypothesis
classes) relationship between training and generalization error.
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e By their very nature, penalty-based algorithms implicitly assume a particular relation-
ship between training and generalization error.

e If the assumed relationship is not accurate for the problem under consideration, gener-
alization error may suffer, possibly severely.

8. Conclusions

Based on both our experimental and theoretical results, we offer the following conclusions:

Model selection algorithms that attempt to reconstruct the ci(eljesolely by examining
the curveé(d) often have a tendency to overcode or undercode in their hypothesis for
small sample sizes, which is exactly the sample size regime in which model selection
is an issue. Such tendencies are not easily eliminated without suffering the reverse
tendency.

There exist model selection problems in which a hypothesis whose complexity is close
to the sample size should be chosen, and in which a hypothesis whose complexity is
close to 0 should be chosen, but that genetatiecurves with insufficient information
to distinguish which is the case. The penalty-based algorithms cannot succeed in both
cases, whereas CV can.

The error of CV can be bounded in terms of the error of any other algorithm. The only cases
in which the CV error may be dramatically worse are those in which phase transitions
occur in the underlying learning curves at a sample size larger than that held out for
training by CV.

Thus we see that both types of algorithms considered have their own Achilles’ Heel. For
penalty-based algorithms, it is an inability to distinguish two types of problems that call for
drastically different hypothesis complexities. For CV, it is phase transitions that unluckily
fall between(1 — )m examples and: examples.

Finally, we wish to remark that although we have limited our attention here to the case
of supervised learning of boolean functions, we believe that many of the principles uncov-
ered (such as the limitations of penalty-based algorithms, and the tracking abilities of cross
validation) will be applicable to practically any learning setting in which there is a model
minimizing an expected loss (generalization error) must be derived from independent ob-
servations from a source. A prime example for further investigation would be distribution
learning with respect to the Kullback-Liebler divergence (log loss), whgrebased upper
bounds for MDL-like rules are already known (Barron & Cover, 1991), yet there also exist
phase transitions for natural problems (Haussler, Kearns, Seung, & Sampolinsky, 1994).
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Appendix: Experimental Details

All experimental results described in this paper are obtained for the intervals model selection
problem. Recall that in this problem, the function clagsonsists of all boolean functions
over the domair{0, 1] which have at most alternations of label. There are two main
reasons for choosing this problem for our investigation. The first is that the complexity of
the hypothesis functions is unlimited; in particular, it is not hard to show that the Vapnik-
Chervonenkis dimension df; is d, and thus ag increases we allow arbitrarily complex
functions. The second reason is that this is one of the few cases in which training error
minimization is feasibl€. (A number of papers provide evidence for the intractability of
training error minimization for a variety of natural function classes (Pitt & Valiant, 1988,
Blum & Rivest, 1989, Kearns, Schapire, & Sellie, 1992).)

More precisely, there is an algorithm that on inputaahitrary sampleS = {(z;,b;)}
(wherex; € [0, 1] andb; € {0,1}) and complexity valug, outputs a function ir/Ss(d).
The algorithm is based on dynamic programming, and a straightforward implementation
yields a running time that i®(dm?). However, we have developed a more sophisticated
implementation, described below that yields a running tim@ @f. log m). The algorithm
was implemented in the C++ programming language on an SGI Challenge XL with 8 150
MHz processors and 1 gigabyte of RAM. This implementation allowed execution of the
training error minimization algorithm on samples of size uprie= 15000 in only a few
seconds of real time.

The fast training error minimization code was the heart of a more elaborate experimental
tool that offered the following features:

¢ The user specifies a target intervals function duet] in a file that indicates the values
at which the function changes label. Thus, a file containing the values 0.15, 0.40,
0.75 specifies the boolean function that is 1 on the intdfya@.15), O on the region
[0.15,0.40), 1 on the regiorj0.40, 0.75) and 0 on the regiof0.75, 1.0].

e The user specifies the sample sizg and the noise ratg with which the labels in
the sample will be corrupted with noise. The user also specifies one or more model
selection algorithms, such as GRM, MDL or CV.

e Arandom samplé&' of sizem of the specified target function corrupted by the specified
noise rate is then generated by the program (inputs are drawn according to the uniform
distribution). For each value dffrom0tom, S andd are then given to the training error
minimization code. This code returns a functibp € VSs(d). If VSg(d) contains
functions giving different labelings t8, the code chooses the least in a lexicographic
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ordering. The hypothesis selected frdi§ s(d) always has its label alternation points
exactly midway between sample inputs.

e For eachh, the true generalization erre@fzd) is computed with respect to the specified
target function, thus allowing exact computation of the cuifvg.

e For each, the total penalty assigned kg by the chosen model selection algorithm is
computed fronhy, S andd. Minimization of this total penalty with respect éds then
performed by the code, resulting in the hypothésjshosen by the specified model
selection algorithm. The error of this hypothesis can then be compared with that of
other model selection algorithms, as well as the optimal valitg;{e(d)}.

The experiments given in the paper were all performed using a target function of 100
regions of equal width and alternating label. The code provides an option for repeated trials
at each sample size, which was used extensively in the experiments. The code produces plot
files that were averaged where appropriate. The postscript plots shown were generated by
reading the plot files generated by the code into the Xmaple system, which allows postscript
output.

An Efficient Training Error Minimization Algorithm

LetS = {(z1,b1),..., (xm, by) be alabeled sample, wherg € [0, 1] andb; € {+,—}.
Assume without loss of generality that < x5 < ... < z,,. We next show how to find a
hypothesig:4 with d intervals that has minimum training error 6 We represent such a
hypothesis by a partition of the (ordered) exampleS into d consecutive subsequences,
S1,...,8, whereSy, = z;,, wi, 41, .., 7, 1. With each subsequencg, the hypoth-
esis associates a lab#lS,) € {+, —}, such that(Sj) # £(Sk+1). The hypothesis can
be defined o0, 1] by using(x;, -1 + z;,)/2, for every2 < k < d, as itsd — 1 switch
points, and labeling the intervals consistently with. We say that a hypothesis haviig
intervals isoptimalif it has minimum training error among all hypotheses with (exaatly)
intervals. We next show how to transform any optimal hypothesis haviinmigrvals into
one having — 2 intervals. We later discuss how this transformation can be used in order to
find an optimal hypothesis; with d intervals, for everyl < d < ¢, wheret is the minimal
number of intervals of a hypothesis consistent with the sample.

Given an optimat—intervals hypothesis;, let 51, .. ., S;, be the partition of the sample
into subsequences associated with and let/;(-) be the corresponding labeling of the
subsequences. With each subsequence we assocedgartagea(S), which is defined
to be the number of examplesSi whose label equals (S ), minus the number of examples
in S, whose label differs from; (Sy.). intuitively, the advantage of a subsequence measures
how advantageous itis to keep it labeled by its current label (or, equivalently, how damaging
it is to flip its label). In order to transform; into an optimalk — 2—intervals hypothesis,
hi_o, we do the following.

Let Sk, 1 < k < i, be a subsequence which has minimum advantage among all subse-
quences but the two external subsequenSesndS;. If a(Sk) < a(S1) + a(S;) then
we flip the label ofS;. Namely, the new — 2—intervals hypothesis; o, is associated
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with the same partition and labeling of sample subsequencég axcept that it has a
single subsequence in place of the three subsequéices S, andSy1, and the label

of this subsequence equdlgSx—1) (= 4i(Sk+1)- If a(S1) + a(S;) < a(Sk), thenh;

is obtained by flipping the labels of bof and.S;, again decreasing the number of subse-
guences (and intervals) by two. The reason for this seemingly less natural modification is
that by flipping the label of a single external subsequence, the number of intervals is only
reduced by only 1, while we want to maintain the parity of the number of intervals.

LEemMA 1 Foreveryi, 3 < i < t, given an optimal hypothesig which hasi—intervals,
h;_2 is an optimal hypothesis with— 2 intervals.

Proof: Assume contrary to the claim that there exists a hypotlgsiswith : — 2 intervals

which has strictly smaller training error than . Thusé(g;_2) < é(hi—2) = €(h;)+amin,
wherea,,;, is the advantage of the subsequence(s) flipped when transfohmiinig /1, ;.

We shall show that if such a hypothegis » exists then we could obtain a hypothegis

with ¢ intervals which has strictly smaller error thap, contradicting the optimality of

h;. LetTy,...,T;_o be the sample subsequences associatedgith and for each?,

1 <j <i—2,letl,(T};) bethelabey;_, assignstd’;. Assume, without loss of generality,
thatg; o cannot be improved by local changes. Namely, that the examples at the beginning
and the end of each subsequence (except perhaps fandz,,,) have the same label as

the subsequence. Note that this must be truéifatue to its optimality. Since;_» has

two intervals less thah;, some of its subsequences must contain subsequenagsanid
furthermore, there must be disagreements in their labeling. More precisely, we consider
the following two cases:

1. SomeT; contains an internal subsequegef h,, such that, (T;) # ¢;(Sk). Namely,
T; is of the formRS, R, whereR and R’ must be non-empty subsequences, since by
the optimality ofh;, S, must begin and end with examples labeled;,), while the
opposite is true fof;. But we know that:(Si) > amin, and hence by breakirif into
three subsequenceB, Sy, andR’, and labelingSy. by ¢;(Sx) we obtain an—intervals
hypothesigy; such that

€(9i) = €(gi—2) —a(Sk) < é(hi-2) — amin = €é(hi)

contradicting the optimality of,.

2. Ifltem 1 does not hold then it is not hard to verify by simple counting, that it must be
the case that bott), (T4 ) # ¢;(S1), and,(T;—2) # ¢;(.S;) in which case we create two
corresponding new intervals, resulting in a hypothgssuch tha€(g;) < é(h;).

Thus, in both cases we reach a contradiction to the optimalfty,@nd the lemma follows.
]

Given anyl < d < t, we find an optimal hypothesis which hamtervals as follows. Let
S1,...,.S; be the minimal partition of the sample into single-labeled subsequences, and let
£, (Sk) be the label of the examples B),. Clearly, a hypothesis; defined based on this
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partition and labeling, is consistent with the sample and is hence optimal. Inidzse

the same parity ag then starting from the optimakintervals hypothesis;, we obtain a
sequence of hypothesés », ..., hy, Whereh; is an optimali—intervals hypotheses, by
applying the transformation described abgte d)/2 times. In casé has parity opposite

to ¢, we need to start with an optimal hypothesis having 1 intervals. It is not hard to
verify that such a hypothesis is very similar to the consistent one, except that one of the
external subsequences, or S;, is merged into a single subsequence with its neighboring
subsequencg; (respectivelyS;_1). The label of the resulting subsequence is the label of
the latter subsequence.

Finally, we address the question of the running time of the algorithm. Note that by setting
d = 1, we can getll optimal hypotheses with an odd number of intervals, and by setting
d = 0 we get all optimal hypotheses with an even number of intervals. In both cases
we performm/2 iterations (where in each iteration we transform an optiiraitervals
hypothesis into an optimal- 2—intervals hypothesis). If we keep the subsequences both in
a doubly-linked list, and in a heap (according to their advantage), we can implement each
iteration inO(log(m)) time, resulting in arO(m log m)-time algorithm.

Notes

1. Exceptin circumstances where confusion may result, for brevity we shall adopt the notational convention of
leaving implicit the many dependencies of the various quantities we define. Thus, we suppress the obvious
dependence af(h) on f and D, the dependence of empirical quantities on the random sashled so on.

2. Such a nested sequence is calletractureby Vapnik (1982), and is sometimes, but not always, the setting
in which model selection methods are examined.

3. We put the terms “bias” and “variance” in quotes in this paragraph to distinguish our informal use of them
from their related but more precise statistical counterparts.

4. A common way of informally expressing this behavior is to say that for sdahe functions inVS(d)
“underfit” the sampleS, meaning thaf,; is not sufficiently expressive to capture the underlying regularities
of f exposed byS, and for larged, the functions inV'S(d) “overfit” the sampleS.

5. We stress that our goal here is simply to give one instantiation of MDL. Other coding schemes are obviously
possible, including perhaps some that would yield better performance on the ensuing experiments. Further-
more, since we will make use of certain approximations in the calculation of the code lengths, it is perhaps
more accurate to think of the resulting model selection rule as “MDL-inspired” rather than MDL in the strictest
sense of the term. Nevertheless, we feel that the experimental results are indicative of the type of behavior
that is possible for MDL-style rules, and furthermore, several of our formal results will hold for essentially all
MDL instantiations.

6. Notice that in this encoding, we are actually using the sample inputs to dekctitie not difficult to see that
under the assumption that the inputs are uniformly distributg@,it], this can be replaced by discretizing
[0, 1] using a grid of resolution /p(m), for some polynomiap(-), and using the grid points to describe the
switches ofh.

7. With appropriately modified assumptions, all of the formal results in the paper hold for the more general form
G(é(d),d,m), where we decouple the dependencedcendm. However, the simpler coupled form will
usually suffice for our purposes.

8. Similar results hold for a randomly chosen target function.
9. Similar results are obtained in experiments in which every occurrentédhe GRM rule is replaced by an
“effective dimensioncod for any constanty < 1.

10. In fact, Vapnik (1982, page 160) gives a more general statement concerning the uniform estimation of proba-
bilities from their frequencies in a class of events of limited VC dimension.
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11. Note that the plots in the figures are based on noisy data, while Theorem 1 assumes there is no noise. However,
as can be observed from Theorem 3, the bouneigin) is the noisy case, is similar in structure to the bound
in the noise-free case.

12. This is important in light of our earlier assertion that a good model selection algorithm should at least perform
well when the underlying learning algorithm implements training error minimization, and we do not wish any
of our experimental results to be artifacts of the unknown properties of heuristics such as backpropagation or
ID3.
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1000 1500 2000

Figure 1. Experimental plots of the functiongd) (lower curve with local minimum)¢”(d) (upper

curve with local minimum) and(d) (monotonically decreasing curve) versus complexitior a

target function of 100 alternating intervals, sample size 2000 and noisg fat@2. Each data point
represents an average over 10 trials. The flatteningdfande” (d) occurs at the point where the
noisy sample can be realized with no training error. ; by convention, our algorithm never adds more
alternations of label than necessary to achieve zero training error. Note that the Vapnik neddgl of

as the sum of(d) plus a complexity penalty term of the approximate fovfd/—m is fairly accurate

here; see Figure 2.

Figure 2. Plot of ¢ (d) — é(d) versus complexityl for the same experiments used to obtain Figure 1.
As function ofd/m it appears that(d) — €"(d) has an initial regime (fod << 100, or for thism,
d/m < 100/2000 = 0.05) with behavior that is approximate®(,/d/m), and a later regime (for
d/m >> 0.05) in which the behavior is linear id/m.
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Figure 3. Experimental plots of generalization errekspr. (mm) (most rapid initial decrease)gv (m)
(intermediate initial decrease) andrn(m) (least rapid initial decrease) versus sample sizéor

a target function of 100 alternating intervals and noise nate 0.20. Each data point represents an
average over 10 trials. Note that the “shelf”@fp:, is approximately at the noise rate= 0.20,

since MDL is coding all the noisy labels. Also, note by comparing the above plot to the plots in
Figures 9 and 11 that the performance of MDL relative to the other two methods is degrading as the
noise rate increases.
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500 1000 1500

Figure 4. Experimental plots of hypothesis lengtligpy, (m) (most rapid initial increase)cy (m)
(intermediate initial increase) am@le(m) (least rapid initial increase) versus sample sizéor a
target function of 100 alternating intervals and noise fate 0.20. Each data point represents an
average over 10 trials.
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Figure 5. Experimental plots of generalization errefgor, (most rapid initial decrease)gv (interme-

diate initial decrease) and:rn (least rapid initial decrease) as a function of sample size for a target
function of 100 alternating intervals and noise rate- 0.0. Each data point represents an average
over 10 trials. Note the similar performance for the three methods in this noise-free case, where there
is no danger of “overcoding”.

Figure 6. Experimental plots of hypothesis lengtiispr, (most rapid initial increase)cy (interme-
diate initial increase) andqry (least rapid initial increase) as a function of sample size for a target
function of 100 alternating intervals and noise rate- 0.0. Each data point represents an average
over 10 trials. In this noise-free case, all three methods rapidly settle on the target length.
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Figure 7. Experimental plots of generalization errefgpr, (most rapid initial decrease)v (interme-

diate initial decrease) and:rn (least rapid initial decrease) as a function of sample size for a target
function of 100 alternating intervals and noise rate- 0.10. Each data point represents an average
over 10 trials. Note the appearance of a second regime in the relative behavior of MDL and GRM

with the introduction of noise.
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Figure 8. Experimental plots of hypothesis lengtiispr, (most rapid initial increase)cy (interme-
diate initial increase) andqry (least rapid initial increase) as a function of sample size for a target
function of 100 alternating intervals and noise rate- 0.10. Each data point represents an average
over 10 trials. Note the correspondence between MDL's rapid decaytinshortly afterm = 2000

and the rapid drop afypy, to the target value of 100.
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Figure 9. Experimental plots of generalization errefspr, (most rapid initial decreasedcv (inter-

mediate initial decrease) ardrM (least rapid initial decrease) as a function of sample size for a
target function of 100 alternating intervals and noise fate 0.30. Each data point represents an
average over 10 trials. Notice the increasing variance of CV performance as the noise rate increases;
this variance disappears asymptotically, but shows clearly at small sample sizes.
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Figure 10. Experimental plots of hypothesis leng#isp:, (most rapid initial increaseicy (interme-

diate initial increase) andqry (least rapid initial increase) as a function of sample size for a target
function of 100 alternating intervals and noise rate- 0.30. Each data point represents an average
over 10 trials. In this and the other plots, the apparent quantizatiekyef during its transition
down to the target value of 100 is an artifact of the averaging; on any given run, the method will
choose between one of the two competing local minima-at100 and the point of consistency with

the sample. The 11 quantized values g1, observed during this transition simply represent the
number of times(, . . ., 10) that one of the minima can be visited out of 10 trials.
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Figure 11. Experimental plots of generalization errafgp;, (top plot), ecv (intermediate plot) and
ecrM (bottom plot) as a function of sample size for a target function of 100 alternating intervals and
noise raten = 0.40. Each data point represents an average over 10 trials. At this large noise rate,
empr, fails to transition from its shelf ag even bym = 15000.
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Figure 12. Experimental plots of hypothesis lengtisipr, (top plot), dey (intermediate plot) and
dery (bottom plot) as a function of sample size for a target function of 100 alternating intervals and
noise rate; = 0.40. Each data point represents an average over 10 trials.
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115

Figure 13. MDL penalty as a function of complexity for a single run on 500 examples of a target
function of 100 alternating intervals and noise rate= 0.20. Notice the appearance of a local
minimum near the target length of 100.

3 %0 1060 560 2000

Figure 14. MDL total penaltyH(é(d)) + H(d/m) versus complexityl for a single run on 2000
examples of a target function of 100 alternating intervals and noise)rate.20. There is a local
minimum at approximately = 100, and the global minimum at the point of consistency with the
noisy sample.
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Figure 15. MDL total penaltyH(é(d)) + H(d/m) versus complexity! for a single run on 4000
examples of a target function of 100 alternating intervals and noisenrate 0.20. The global
minimum has now switched from the point of consistency to the target value of 100.
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Figure 16. Plot of the functior(2n(1 — 1) + (s/m)(1 — 2n)?) — H(n) — H(s/m) as a function

of n for s/m = 0.01. Positive values predict that MDL will choose the “correct” complexity s,

while negative values predict that MDL will “overcode” by choosihg- do. For this value ok/m,
increasing the noise rate can only cause degradation of performance. However, note the nonmonotonic
behavior.
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s/m = 0.04

Figure 17. Plot of the functiorH(2n(1 — 1) + (s/m)(1 — 2n)?) — H(n) — H(s/m) as a function
of ny for s/m = 0.04. Note the behavior near 0, and see Figure 18.

s/m = 0.04, detail

0.015

0.005:

-0.005.

Figure 18. Detail of Figure 17 for small. Here the nonmonotonic behavior has an interesting effect:
increasing the noiserate may actually cause the valdecbbsen by MDL to move fromd = d, to
the superiokl = s.
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Figure 19. GRM penalty as a function of complexiti/for a single run on 500 examples of a target
function of 100 alternating intervals and noise rate: 0.20.

0 500 1000 1500 7000

Figure 20. GRM total penaltyé(d) + (d/m)(1 + /1 + é(d)m/d) versus complexity! for a single
run on 2000 examples of a target function of 100 alternating intervals and noisg=+ate20.
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Figure 21. GRM penalty as a function of complexityfor a single run on 4000 examples of a target
function of 100 alternating intervals and noise rate 0.20.
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Figure 22. Experimental plots of generalization erreizn (m) using complexity penalty multipliers
1.0 (slow initial decrease) and 0.5 (rapid initial decrease) on the complexity penaltydénm (1 +

1 + é(d)m/d) versus sample size on a target of 100 alternating intervals and noisesate0.20.
Each data point represents an average over 10 trials.
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Figure 23. Experimental plots of hypothesis Iengfbm\{(m) using complexity penalty multipliers
1.0 (slow initial increase) and 0.5 (rapid initial increase) on the complexity penalty(tétm)(1 +

1+ é(d)m/d) versus sample size on atarget of 100 alternating intervals and noisenate0.20.
Each data point represents an average over 10 trials.

1000 2000 3000 €000 5000 6000

Figure 24. Experimental plots of generalization errqipr, using complexity penalty multipliers 1.0
(rapid initial decrease) and 1.25 (slow initial decrease) as a function of sample size on a target of 100
alternating intervals and noise rafe= 0.20. Each data point represents an average over 10 trials.
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Figure 25. Experimental plots of hypothesis lenghipr, using complexity penalty multipliers 1.0

(rapid initial increase) and 1.25 (slow initial increase) as a function of sample size on a target of 100
alternating intervals and noise raje= 0.20. Each data point represents an average over 10 trials.
The adjustment to the rule here seems only to have caused damage, since the only effect is to keep
dcru at 0 (undercoding) untitn is close to 2000, and then to rapidly approach 100 from below,
whereas in the unmodified (constant penalty multiplier 1.0) ddlen approached 100 from above

at approximately the sample sample size, but achieved nontrivial generalization error in the initial
overcoding region. Some simple calculations indicate that even if the constant is increased only to the
value1.0000001, the approach to 100 from below will still not commence until> 2000. Larger

values for the constant will of course only perform even more poorly.
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Figure 26. Figure illustrating the proof of Theorem 6. The dark lines indicate typical behavior for
the two training error curves,; (d) andéz(d), and the dashed lines indicate the provable bounds on
é1(d). We use the notation @ to indicate the intersection poidg of the proof.
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