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1 Introduction

Inspired by events ranging from 9/11 to the collapse of the accounting firm Arthur Ander-
sen, economists Kunreuther and Heal [5] recently introduced an interesting game-theoretic
model for problems ofinterdependent security (IDS), in which a large number of players
must make individual investment decisions related to security — whether physical, finan-
cial, medical, or some other type — but in which the ultimate safety of each participant
may depend in a complex way on the actions of the entire population. A simple example is
the choice of whether to install a fire sprinkler system in an individual condominium in a
large building. While such a system might greatly reduce the chances of the owner’s prop-
erty being destroyed by a fire originatingwithin their own unit, it might do little or nothing
to reduce the chances of damage caused by fires originating inotherunits (since sprinklers
can usually only douse small fires early). If “enough” other unit owners have not made the
investment in sprinklers, it may be not cost-effective for any individual to do so.

Kunreuther and Heal [5] observe that a great variety of natural problems share this basic in-
terdependent structure, including investment decisions in airline baggage security (in which
investments in new screening procedures may reduce the risk of directly checking suspi-
cious cargo, but nearly all airlines accept transferred bags with no additional screening1);
risk management in corporations (in which individual business units have an incentive to
avoid high-risk or illegal activities only if enough other units are similarly well-behaved);
vaccination against infectious disease (where the fraction of the population choosing vac-
cination determines the need for or effectiveness of vaccination); certain problems in com-
puter network security; and many others. All these problems share the following important
properties:

� There is a “bad event” (condominium fire, airline explosion, corporate bankruptcy,
infection, etc.) to be avoided, and the opportunity to reduce the risk of it via some
kind of investment.

� The cost-effectiveness of the security investment for the individual is a function
of the investment decisions made by the others in the population.

The original work by Kunreuther and Heal [5] proposed a parametric game-theoretic model
for such problems, but left the interesting question ofcomputingthe equilibria of model
largely untouched. In this paper we examine such computational issues.

1El Al airlines is the exception to this.



2 Definitions

In anIDS game, each playerimust decide whether or not to invest in some abstract security
mechanism or procedure that can reduce their risk of experiencing some abstract bad event.
The cost of the investment toi is Ci, while the cost of experiencing the bad event isLi;
the interesting case is whenLi >> Ci. Thus, playeri has two choices for his actionai:
ai = 1 means the player makes the investment, whileai = 0 means he does not. It turns
out that the important parameter is theratio of the two costs, so we defineRi = Ci=Li.

For each playeri, there is a parameterpi, which is the probability that playeri will expe-
rience the bad event due tointernal contamination ifai = 0 — for example, this is the
probability of the condominium owner’s unit burning downdue to a fire originating in his
own unit. We can also think ofpi as a measure of thedirect risk to playeri — as we shall
see, it is that portion of his risk under his direct control.

To model sources ofindirect risk, for eachpair of playersi; j; i 6= j, let qji be the proba-
bility that playeri experiences the bad event as a result of atransferfrom playerj — for
example, this is the probability that the condominium of playeri burns down due to a fire
originating in the unit of playerj. Note the implicit constraint thatpi +

P
j 6=i qji < 1.

An IDS game is thus given by the parameterspi, qji, Li, Ci for each playeri, and the
expected cost to playeri under the model is defined to be

Mi(~a) = aiCi +(1�ai)piLi+(1� (1�ai)pi)
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Let us take a moment to parse and motivate this definition, which is the sum of three terms.
The first term represents the amount invested in security by playeri, and is either 0 (if
ai = 0) orCi (if ai = 1). The second term is the expected cost toi due to internal or direct
risk of the bad event, and is eitherpiLi (which is the expected cost of internally generated
bad events in the caseai = 0), or is 0 (in the case of investment,ai = 1). Thus, there is a
natural tension between the first two terms: players can either invest in security, which costs
money but reduces risk, or gamble by not investing. Note that here we have assumed that
security investmentperfectlyeradicates direct risk (but not indirect risk); generalizations
are obviously possible, but have no qualitative effect on the model.

It is the third term of Equation (1) that expresses theinterdependentnature of the problem.
This term encodes the assumption that there aren sources of risk to playeri — his own
internal risk, and a specific transfer risk from each of the othern � 1 players — and that
all these sources are statistically independent. The prefactor(1� (1� ai)pi) is simply the
probability that playeri doesnotexperience the bad event due to direct risk. The bracketed
expression is the probability that playeri experiences a bad event due to transferred risk:
each factor(1 � (1 � aj)qji) in the product is the probability that a bad event doesnot
befall playeri due to playerj (and the product expresses the assumption that all of these
possible transfer events are independent). Thus 1 minus this product is the probability of
transferred contamination, and of course the product of the various risk probabilities is also
multiplied by the costLi of the bad event.

The model parameters and Equation (1) define a compact representation for a multiplayer
game in which each player’s goal is to minimize their cost. Our interest is in the efficient
computation of Nash equilibria (NE) of such games2.

2See (for example) [4] for definitions of Nash and approximate Nash equilibria.



3 Algorithms

We begin with the observation that it is in fact computationally straightforward to find a
singlepureNE of any IDS game. To see this, it is easily verified that if there areanycon-
ditions under which playeri prefers investing (ai = 1) to not investing (ai = 0) according
to the expected costs given by Equation (1), then it is certainly the case thati will prefer to
invest when all the othern � 1 players are doing so. Similarly, the most favorable condi-
tions for not investing occur when no other players are investing. Thus, to find a pure NE,
we can first check whether either all players investing, or no players investing, forms a NE.
If so, we are finished. If neither of these extremes are a NE, then there are some players for
whom investing or not investing is a dominant strategy (a best response independent of the
behavior of others). If we then “clamp” such players to their dominant strategies, we obtain
a new IDS game with fewer players (only those without dominant strategies in the original
game), and can again see if this modified game has any players with dominant strategies.
At each stage of this iterative process we maintain the invariant that clamped players are
playing a best response toanypossible setting of the unclamped players.

Theorem 1 A pure NE for anyn-player IDS game can be computed in timeO(n2).

In a sense, the argument above demonstrates the fact that in most “interesting” IDS games
(those in which each player is a true participant, and can have their behavior swayed by
that of the overall population), there are two trivial pure NE (all invest and none invest).
However, we are also interested in finding NE in which some players are choosing to invest
and others not to (even though no player has a dominant strategy). A primary motivation
for finding such NE is the appearance of such behavior in “real world” IDS settings, where
individual parties do truly seem to make differing security investment choices (such as with
sprinkler systems in large apartment buildings). Conceptually, the most straightforward
way to discover such NE would be to computeall NE of the IDS game. As we shall
eventually see, for computational efficiency such a demand requires restrictions on the
parameters of the game, one natural example of which we now investigate.

3.1 Uniform Transfer IDS Games

A uniform transferIDS game is one in which the transfer risksemanating froma given
player are independent of the transfer destination. Thus, for any playerj, we have that
for all i 6= j, qji = Æj for some valueÆj . Note that the risk levelÆj presented to the
population by different playersj may still vary withj — but each player spreads their risk
indiscriminately across the rest of the population. An example would be the assumption
that each airline transferred bags with equal probability to all other airlines.

In this section, we describe two different approaches for computing NE in uniform trans-
fer IDS games. The first approach views a uniform transfer IDS game as a special type
of summarization game, a class recently investigated by Kearns and Mansour [4]. In an
n-player summarization game, the payoff of each playeri is a function of the actions~a�i

of all the other players, but onlythrough the value of a global and common real-valued
summarization functionS(~a). The main result of [4] gives an algorithm for computing
approximate NE of summarization games, in which the quality of the approximation de-
pends on theinfluenceof the summarization functionS. A well-known notion in discrete
functional analysis, the influence ofS is the maximum change inS that any input (player)
can unilaterally cause. (See [4] for detailed definitions.)

It can be shown (details omitted) that any uniform transfer IDS game is in fact a summa-



rization game under the choice

S(~a) =
nY

j=1

(1� (1� aj)Æj) (2)

and that the influence of this function is bounded by the largestÆj . We note that in many
natural uniform transfer IDS settings, we expect this influence to diminish like1=n with
the number of playersn. (This would be the case if the risk transfer comes about through
physical objects like airline baggage, where each transfer event can have only a single
destination.) Combined with the results of [4], the above discussion can be shown to yield
the following result.

Theorem 2 There is an algorithm that takes as input any uniform transfer IDS game, and
any � > 0, and computes anO(� + ��)-NE, where� = maxjf(1 � pj)=(1 � Æj)g and
� = maxjfÆjg. The running time of the algorithm is polynomial inn, 1=�, and�.

We note that in typical IDS settings we expect both thepj andÆj to be small (the bad event
is relatively rare, regardless of its source), in which case� may be viewed as a constant.
Furthermore, it can be verified that this algorithm will in fact be able to compute approxi-
mate NE in which some players choose to invest and others not to, even in the absence of
any dominant strategies.

While viewing uniform transfer IDS games as bounded influence summarization games
relates them to a standard class and yields a natural approximation algorithm, an improved
approach is possible. We now present an algorithm (AlgorithmUniformTransferIDSNash
in Figure 3.1) that efficiently computesall NE for uniform transfer IDS games. The algo-
rithm (indeed, even the representation of certain NE) requires the ability to computemth
roots.

We may assume without loss of generality that for all playersi, Æi > 0, andpi > 0.
For a joint mixed strategy vector~x 2 [0; 1]n, denote the set of(fully) investing playersas
I � fi : xi = 1g; the set of(fully) non-investing playersasN � fi : xi = 0g; and the set
of partially investing playersasP � fi : 0 < xi < 1g:

The correctness of algorithmUniformTransferIDSNash follows immediately from two
lemmas that we now state without proof due to space considerations. The first lemma is a
generalization of Proposition 2 of [2], and essentially establishes that the valuesRi=pi and
(1�Æi)Ri=pi determine a two-level ordering of the players’ willingness to invest. This dou-
ble ordering generates the outer and inner loops of algorithmUniformTransferIDSNash.
Note that a player with smallRi=pi has a combination of relatively low cost of investing
compared to the loss of a bad event (recallRi = Ci=Li), and relatively high direct riskpi,
and thus intuitively should be more willing to invest than players with largeRi=pi. The
lemma makes this intuition precise.

Lemma 3 (Ordering Lemma) Let~x be a NE for a uniform transfer IDS gameG =

(n; ~R; ~p;~Æ). Then for anyi 2 I (an investing player), anyj 2 N (a partially investing
player), and anyk 2 P (a non-investing player), the following conditions hold:

Ri=pi < Rj=pj

Ri=pi � (1� Æk) Rk=pk < Rk=pk

(1� Æj) Rj=pj < (1� Æk) Rk=pk

The second lemma establishes that if a NE contains some partially investing players, the
values for their mixed strategies is in fact uniquely determined. The equations for these
mixed strategies is exploited in the subroutineTestNash.



Algorithm UniformTransferIDSNash
Input: An n-player uniform transfer IDS gameG with direct risk parameters~p, transfer risk
parameters~Æ, and cost parameters~R, whereRi = Ci=Li.
Output: A setS of all exact connected sets of NEfor G.

1. Initialize a partition of the players into three setsI;N; P (the investing, not investing,
and partially investing players, respectively) and test if everybody investing is a NE:
I  f1; : : : ; ng;N  ;;P  ;;S  TestNash(G; I; N; P; S)

2. Let (i1; i2; :::; in) be an ordering of then players satisfyingRi1=pi1 � : : : �
Rin=pin . Call this theouter ordering.

3. for k = 1; : : : ; n

(a) Move the next player in the outer ordering from the investing to the partially-
investing sets:P  P

S
fikg; I  I � fikg

(b) Let(j1; :::; jk) be an ordering of the players inP satisfying(1�Æj1) Rj1=pj1 �
: : : � (1� Æjk ) Rjk=pjk . Call this theinner ordering.

(c) Consider a strategy with no not-investing players:N  ;;S  
TestNash(G; I;N; P; S)

(d) for m = 1; : : : ; k

i. Move the next player in the inner ordering from the partially-investing to
non-investing sets, and test if there is a NE consistent with the partition:
N  N

S
fjmg;P  P � fjmg;S  TestNash(G; I; N; P; S)

SubroutineTestNash
Inputs: An n-player uniform transfer IDS gameG; a partition of the playersI;N; P (as above);
S, the current discovered set of connected sets of NE forG
Output: S with possibly one additional connected set of NE ofG consistent withI;N , andP
(assuming unit-time computation ofm-roots of rational numbers)

1. Set pure strategies for not-investing and investing players, respectively:8k 2
N; xk  0, 8i 2 I; xi  1.

2. if jP j = 1 (Lemma 4, part (a) applies)

(a) LetP = fjg, U as in Equation 3 andU 0 = U
T

(0; 1)

(b) if Rj = pj
Q
k2N(1� Æk) (i.e., playerj is indifferent) andU 0 6= ;, then return

S
S
ff~y : yj 2 U 0; ~y�j = ~x�jgg

3. else (Lemma 4, part (b) applies)

(a) Compute mixed strategies8j 2 P; xj as in Equation 4
(b) if 9j 2 P; xj � 0 or xj � 1, returnS
(c) if ~x is a NE forG then returnS

S
ff~xgg

4. returnS

Figure 1: AlgorithmUniformTransferIDSNash

If I = [l; u] is an interval of< with endpointsl andu, anda; b 2 < then we define
aI + b � [al+ b; au+ b].

Lemma 4 (Partial Investment Lemma) Let~x 2 [0; 1]n be a mixed strategy for a uniform
transfer IDS gameG = (n; ~R; ~p;~Æ), and letP be the set of partially investing players in~x.
Then (a) ifjP j = 1, then lettingP = fjg,V = [maxi2I Ri=pi; mink2N (1� Æk) Rk=pk] ;
and

U = ((pj=Rj) V � (1� Æj)) = Æj (3)

it holds that~x is a NE if and only ifRj = pj
Q

k2N 1� Æk (i.e., playerj is indifferent) and
playerj mixed strategy satisfiesxj 2 U ; else, (b) ifjP j > 1, and~x is a NE, then for all



j 2 P ,
xj = ((pj=Rj)E � (1� Æj)) = Æj (4)

whereE =
�Q

j2P (Rj=pj)
. Q

k2N (1� Æk)
�1=(jP j�1)

:

The next theorem summarizes our second algorithmic result on uniform transfer IDS
games. The omitted proof follows from Lemmas 3 and 4.

Theorem 5 AlgorithmUniformTransferIDSNash computes all exact (connected sets of)
NE for uniform transfer IDS games in time polynomial in the size of the model.

We note that it follows immediately from the description and correctness of the algorithm
that anyn-player uniform transfer IDS game has at mostn(n + 3)=2 + 1 connected sets
of NE. In addition, each connected set of NE in a uniform transfer IDS game is either
a singleton or a simple interval wheren � 1 of the players play pure strategies and the
remaining player has a simple interval in[0; 1] of probability values from which to choose
its strategy. At mostn of the connected sets of NE in a uniform transfer IDS game are
simple intervals.

3.2 Hardness of General IDS Games

In light of the results of the preceding section, it is of course natural to consider the com-
putational difficulty of unrestricted IDS. We now show that even a slight generalization of
uniform transfer IDS games, in which we allow theÆj to assume two fixed values instead
of one, leads to the intractabilty of computing at least some of the NE.

A graphical uniform transfer IDS game, so named because it can be viewed as a marriage
between uniform transfer IDS games and the graphical games introduced in [3], is an IDS
game with the restriction that for all playersj, qji 2 f0; Æjg, for someÆj > 0. Let
N(j) � fi : qji > 0g be the set of players that can bedirectly affectedby playerj’s
behavior. In other words, the transfer risk parameterqji of playerj with respect to playeri
is either zero, in which case the playerj has nodirect effect on playeri’s behavior; or it is
constant, in which case, the public safetyeji = (1 � (1 � xj)Æj) of playerj with respect
to playeri 2 N(j) is the same as for any other player inN(j).

Thepure Nash extension problemfor ann-player game with binary actions takes as input
a description of the game and a partial assignment~a 2 f0; 1; �gn. The output may be any
complete assignment (joint action)~b 2 f0; 1gn that agrees with~a on all its 0 and 1 settings,
and is a (pure) NE for the game; or “none” if no such NE exists. Clearly the problem of
computingall the NE is at least as difficult as the pure Nash extension problem.

Theorem 6 The pure Nash extension problem for graphical uniform transfer IDS games is
NP-complete, even ifjN(j)j � 3 for all j, andÆj is some fixed valueÆ for all j.

The reduction (omitted) is from Monotone One-in-Three SAT [1].

4 Experimental Study: Airline Baggage Security

As an empirical demonstration of IDS games, we constructed and conducted experiments
on an IDS game for airline security that is based on real industry data. We have access
to a data set consisting of 35,362 records of actual civilian commercial flight reservations,
both domestic and international, made on August 26, 2002. Since these records contain
complete flight itineraries, they include passenger transfers between the 122 represented
commercial air carriers. As described below, we used this data set to construct an IDS



game in which the players are the 122 carriers, the “bad event” corresponds to a bomb
exploding in a bag being transported in a carrier’s airplane, and the transfer event is the
physical transfer of a bag from one carrier to another.

For each carrier pair(i; j), the transfer parameterqji was set to be proportional to the
count of transfers from carrierj to carrieri in the data set. We are thus using the rate of
passengertransfers as a proxy for the rate ofbaggagetransfers. The resulting parameters
(details omitted) are, as expected, quite asymmetric, as there are highly structured pat-
terns of transfers resulting from differing geographic coverages, alliances between carriers,
etc. The model is thus far from being a uniform transfer IDS game, and thus algorithm
UniformTransferIDSNash cannot be applied; we instead used a simple gradient learning
approach.

The data set provides no guidance on reasonable values for theRi andpi, which quantify
relative costs of a hypothetical new screening procedure and the direct risks of checking
contaminated luggage, respectively; presumablyRi depends on the specific economics of
the carrier, andpi on some notion of the risk presented by the carrier’s clientele, which
might depend on the geographic area served. Thus, for illustrative purposes, an arbitrary
value ofpi = 0:01 was chosen for alli 3, and a common value forRi of 0.009 (so an
explosion is roughly 110 times more costly to a carrier than full investment in security).

Since the asymmetries of theqji preclude the use of algorithmUniformTransferIDSNash,
we instead used a learning approach in which each player begins with a random initial
investment strategyxi 2 [0; 1], and adjusts its degree of investment up or down based on
the gradient dynamicsxi  xi���i, where�i is determined by computing the derivative
of Equation (1) and� = 0:05 was used in the experiments to be discussed.
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Figure 2:(a) Simulation of the evolution of security investment strategies for the 49 busiest carrier
using gradient dynamics under the IDS model. Above each plot is an index indicating the rank of the
carrier in terms of overall volume in the data set. Each plot shows the investment levelxi (initialized
randomly in[0; 1]) for carrier i over 500 simulation steps. (b) Tipping phenomena. Simulation of
the evolution of security investment strategies for the 49 busiest carriers, but with the three largest
carriers (indices 1, 2 and 3) in the data set clamped (subsidized) at full investment. The plots are
ordered as in (a), and again show 500 simulation steps under gradient dynamics.

Figure 2(a) shows the evolution, over 500 steps of simulation time, of the investment level
xi for the 49 busiest carriers4. We have ordered the 49 plots with the least busy carrier

3This is (hopefully) an unrealistically large value for the real world; however, it is the relationship
between the parameters and not their absolute magnitudes that is important in the model.

4According to the total volume of flights per carrier in the data set.



(index 49) plotted in the upper left corner, and the busiest (index 1) in the lower right
corner. The horizontal axes measure the 500 time steps, while the vertical axes go from 0
to 1. The axes are unlabeled for legibility.

The most striking feature of the figure is the change in the evolution of the investment
strategy as we move from less busy to more busy carriers. Broadly speaking, there is a large
population of lower-volume carriers (indices 49 down to 34) that quickly converge to full
investment (xi = 1) regardless of initial conditions. The smallest carriers, not shown (ranks
122 down to 50), also all rapidly converge to full investment. There is then a set of medium-
volume carriers whose limiting strategy is approached more slowly, and may eventually
converge to either full or no investment (roughly indices 33 down to 14). Finally, the largest
carriers (indices 13 and lower) again converge quickly, but to no investment (xi = 0),
because they have a high probability of having bags transferred from other carriers (even if
they protect themselves against dangerous bags being loaded directly on their planes).

Note also that the dynamics can yield complex, nonlinear behavior that includes reversals of
strategy. The simulation eventually converges (within 2000 steps) to a (Nash) equilibrium
in which some carriers are at full investment, and the rest at no investment. This property
is extremely robust across initial conditions and model parameters,

The above simulation model enables one to examine how subsidizing several airlines to en-
courage it to invest in security can encourage others to do the same. This type of “tipping”
behavior [6] can be the basis for developing strategies for inducing adoption of security
measures short of formal regulations or requirements. Figure2(b) shows the result of an
identical simulation to the one discussed above, except the three largest carriers (indices 1,
2 and 3) are now “clamped” or forced to be at full investment during the entire simulation.
Independent of initial conditions, the remaining population now invariably converges to full
investment. Thus the model suggests that these three carriers form (one of perhaps many
different) tipping sets — carriers whose decision to invest (due to subsidization or other
exogenous forces) will create the economic incentive for a large population of otherwise
skeptical carriers to follow. The dynamics also reveal a cascading effect — for example,
carrier 5 moves towards full investment (after having settled comfortably at no investment)
only after a number of larger and smaller carriers have done so.

Acknowledgements: We give warm thanks to Howard Kunreuther, Geoffrey Heal and
Kilian Weinberger for many helpful discussions.
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