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Abstract

We prove a lower bound of 
(1
�
ln1

�
+ VCdim(C)

�
) on the number of random examples required

for distribution-free learning of a concept class C, where VCdim(C) is the Vapnik-Chervonenkis

dimension and � and � are the accuracy and con�dence parameters. This improves the previous

best lower bound of 
(1
�
ln1

�
+ VCdim(C)), and comes close to the known general upper bound

of O(1
�
ln1

�
+ VCdim(C)

�
ln1

�
) for consistent algorithms. We show that for many interesting concept

classes, including kCNF and kDNF, our bound is actually tight to within a constant factor.
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1 Introduction

In [V84], a stochastic model of machine learning from examples based on computational complexity

was introduced. Informally, this model can be described as follows: positive and negative examples

of some unknown target concept, chosen from a concept class C, are presented to a learning

algorithm. These examples are drawn randomly according to a �xed but arbitrary probability

distribution. From the examples drawn, the learning algorithmmust, with high probability, produce

a hypothesis concept that is a good approximation to the target.

Most of the recent research in this model (see e.g. [AL86], [BEHW86,87a,87b], [BI88], [KLPV87],

[KL87], [KV88], [LMR88], [N87], [PV86], [R87], [S88], [V85], [VL88]) has emphasized the broad

distinction between those classes that are learnable in polynomial time and those that are not.

Little attention has been paid to determining precise complexity bounds (both upper and lower)

for classes already known to be learnable in polynomial time.

In this paper, we resolve several problems regarding the sample complexity (i.e., the number of

examples required) for learning various concept classes by giving a general lower bound theorem.

We apply this result to show that the existing algorithms for learning monomials, kDNF formulae,

kCNF formulae and symmetric functions all use the optimal number of examples (within a constant

factor). By similar methods, we prove that the algorithm given in [R87] for learning decision lists

on n variables uses a sample size that is at most a logarithmic factor o� optimal, and give an

alternative analysis of this algorithm that yields a small improvement in its sample size. We also

show that some existing algorithms for concept classes over continuous domains use a sample size

that is within a multiplicative logarithmic factor of optimal.

The lower bound we prove is information-theoretic in the sense that no algorithm in the learning

model of [V84], even one with in�nite computational resources, can learn from fewer examples. It

comes within a multiplicative log factor of the information-theoretic upper bound on the number

of examples needed by any algorithm that always produces consistent hypotheses in the target

concept class [V82] [BEHW86,87b].

The outline of the paper is as follows: in Section 2, we de�ne the model of [V84], and give

relevant notation. Section 3 presents our main result, the lower bound. In Section 4 we apply the

lower bound to obtain tight and nearly tight bounds on the sample complexity for learning several

well-studied concept classes. Section 5 mentions open problems.
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2 De�nitions and Notation

Let P1; : : : ; Pk be probability distributions over spaces X1; : : : ; Xk respectively. Let E(v1; : : : ; vk)

and  (v1; : : : ; vk) be an event and a random variable, respectively, where vi 2 Xi; 1 � i � k. Then

we denote by Prv12P1;:::;vk2Pk(E) the probability of E and by Ev12P1;:::;vk2Pk( ) the expectation of

 , when each vi is independently chosen according to the distribution Pi. If P is a distribution

over X , then Pm shall denote the m-fold product distribution de�ned by P over Xm.

Let X be a set which we will call the domain, and let C � 2X be a concept class over X . In

this paper we assume that X is either �nite, countably in�nite, or n-dimensional Euclidean space

for some n � 1 (see [BEHW86,87b] for additional measurability restrictions on C for Euclidean

domains). An example of a concept c 2 C is a pair (x; b) where x 2 X , b 2 f0; 1g, and b = 1 if

and only if x 2 c. For ~x = (x1; : : : ; xm) 2 Xm and c 2 C, we denote by < ~x; c > the sample of c

generated by ~x | namely, < ~x; c >= ((x1; b1); : : : ; (xm; bm)) where bi = 1 if and only if xi 2 c. The

size of < ~x; c > is m. A random sample of c 2 C according to a distribution P over X is a sample

< ~x; c >= ((x1; b1); : : : ; (xm; bm)) where each xi is drawn independently according to P .

Let c 2 C be a �xed target concept and P a distribution on the domain X . Given input � and

�, 0 < �; � < 1, a (randomized) learning algorithm A draws a random sample < ~x; c > (according to

P ) of size mA(�; �) and a random bit string r of length rA(�; �) (representing unbiased coin tosses

available to the algorithm), and produces an hypothesis h = hA(< ~x; c >; r) 2 2X . Here mA(�; �)

and rA(�; �) are positive integer-valued functions of � and �. We call mA(�; �) the sample size used

by A.

Let eA(< ~x; c >; r) = P (h�c), where h = hA(< ~x; c >; r) and � denotes the symmetric

di�erence. Thus eA(< ~x; c >; r) is the probability that the hypothesis h produced by A on inputs

< ~x; c > and r disagrees with the target concept c on a point randomly drawn from X according

to the distribution P . We refer to this as the error of the hypothesis h.

Let U be the uniform distribution on f0; 1g. For a given � and �, let m = mA(�; �) and

k = rA(�; �). Then A is an (�; �)-learning algorithm for C if for every distribution P on X and

every target concept c 2 C,

Pr~x2Pm;r2Uk(eA(< ~x; c >; r) > �) � �:

Thus we require that for any distribution and target concept, with probability at least 1 � �, A

produces a hypothesis with error at most �. We will call � the accuracy parameter and � the

con�dence parameter. We note that our results also hold in the model where distributions over
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the positive and negative examples are distinguished (e.g. [V84], [KLPV87]), with only minor

modi�cations to the proof.

If C is a concept class over domain X , and W � X , we say that W is shattered by C if for

every W 0 � W , there exists a c 2 C such that W 0 = c \W . We de�ne the Vapnik-Chervonenkis

dimension of C (denoted VCdim(C)) to be the cardinality of the largest W � X such that W is

shattered by C. Note that for jCj �nite, we have VCdim(C) � logjCj.

3 The Lower Bound

Theorem 1 Assume 0 < � � 1
8 , 0 < � � 1

100, and VCdim(C) � 2. Then any (�; �)-learning

algorithm A for C must use sample size

mA(�; �) �
VCdim(C)� 1

32�
= 
(

VCdim(C)

�
):

Proof: Let the set X0 = fx0; x1; : : : ; xdg � X be shattered by C, where d = VCdim(C)� 1. We

de�ne the following distribution P on X :

P (x0) = 1� 8�

P (xi) =
8�
d ; 1 � i � d:

Since P is 0 except on X0, we may assume without loss of generality that X = X0 and C � 2X0 .

Since X0 is shattered by C, we may further assume that C = 2X0 . Let C0 � C be de�ned by

C0 = ffx0g [ T : T � fx1; : : : ; xdgg:

Fix � � 1
8 and � �

1
100 , and letm = mA(�; �). We de�ne the set S � Xm to be the set of all ~x 2 Xm

such that there are at most d
2 distinct elements from fx1; : : : ; xdg appearing in ~x.

Lemma 2 Let m = mA(�; �), k = rA(�; �), and let U be the uniform distribution on f0; 1g. Then

there exists a c0 2 C0 satisfying

Pr~x2Pm;r2Uk(eA(< ~x; c0 >; r) > �) >
1

7
Pm(S):

Proof: Fix ~x0 2 S and the bit string r0 2 f0; 1gk, and let l be the number of distinct elements

of fx1; : : : ; xdg appearing in ~x0. Note that l � d
2 by de�nition of S. Now for each c 2 C0, there

are exactly 2d�l concepts in C0 that are consistent with the sample < ~x0; c >, since fx1; : : : ; xdg is

shattered by C0. For any of the d� l points in fx1; : : : ; xdg that do not appear in ~x0, half of these

concepts will contain the point, and half will not, hence hA(< ~x0; c >; r) is correct on this point for
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exactly half of these 2d�l consistent concepts. Thus, if we denote by wA(< ~x; c >; r) the number of

points in fx1; : : : ; xdg on which hA(< ~x; c >; r) and c disagree, and by Q the uniform distribution

over C0, then we have shown (for ~x0 and r0 �xed)

Ec2Q(wA(< ~x0; c >; r0)) �
d� l

2
�
d

4
:

The �rst inequality comes from the fact that the hypothesis of A may also be incorrect on points

that did appear in ~x0, and the second inequality from the fact that l � d
2 . Without loss of generality

we may assume that any learning algorithm is always correct on the point x0 whenever concepts

are selected from C0, so we may write

eA(< ~x0; c >; r0) =
8�

d
wA(< ~x0; c >; r0):

Then

(1) Ec2Q(eA(< ~x0; c >; r0)) = Ec2Q(
8�

d
wA(< ~x0; c >; r0))

=
8�

d
Ec2Q(wA(< ~x0; c >; r0)) �

8�

d

d

4
= 2�:

Let PmjS be the distribution Pm restricted to the set S. Since (1) holds for any �xed ~x0 2 S

and any �xed bit string r0, if we instead choose ~x randomly according to PmjS and r randomly

according to Uk , we have

Ec2Q;~x2PmjS;r2Uk(eA(< ~x; c >; r)) � 2�:

Thus, there must be some �xed c0 2 C0 satisfying

(2) E~x2PmjS;r2Uk(eA(< ~x; c0 >; r)) � 2�:

On the other hand, we have

(3) eA(< ~x; c0 >; r) � 8�

for any ~x 2 Xm and any bit string r, since we assume that the hypothesis of A is correct on the

point x0. From (2) and (3) we can show

(4) Pr~x2PmjS;r2Uk(eA(< ~x; c0 >; r) � �) >
1

7
:

To see this, let  be a random variable whose expectation E( ) according to some distribution is at

least 2�, but whose absolute value is bounded above by 8� (as is the case with the random variable

eA(< ~x; c0 >; r)). Then if p is the probability that  is larger than �, we have

2� � E( ) < p8�+ (1� p)�:
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Solving for p, we obtain p > 1
7 as claimed.

Now from (4) we have

Pr~x2Pm;r2Uk(eA(< ~x; c0 >; r) � �) � Pm(S)Pr~x2PmjS;r2Uk(eA(< ~x; c0 >; r) � �) >
1

7
Pm(S):

This completes the proof of the lemma.

Lemma 3 Let � � 1
100. For m = d

32� , P
m(S) > 7�.

Proof: We will use the following fact from probability theory (Proposition 2.4, [AV79]):

For 0 � p � 1 and m; r positive integers, let GE(p;m; r) denote the probability of at least r

successes in m independent trials of a Bernoulli variable with probability of success p.

Fact. For any 0 � � � 1, GE(p;m; (1+ �)mp) � e��
2mp=3:

Let E be the event that a point drawn at random according to P is contained in fx1; : : : ; xdg.

Thus, P (E) = 8�. Now if ~x is drawn from Pm and ~x 62 S, then clearly event E must occur at least
d
2 times in ~x. The probability of event E occurring at least d

2 times in m draws from P is bounded

above by GE(8�;m; d2). Setting m = d
32� , we have

GE(8�;
d

32�
;
d

2
) = GE(8�;

d

32�
; 2

d

32�
8�) � e�

d

12 � e�
1

12 :

But e�
1

12 < 1� 7� for � < 1
100 . Thus, for such � we have P

m(S) > 7�.

By Lemmas 2 and 3, if mA(�; �) �
d
32� , then there is probability at least � that A outputs a

hypothesis with error greater than �, thus proving the theorem.

A slightlymodi�ed version of the proof of Theorem 1 can be used to show that when VCdim(C) �

2 and the sample size is less than VCdim(C)�1
2e� (where e denotes the base of the natural logarithm),

for any learning algorithm there is a distribution and a target concept such that the expected error

of the hypothesis produced by the learning algorithm is at least � [HLW88]. No serious attempt

has been made to optimize the constants in either this result or in Theorem 1 above.

It should be noted that the lower bound of Theorem 1 holds independent of the computational

complexity of a learning algorithm | that is, even algorithms allowed in�nite computational re-

sources must use 
(VCdim(C)
� ) examples. Theorem 1 also makes no assumptions on the class from

which the learning algorithm's hypothesis is chosen (in particular, the hypothesis h need not be

chosen from C for the bound to hold).

For purposes of comparison, we now state precisely the previous best lower bound on the sample

size. We say that the concept class C is trivial if C consists of one concept, or two disjoint concepts

whose union is the domain X .

6



Theorem 4 [BEHW86,87b] Let C be a non-trivial concept class. Then any (�; �)-learning algo-

rithm A for C must use sample size

mA(�; �) = 
(
1

�
ln
1

�
+ VCdim(C)):

Theorem 1 improves separate lower bounds proportional to VCdim(C) and 1
� to a single lower

bound that is proportional to their product. Using Theorems 1 and 4, we obtain:

Corollary 5 Let C be a non-trivial concept class. Then any (�; �)-learning algorithm A for C must

use sample size

mA(�; �) = 
(
1

�
ln
1

�
+
VCdim(C)

�
):

4 Applications

For �xed � and �, de�ne the sample complexity of learning a concept class C to be the minimum

sample size mA(�; �) over all (�; �)-learning algorithmsA for C. In this section we apply Theorem 1

to obtain lower bounds on the sample complexity for a variety of concept classes. These bounds

obtained are tight within a constant factor in many important cases.

We begin by recalling results of [BEHW86,87a,87b], derived from [V82], that bound the sample

complexity of algorithms that produce hypotheses in the target class C that are consistent with

the examples they have seen. We will call A a consistent algorithm for C if whenever A receives

examples of a concept in C, it always produces a hypothesis that is consistent with those examples.

If A always outputs a hypothesis h 2 H � 2X , then we say that A uses hypothesis space H .

Theorem 6 [V82] [BEHW86,87a,87b] Let A be a consistent algorithm for C using hypothesis space

C, and let 0 < �; � < 1. Then

(i) A is an (�; �)-learning algorithm for C with sample size

mA(�; �) = O(
1

�
ln
1

�
+
VCdim(C)

�
ln
1

�
):

(ii) If C is �nite then A is an (�; �)-learning algorithm for C with sample size

mA(�; �) = O(
1

�
ln
1

�
+
lnjCj

�
):
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We now apply Corollary 5 and Theorem 6 to obtain lower and upper bounds on the sample

complexity of learning several well-studied classes of concepts. For many classes the lower bound

is met or almost met (e.g., within a log factor) by an algorithm that is both e�cient (i.e., runs in

time polynomial in the length of the sample) and works for all values of � and �. We begin with

Boolean functions. We will use the following notation: if f : f0; 1gn ! f0; 1g is a Boolean function,

then s(f) � f0; 1gn will be the set f~v 2 f0; 1gn : f(~v) = 1g. For all of our Boolean examples, the

domain X is just f0; 1gn and the concept class C � 2X is the class of all s(f), where f is a function

of the type under consideration.

Monomials: Monomials are simply conjunctions of literals over the variables x1; : : : ; xn. For each

1 � i � n, let ~ui 2 f0; 1gn be the assignment with the ith bit set to 0, and all other bits set to 1. To

see that S = f~ui : 1 � i � ng is shattered by the class C of monomials, let S0 = f~ul1; : : : ; ~ulmg � S

and S�S0 = f~ulm+1
; : : : ; ~ulng � S. Then S\s(xlm+1

� � �xln) = S0, so S is shattered. Thus, we have

that VCdim(C) � jSj = n, so by Corollary 5 the sample complexity of learning C is 
(1� ln
1
� +

n
� ).

On the other hand, in [V84] an e�cient consistent algorithm for C using hypothesis space C is

given. Since jCj = 3n, we have by Theorem 6(ii) that C is learnable with sample complexity

O(1� ln
1
� +

n
� ), which is within a constant factor of the lower bound. Note that by duality, we also

have a tight lower bound for the class of disjunctions of literals.

This example demonstrates a more general principle: if lnjCj = O(VCdim(C)) and there is an

e�cient consistent algorithm for C using hypothesis space C, then C is e�ciently learnable (by

Theorem 6(ii)) with provably optimal sample complexity to within a constant factor (by Corol-

lary 5).

kDNF Formulae: The kDNF formulae are disjunctions of bounded monomials, i.e., formulae of

the form T1 + � � �+ Tl where each Ti is a monomial length at most k. There is no bound on the

number of disjuncts l. Let S � f0; 1gn be the set of all vectors with exactly k bits assigned 1

and all remaining bits assigned 0, so jSj = �(nk). To see that S is shattered by the class C of

kDNF formulae, let S0 = f~ul1 ; : : : ; ~ulmg � S. Let Tli be the monomial containing the conjunc-

tion of all variables that are assigned 1 in the vector ~uli (thus, the length of Tli is exactly k).

Then S \ s(Tl1 + � � � + Tlm) = S0, and S is shattered. By Corollary 5, we have a lower bound

of 
(1� ln
1
� +

nk

� ) on the number of examples needed to learn kDNF. Since lnjCj = O(nk) and

[V84] gives a consistent algorithm for kDNF using kDNF hypotheses that runs in time polynomial

in the length of the sample, this lower bound proves that the algorithm of [V84] is optimal in
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terms of the number of examples used by Theorem 6(ii). By duality, we have an analogous result

for the class kCNF of conjunctions of clauses, where each clause is a disjunction of at most k literals.

Symmetric Functions: A symmetric function f : f0; 1gn ! f0; 1g is a function that is invariant

under permutations of the input bits | thus, the value of f is uniquely determined by the number

of 1's in the input. Let the vector ~ui be 1 on the �rst i bits and 0 on the last n � i bits, and

let S = f~ui : 0 � i � ng. If S0 = f~ul1; : : : ; ~ulmg � S, and f is the symmetric function that is

1 if and only if the number of bits assigned 1 in the input is contained in the set fl1; : : : ; lmg,

then S \ s(f) = S0, so S is shattered by symmetric functions. Hence, VCdim(C) � jSj = n + 1.

Corollary 5 then gives a lower bound of 
(1� ln
1
� +

n
� ) on the number of examples needed to learn

symmetric functions, proving that the algorithm given in [KL87] has optimal sample complexity.

k-term DNF: For constant k, a k-term DNF formulae is one of the form T1+ � � �+Tk, where each

Ti is a monomial whose length is not restricted. If C is the class of k-term DNF concepts, then by

arguments similar to those given above it can be shown that VCdim(C) = �(n) for �xed k. Thus

Corollary 5 gives a lower bound of O(1� ln
1
�+

n
� ) on the sample size required for learning C. However,

the best known e�cient algorithm for learning C (given in [PV86]) uses the algorithm of [V84] for

k-CNF, and thus needs sample size 
(1� ln
1
� +

nk

� ). Note that the hypothesis produced by this learn-

ing algorithm is not in the class C, but in kCNF. It is shown in [PV86] (see also [KLPV87]) that

learning k-term DNF using hypothesis space k-term DNF is NP-hard. There is an algorithm using

hypothesis space k-term DNF, but it is an exhaustive-search algorithm requiring superpolynomial

time. Thus, for this example there is a signi�cant gap (O(nk�1)) between the information-theoretic

lower bound and the smallest sample size used by an e�cient learning algorithm.

l-term kDNF: If C is the class of all kDNF functions (for k �xed) with at most l terms then

VCdim(C) = �(llnnl ) ([L87b]). Results in [L88] and [HLW87] can be combined to show that there

is an e�cient (�; �)-learning algorithm for C using sample size O(
llnn

l

� ln1� ). Corollary 5 shows that

this sample size exceeds the optimal by at most a factor of O(ln1� ).

k-Decision Lists: A k-Decision List ([R87]) is a list L = < (M1; b1); (M2; b2); : : : ; (Mm; bm) >

where each Mi is a monomial containing at most k literals, and bi 2 f0; 1g. The value of L(~v) for

~v 2 f0; 1gn is de�ned as follows: let 1 � i � m be the least value such that Mi(~v) = 1. Then

L(~v) = bi (or 0 if no such i exists). In [R87] it is shown that the concept class represented by
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k-Decision Lists properly includes the kCNF and kDNF functions, and an e�cient consistent algo-

rithm for learning k-Decision Lists using k-Decision List hypotheses is given that uses sample size

O(1� ln
1
� +

nk

� lnn). The analysis of this algorithm uses Theorem 6(ii). It is shown in the appendix

of Section 7 that if C is the class of k-Decision Lists, then VCdim(C) = �(nk), thus giving a lower

bound on the sample size of 
(1� ln
1
� +

nk

� ) by Corollary 5. Thus, the sample size of the algorithm of

[R87] is at most O(lnn) above the optimal. Furthermore, the upper bound on VCdim(C) yields an

alternative analysis of this algorithm: by applying Theorem 6(i), we see that in fact a sample of size

O(1� ln
1
� +

nk

� ln
1
� ) also su�ces. If it is decided at run time which log factor is smaller, then we have

shown that the sample complexity of the algorithm of [R87] is in fact O(1� ln
1
� +

nk

� min(ln1� ; lnn)),

a factor of min(ln1� ; lnn) above optimal.

We now turn our attention to examples where the concept class is de�ned over a continuous

domain.

Linear Separators (Half-spaces): Let C be the class of all half-spaces (open or closed) in Eu-

clidean n-dimensional space En. Then VCdim(C) = n + 1 (see e.g. [WD81] or [HW87]), and an

e�cient consistent algorithm for C using hypotheses in C can be implemented using linear pro-

gramming (see [K84], [K79], see [BEHW86,87b]). By Theorem 6(i) this algorithm requires sample

size O(1� ln
1
� +

n
� ln

1
� ), which is within a factor of O(ln1� ) of optimal by Corollary 5.

Axis-Parallel Rectanges: An axis-parallel rectangle inEn is the cross product of n open or closed

intervals, one on each axis. If C is the concept class of all such rectangles, then VCdim(C) = 2n

([WD81], see [BEHW86,87b]) and an e�cient (�; �)-learning algorithm for C is given in an example

of [BEHW86,87b], using sample size O(n� ln
n
� ). By Corollary 5, this bound is o� from optimal by

a factor of at most O(lnn� ). Since the algorithm of [BEHW86,87b] is also a consistent algorithm

using hypotheses in C, from Theorem 6(i) we obtain a di�erent upper bound on its sample size,

namely O(1� ln
1
� +

n
� ln

1
� ). This bound is o� from optimal by a factor of at most O(ln1� ).

In [H88] other applications of Corollary 5 to learning algorithms in Arti�cial Intelligence domains

are given. Further consequences of Corollary 5 for learning algorithms on feedforward neural

networks of linear threshold functions are discussed in [BH88].
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5 Open Problems

Disregarding computational resources, does there always exist an (�; �)-learning algorithm for C

using sample size O(1� ln
1
� +

VCdim(C)
� ) ? It is shown in [HLW87] that the upper bound of O(1� ln

1
� +

VCdim(C)
� ln1� ) given in Theorem 6 for arbitrary consistent algorithms using hypotheses in C cannot

be improved, i.e. for all d � 1 there are concept classes C with V Cdim(C) = d with consistent

algorithms using hypotheses in C requiring at least 
(VCdim(C)� ln1� ) examples. They also show that

there always exists a (not necessarily consistent) (�; �)-learning algorithm for C using sample size

O(VCdim(C)� ln1� ). However, this also fails to meet the lower bound.

Restricting attention to polynomial time computation, do there exist e�cient learning algo-

rithms for C the class of k-Decision Lists, k-term DNF, l-term kDNF, half spaces or axis parallel

rectangles, using sample size O(1� ln
1
� +

VCdim(C)
� ) ?
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7 Appendix

Theorem 7 Let kDL be the class of k-Decision Lists. Then VCdim(kDL) = �(nk).

Proof: The lower bound on the dimension follows easily from the fact that kDL contains the class

of kDNF functions [R87], thus VCdim(kDL) � VCdim(kDNF) = �(nk). For the upper bound, we

begin by proving that VCdim(1DL) = O(n). We then give a simple transformation that proves the

theorem for arbitrary k. We adopt the following notation: let

L = < (l1; b1); (l2; b2); : : : ; (lm; bm) >

denote a 1-Decision List, where each li is a literal over the Boolean variables fx1; : : : ; xng, and each

bi 2 f0; 1g. We will call each pair (li; bi) an item of the list L.

We show that the class of 1DL functions is linearly separable | that is, for each L 2 1DL there

is a linear function

PL(x1; : : : ; xn) = c1x1 + c2x2 + � � �+ cnxn
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with coe�cients ci 2 R; 1 � i � n and a threshold value � 2 R such that for xi 2 f0; 1g; 1� i � n

(1) PL(x1; : : : ; xn) � � () L(x1; : : : ; xn) = 1:

Let C be the class of all half-spaces in Euclidean n-dimensional space. Then it follows that

VCdim(1DL) � VCdim(C) = n + 1 (see e.g. [WD81],[HW87]). Hence VCdim(1DL) = O(n).

PL is constructed as follows: with each item (li; bi), associate a linear term Ti = T (li; bi)

involving a variable in fx1; : : : ; xng, de�ned by

T (xi; 1) = xi T (xi; 0) = 1� xi T (xi; 1) = 1� xi T (xi; 0) = xi:

We now describe a method for constructing a linear inequality of the form

(2) PL(x1; : : : ; xn) = a1T1 + � � �+ amTm � �

with ai 2 R; 1 � i � m, and satisfying (1). This is done by constructing the coe�cients ai and

� in the order am; : : : ; a1; � according to the following inductive rules. We assume without loss

of generality that bm = 1; if bm = 0 then L is equivalent to the list of length m � 1 obtained by

deleting the mth item.

I. (First step) am = 1.

II. (The O-Rule) If bi = 0 then ai = 1 +
Pm

j=i+1 aj .

III. (The 1-Rule) If bi = 1 then ai =
Pk

j=i+1 aj , where k is the least l, i+ 1 � l � m such that

bl = 1.

IV. (The �-Rule) � =
Pk

j=1 aj , where k is the least l, 1 � l � m such that bl = 1.

Note that this procedure always constructs non-negative coe�cients for the linear terms Ti, so

PL(x1; : : : ; xn) � 0 always. We also note that � � 0 and PL(x1; : : : ; xn) �
Pm

j=1 aj for 0 � xi � 1.

We now show by induction on the length m of L that the inequality (2) constructed by the

above method satis�es (1).

Base Cases: Let m = 1. Then either L =< (xi; 1) > or L =< (xi; 1) >. The linear inequalities

constructed for these two cases by the above rules are xi � 1 and 1�xi � 1, respectively, and these

inequalities clearly satisfy (1).

Inductive Step: Let L0 = < (l2; b2); : : : ; (lm; bm) > | i.e., L0 is simply L with the �rst item

deleted. Then by the inductive hypothesis, there is a linear function PL0(x1; : : : ; xn) and a threshold

� 0 constructed by the above rules and satisfying

(3) PL0(x1; : : : ; xn) � � 0 () L0(x1; : : : ; xn) = 1:

12



Consider the following cases:

Case 1. Suppose (l1; b1) = (xi; 1). Then by application of the 1-Rule and the � -Rule, we obtain

the linear inequality

PL(x1; : : : ; xn) = � 0xi + PL0(x1; : : : ; xn) � � 0:

Now suppose that L(x1; : : : ; xn) = 1. Then either xi = 1, or xi = 0 and L0(x1; : : : ; xn) = 1. If xi = 1

then PL(x1; : : : ; xn) � � 0 since PL0(x1; : : : ; xn) � 0. If L0(x1; : : : ; xn) = 1, then PL(x1; : : : ; xn) � � 0

since PL0(x1; : : : ; xn) � � 0 by (3). On the other hand, if L(x1; : : : ; xn) = 0 then xi = 0 and

PL0(x1; : : : ; xn) < � 0 by (3), hence PL(x1; : : : ; xn) < � 0.

Case 2. Suppose (l1; b1) = (xi; 1) Then by application of the 1-Rule and the � -Rule, we obtain

PL(x1; : : : ; xn) = � 0(1� xi) + PL0(x1; : : : ; xn) � � 0

and the analysis is similar to that of Case 1.

Case 3. Suppose (l1; b1) = (xi; 0). Then by application of the 0-Rule and the � -Rule, we obtain

the inequality

(4) PL(x1; : : : ; xn) = (1 +
mX

j=2

aj)(1� xi) + PL0(x1; : : : ; xn) � (1 +
mX

j=2

aj) + � 0

Now if L(x1; : : : ; xn) = 1 then we must have xi = 0 and L0(x1; : : : ; xn) = 1. Hence using (3) we see

that (4) is satis�ed. Conversely, suppose that (4) is satis�ed. Then xi = 0 since PL0(x1; : : : ; xn) �
Pm

j=2 aj and � 0 � 0 always. Hence PL0(x1; : : : ; xn) � � 0, so L0(x1; : : : ; xn) = 1 by (3), and thus

L(x1; : : : ; xn) = 1.

Case 4. Suppose (l1; b1) = (xi; 0). Then by the 0-Rule and the � -Rule, we obtain

PL(x1; : : : ; xn) = (1 +
mX

j=2

aj)xi + PL0(x1; : : : ; xn) � (1 +
mX

j=2

aj) + � 0

and the analysis is similar to Case 3.

Thus, 1-Decision Lists are linearly separable, and VCdim(1DL) = O(n).

To see that VCdim(kDL) = O(nk), we use the following transformation: For each of the

p(n) = �(nk) monomialsMi of length at most k, create a variable yi(x1; : : : ; xn) de�ned by

yi(x1; : : : ; xn) = 1 () Mi(x1; : : : ; xn) = 1:

Then under this transformation, each monomialMi is mapped to a variable yi in �(nk) dimensions,

so a k-Decision List L is mapped to a 1-Decision List ~L in the variables fyig. This mapping has the

13



property that L(x1; : : : ; xn) = 1 () ~L(y1; : : : ; yp(n)) = 1. Furthermore, by the above proof the

image decision lists are linearly separable in p(n)-dimensional space, so VCdim(kDL) = O(p(n)) =

O(nk). Similar transformation techniques can be found in [KLPV87] and [L88].
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