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Abstract There are many common settings in which such graphical
models may naturally and succinctly capture the underly-
We introduce a compact graph-theoretic repre-  iNg game structure. The graph topology might model the
sentation for multi-party game theory. Our main physical distribution and interactions of agents: each sales-
result is a provably correct and efficient algo- person is viewed as being involved in a local competition
rithm for computing approximate Nash equilibria (game) with the salespeople in geographically neighboring
in one-stage games represented by trees or sparse  regions. The graph may be used to represent organizational
graphs. structure: low-level employees are engaged in a game with

their immediate supervisors, who in turn are engaged in a

game involving their direct reports and their own managers,
1 INTRODUCTION and so on up to the CEO. The graph may coincide with the

topology of a computer network, with each machine nego-
In most work on multi-player game theory, payoffs are rep-tiating with its neighbors (to balance load, for instance).
resented inabular form: if n agents play agame in which There is a fruitful analogy between our setting and
each player has (say) two actions available, the game ig,yegian networks. We propose a representation that is
given byn matrices, each of siz&", specifying the pay- iyersal: anyi-player game can be represented by choos-
offs_ to each player under any possible combination ofJomqng the complete graph and the originaplayer matrices.
actions. For game-theoretic approaches to scale 10 larggqever, significant representational benefits occur if the
multi-agent systems;ompactyet generalrepresentations raph degree is small: if each player has at most n
must be explored, along with algorithms that can eﬁiCie”tlyneighbors, then each game matrix is exponential only in
manipulate therh rather tham. The restriction to small degree seems insuffi-

In this work, we introducegraphical modelsfor multi-  cient to avoid the intractability of computing Nash equilib-
player game theory, and give powerful algorithms for com-ria. All of these properties hold for the problem of repre-
puting their Nash equilibria in certain cases. Asplayer ~ senting and computing conditional probabilities in a Bayes
game is given by an undirected graphwowertices and a net. Thus, as with Bayes nets, we are driven to ask the nat-
set of n matrices. The interpretation is that the payoff to ural computationalquestion: for which classes of graphs
playeri is determined entirely by the actions of playier can we give efficient (polynomial-time) algorithms for the
and his neighbors in the graph, and thus the payoff matri¢omputation of Nash equilibria?

for playeri is indexed only by these players. We thus View o, main technical result is an algorithm for computing
the globaln-player game as being composed of interactingy5qh equilibria when the underlying graph is a tree (or
local games, each involving (perhaps many) fewer playerscan be turned into a tree with few vertex mergings). This
Each player's action may have global impact, but it 0CCUrS; g orithm comes in two related but distinct forms. The
through the propagation of local influences. first version involves an approximation step, and computes
*The research described here was completed while thein approximation oeveryNash equilibrium. (Note that
ﬁq‘fé‘;‘;{; kvégt;ﬁs?@ts?;ilcell_pﬁ?asl.ComAUthorS’ email addresses: there may be an exponential or infinite number of equilib-
mlittman@research.att.com , ‘ ria.) This algorthm runs in time polynomlal'm the size of
satinder.baveja@syntekcapital.com ) the representation (the tree and the associated local game
'For multistagegames, there is a large literature on compactmatrices), and constitutes one of the few known cases in
state-based representations for the different stages of the gamghich equilibria can be efficiently computed for a large

such as stochastic games or extensive form games (Owen 1993555 of general-sum, multi-player games. The second ver-
Our focus is on representirane stage, multiplayergames.



sion of the algorithm runs in exponential time, but allows3 PRELIMINARIES

the exactcomputation of all Nash equilibria in a tree. In

an upcoming paper (Littman et al. 2001), we describe an n-player, two-actiof game is defined by a set ofma-

polynomial-time algorithm for the exact computation of atrices M; (1 < i < n), each withn indices. The entry

single Nash equilibrium in trees. Our algorithms require A, (x4, ..., z,) = M;(¥) specifies the payoff to player

only local message-passing (and thus can be implementeghen the joint action of the players isz € {0,1}" 3.

by the players themselves in a distributed manner). Thus, eachl/; has2” entries. If a game is given by simply
listing the2” entries of each of the matrices, we will say
that it is represented it@bular form.

The actions 0 and 1 are tlpaire strategieof each player,
while a mixedstrategy for playet is given by the proba-
bility p; € [0, 1] that the player will play 0. For any joint

2 RELATED WORK mixed strategy, given by a product distributignwve define
the expected payoff to playeérsM; (7)) = Ez.z[M;(Z)],
whereZ ~ jindicates that each; is 0 with probabilityp;
and 1 with probabilityl — p;.

Algorithms for computing Nash equilibria are well-studied. we ysej[i : p/] to denote the vector which is the same as
McKelvey and McLennan (1996) survey a wide variety ofﬁ except in theith component, where the value has been
algorithms covering 2- and-player games; Nash equilib- changed tg!. A Nash equilibriunfor the game is a mixed
ria and refinements; normal and extensive forms; computstrategy such that for any playei, and for any value
ing either a sample equilibrium or exhaustive enumerationpg € [0,1], Mi () > M;(fli : p}]). (We say thap; is a
and many other variations. They note thaplayer games pest responsto ) In other words, no player can improve
are computationally much harder than 2-player games, ifhejr expected payoff by deviating unilaterally from a Nash
many important ways. The survey discusses approximagquilibrium. The classic theorem of Nash (1951) states that

tion techniques for finding equilibria in-player games.  for any game, there exists a Nash equilibrium in the space
Several of the methods described are not globally convery joint mixed strategies (product distributions).

gent, and hence do not guarantee an equilibrium. A method _ o _
based on simplicial subdivision is described that converge¥Ve Will also use the standard definition for approximate
to a point with equilibrium-like properties, but is not neces- Nash equilibria. Are-Nash equilibriumis a mixed strategy
sarily near an equilibrium or an approximate equilibrium. 7 Such that for any playei, and for any valug; € [0, 1],

In contrast, for the restricted cases we consider, our algodi (P) + ¢ > Mi(pli : pi]). (We say thap; is ane-best
rithms provide running time and solution quality guaran-"€SPonseo p7.) Thus, no player can improve their expected

teeS, even in the case Of genera'_su';mﬂayer games_ payOff by more tharf by deViating Unilatera”y from an
) . ) approximate Nash equilibrium.
Nash (1951), in the paper that introduces the notion of Nash

equilibria, gives an example of a 3-player, finite-actionAN n-player graphical gameis a pair (¢, M), whereG
game, and shows it has a unique Nash equilibria. Although® @n undirected graph onm vertices and\ is a set ofn
all payoffs are rational numbers, Nash shows that the playMatricesM; (1 < i < n), called thelocal game matri-
ers’ action probabilities at the equilibrium are irrational. €8S Playeri is represented by a vertex labelédn G.
This suggests that no finite algorithm that takes rationalVe useNa (i) C {1,...,n} to denote the set afieigh-
payoffs and transforms them using addition, subtractionPOrs of playeri in G—that is, those verticeg such that
multiplication, and division will be able to compute exact the undirected edggi, j) appears inG:. By convention,
equilibrium policies in general. Thus, the existence of an'Vc(¢) always includes itself. The interpretation is that
exact algorithm for finding equilibria in games with tree- €ach player is in a game with only their neighbors(in
structured interactions shows that these games are som&bUs, if[Ne (:)| = &, the matrixM; hask indices, one for
what simpler than general-player games. It also sug- €ach player inVe (i), and if # € [0, 1]*, M;(#) denotes
gests that approximation algorithms are probably unavoidthe payoff toi when hisk neighbors (which include him-

able for generah-player games. self) play#. The expected payoff under a mixed strategy
7 € [0,1]% is defined analogously. Note that in the two-

Several authors have examined graphical representationgtion case); has2* entries, which may be considerably
of games. Koller and Milch (2001) describe an extension—

of influence diagrams to representing)|ayer games, and For simplicity, we describe. our reSU!tS. for the tWC.)'a(?tion
suggest the importance of exploiting graphical structure i ase. However, we later describe an efficient generalization of

- . he approximation algorithm to multiple actions.
solving normal-form games. La Mura (2000) describes a ?For simplicity, we shall assume all payoffs are bounded in

closely related representation, and provides globally conapsolute value by 1, but all our results generalize (with a linear
vergent algorithms for finding Nash equilibria. dependence on maximum payoff).



smaller tharp™. single childi. We now describe the data structures sent
from eachl; to V, and in turn froml” to W, on the down-

Since we identify players with vertices i&, and since stream pass of the algorithm,

it will sometimes be easier to treat vertices symbolically
(such asl/, V and W) rather than by integer indices, we Each parentUU; will send to V' a binary-valued table
also useMy to denote the local game matrix for the player T'(v, u;). The table is indexed by the continuum of pos-
identified with vertexi/. sible values for the mixed strategiesc [0, 1] of V' and

_— . . ; € [0,1] of U;. The semantics of this table will be as fol-
Note that our definitions are entirely representational, an(ﬁ)ws, for any pair(v, u;), T'(v, u;) will be 1 if and only if

e et s N squilru - . |
y grap 9 d ' U; = u;. Note that we will slightly abuse notation by let-

every game can be trivially represented as a graphical game’ ' "
by choosingG to be the complete graph, and letting thg}Ing T(v, w) refer both to the entire tablg sent frd.”*z" 0

. . .V, and the particular value associated with the pait:; ),
local game matrices be the original tabular form matrices . .

) . ut the meaning will be clear from the context.

Indeed, in some cases, this may be the most compact grappn—
ical representation of the tabular game. However, exacthSincev andw; are continuous variables, it is not obvious
as for Bayesian networks and other graphical models fothat the tableT'(v, ;) can be represented compactly, or
probabilistic inference, any time in which the local neigh- even finitely, for arbitrary vertices in a tree. As indicated
borhoods inGG can be bounded by << n, exponential already, for now we will simply assume a finite represen-
spacesavings accrue. Our main results identify graphicaltation, and show how this assumption can be met in two
structures for which significambmputationabenefits may  different ways in later sections.

also be realized. The initialization of the downstream pass of the algorithm

begins at the leaves of the tree, where the computation of
4 ABSTRACT TREE ALGORITHM the tables is straightforward. If is a leaf andV its only
child, thenT'(v,u) = 1 if and only if U = u is a best
In this section, we give an abstract description of our al-response t&” = v (step 2c of Figure 1).

orithm for computing Nash equilibria in trees (see Fig-
g Puting . ( g Assuming for induction that eacly; sends the table

ure 1). By “abstract”, we mean that we will leave unspec- ibe h h
ified (for now) the representation of a certain data struc-] (v, ui) to V', we now describe how’ can compute the ta-

ture, and the implementation of a certain computationaP!® (¢, v) to pass to its childV’ (step 2(d)ii of Figure 1).

step. After proving the correctness of this abstract algo! ©f €ach paifw, v), T'(w, v) is setto 1 if and only if there

rithm, in subsequent sections we will describe two instan—ex'sts avector of mixed strategiés= (u1,.., ug) (called
tiations of the missing details—yielding one algorithm that@Witnes$ for the parents/ = (U, ..., Ux) of V such that
runs in polynomial time and computes approximations of

all equilibria, and another algorithm that runs in exponen- 1. T'(v,u;) = 1 forall 1 <i < k; and

tial time and computes all exact equilibria. . .
. . . i . 2.V =wisabestresponseto=u, W = w.
If G is a tree, we can orient this tree by choosing an arbi-

trary vertex to be the root. Any vertex on the path from a .
X Note that there may be more than one witness for
vertex to the root will be calledownstreanfrom that ver- L .
.- T'(w,v) = 1. In addition to computing the valug(w, v)
tex, and any vertex on a path from a vertex to a leaf will be ) .
on the downstream pass of the algorithimwill also keep
calledupstreamfrom that vertex. Thus, each vertex other _ . . - . .
. . list of the witnesses for each pair(w,v) for which
than the root has exactly one downstream neighbor (ch|Id)T w,v) = 1 (step 2(d)iiA of Figure 1). These witness lists
and perhaps many upstream neighbors (parents). We use,) b 9 X

Up¢(U) to denote the set of verticesdnthat are upstream \tlwvtljl\lfvbteoui‘:fdlgrzeﬂr:? %%Stégzg;iE:jséfrga:;é:c;igﬁiw)v lous
from U, including/ by definition. P P Y

and the witness lists, singgis continuous and universally
Suppose that’ is the child of U in G. We letGY de- quantified. For now, we assume this computation can be
note the the subgraph induced by the verticeBjin,(U/).  done, and describe two specific implementations later.

If v € [0,1] is a mixed strategy for player (verteX},
MY _, will denote the subset of matrices df{ corre-
sponding to the vertices ilp(U), with the modifica-
tion that the game matrid/y; is collapsed by one index
by fixing V' = v. We can think of a Nash equilibrium for
the graphical gaméGY, MY _ ) as an equilibrium “up-
stream” from{/ (inclusive),giventhat!” playsv.

To see that the semantics of the tables are preserved by the
abstract computation just described, suppose that this com-
putation yieldsI'(w, v) = 1 for some paif(w, v), and leti

be a witness fofl '(w, v) = 1. The fact thatl'(v, u;) = 1

for all ¢ (condition 1 above) ensures by induction that’if
playsv, there are upstream Nash equilibria in which each
U; = u;. Furthermorey is a best response to the local set-
Suppose some vertéx hask parentd/y, ..., U, and the tingslU; = ua, ..., Ux = ux, W = w’ (condition 2 above).



Algorithm TreeNash
Inputs: Graphical gam@Z, M) in which G is a tree.
Output: A Nash equilibrium fo(G, M).

1. Compute a depth-first ordering of the vertices:of

2. (Downstream Pas¥For each verteX” in depth-first ordering (starting at the leaves):

(a) Letvertex¥ be the child oft” (or nil if V' is the root).
(b) Initialize T'(w, v) to be 0 and the witness list far(w, v) to be empty for alkw, v € [0, 1].
(c) If Visaleaf:

i. Forallw,v € [0,1], setT(w, v) to be 1ifand only ift" = v is a best response #& = w
(as determined by the local game matdi).

(d) Else { is an internal vertex):
i. Letl = (Ui, ...,Ux) be the parents of ; let T'(v, u;) be the table passed froth to V' on
the downstream pass.
ii. Forallw,v € [0,1] and all joint mixed strategie® = (u1, ..., uy) for U:
A. If V = v is a best response 1¢ = w and = @ (as determined by the local game

matrix Mv), andT'(v,u;) = 1 fori = 1,---,k, setT(w, v) to be 1 and add to the
witness list forl(w, v).

(e) Pass the tablE(w, v) fromV to W.

3. (Upstream Pas$ For each verteX” in reverse depth-first ordering (starting at the root):
(@ Letl = (Ui, ...,Ux) be the parents of (or the empty listifl is a leaf); letl be the child of
V (or nilif V' is the root), andw, v) the values passed frof’ to V' on the upstream pass.
(b) LabelV with the valuev.
(c) (Non-deterministically) Choose any witnes$o 7'(w, v) = 1.
(d) Fori=1,...,k, pasqv,u;) fromV toUs;.

Figure 1: Abstract algorithriireeNashfor computing Nash equilibria of tree graphical games. The description is incom-
plete, as it is not clear how to finitely represent the tafilés-), or how to finitely implement step 2(d)ii. In Section 5, we
show how to implement a modified version of the algorithm that computes approximate equilibria in polynomial time. In
Section 6, we implement a modified version that computes exact equilibria in exponential time.

Therefore, we are in equilibrium upstream frém On the  pass non-deterministic to emphasize that the tables and wit-
other hand, ifl'(w, v) = 0 it is easy to see there can be no ness lists computed represeit the Nash equilibria. Of

equilibrium in whichW = w, V' = v. Note that the exis- course, a random equilibrium can be chosen by making
tence of a Nash equilibrium guarantees théts, v) = 1 these choices random. We discuss the selection of equi-

for at least ongw, v) pair. libria with desired global properties in Section 7.
The downstream pass of the algorithm terminates at thneorem 1 Algorithm TreeNash computes a Nash equi-
root 7, which receives tableg(z, y;) from each parenti. |iprium for the tree gaméG, M). Furthermore, the tables

Z simply computes a one-dimensional table) such that 44 witness lists computed by the algorithm represent all
T'(2) = 1if and only if for some witnesg, 7'(z,¥;)) =1  Nash equilibria of( G, M).
for all ¢, andz is a best response 0

The upstream pass begins Bychoosing any: for which 5§ APPROXIMATION ALGORITHM

T(z) = 1, choosing any withesgy:, ..., yx) to T'(z) =

1, and then passing bothandy; to each parent;. The |n this section, we describe an instantiation of the miss-
interpretation is that will play z, and is instructing’; to  ing details of algorithnTreeNashthat yields a polynomial-
playy;. Inductively, if a verteX/ receives avalue to play  time algorithm for computingpproximateNash equilibria
from its downstream neighbd#’, and the valuev thatiV for the tree gaméG?, M). The approximation can be made
will play, then it must be thal'(w,v) = 1. SoV chooses arbitrarily precise with greater computational effort.

a witness to T'(w,v) = 1, and passes each pardnt
their valueu; as well asv (step 3 of Figure 1). Note that
the semantics df (w, v) = 1 ensure thal” = v is a best
response to/ = i, W = w.

Rather than playing an arbitrary mixed strategy{On1],
each player will be constrained to playlscretizedmixed
strategy that is a multiple of, for somer to be determined
by the analysis. Thus, playéplaysg; € {0, 7, 27,...,1},
We have left the choices of each witness in the upstrearand the joint strategyj falls on the discretized--grid



{0,7,27,...,1}". In algorithmTreeNash this will allow  Lemma 3 Let the mixed strategigs ¢ for (G, M) satisfy
each tablg (v, u) (passed from verteX to child V) tobe  |p; —g;| < 7 for all i. Then provided < 2/(k log”(k/2)),
represented in discretized form as well: only the? en- k1

tries corresponding to the-grid choices for/ andV are |M;(P) — M;(4)| < 277 (klog(k)) .

stored, and all computations of best responses in the algo- . )

rithm are modified to be approximate best responses. WE0f:  Applying Lemma 2 to each term of Equation (1)

return to the details of the approximate algorithm after esYields

tablishing an appropriate value for the grid resolution \M:(7) — M; ()|
To determine an appropriate choicerafwhich in turn will k k
Qeterming the compgtational efficiency qf the approxima- < Z H aj(zj) — H B (x5) 7))
tion algorithm), we first bound the loss in payoff to any Fel{01}k [i=1 =1
player caused by moving from an arbitrary joint strat@gy Kt
to the nearest strategy on thegrid. < Z (2k log(k))T < 277 (klog(k))T
#€{0,1}k
Fix any mixed strategy for (G, M) and any player index - v
i, and let| N (i)| = k. We may write the expected payoff whelre aj(z;) = (p) 77 — p)™, Bi(e;) =
to i undery as: (¢;)' 7% (1 —¢;)", and we have used/; (¥)| < 1. [
Lemma 3 bounds the loss suffered by any player in mov-
M;(p) = Z H aj(z) | Mi(%), (1) ing to the nearest joint strategy on thegrid. However,
fefoayk \j= we must still prove that Nash equilibria are approximately

preserved:
where we simply definev;(z;) = (p;)*=%/(1 — p;)™.
Note thato; (z;) € [0, 1] always. Lemma 4 Let j be a Nash equilibrium fo(G, M), and
let ¢ be the nearest (i, metric) mixed strategy on the
r-grid. Then providedr < 2/(klog®(k/2)), 7 is a
28+2(k log(k))m-Nash equilibrium fo( G, M).

We will need the following preliminary lemma.

Lemma?2 Lety, ¢ € [0,1]" satisfy|p; — ¢;| < 7 for all
1 < i < k. Then provided- < 2/(k log®(k/2)),

qu

Proof: By induction onk. Assume without loss of gen- |M; (gl = vi]) — Mi(pli « mi])| < 25 (klog(k))r.
erality thatk is a power of 2. The lemma clearly holds for
k = 2. Now by induction:

Proof. Letr; be a best response for playdo ¢. We now
bound the differencé/; (41 : r;]) — M;(¢) > 0, which is
< (2klog k). accomplished by maximizing/; (¢1¢ : »;]) and minimizing
M;(¢). By Lemma 3, we have

Sinceg'is an equilibrium M; (7) > M;(p[¢ : r]). Thus,

. ko L M (T8 - m]) < Mi(P) + 2k+1(k’log(k’))7’.
H 7 = H i H i On the other hand, again by Lemma 3,
i=1 i= ':(k/2)+1
oo M;(d) > M;(5) = 2 (k log(k))r.
< (sz —+ k(log(k’/?))T) Thus, M; (qlé : ri]) — M;(q) < 25+2(klog(k))T. [l
= Let us now choose to satisfy2*+2(klog(k))r < ¢ and
ul T < 2/(klog®(k/2)) (which is the condition required by
( H Pi + k’(log(k’/?))T) Lemma 3), or
=(k/2)+
7 < min(e/ (22 (klog(k))), 2/ (k log® (k/2))).
< (le) + 2k (log(k/2))7 + Lemma 4 finally establishes that by restricting play to the
7-grid, we are ensured the existence ofealNash equilib-
k(log(k/2))T rium. The important point is that needs to be exponen-
tially small only in thelocal neighborhoodsize %, not the
= sz' + 2k(logk — 1) + total number of players.
i=1
(k(log(k/2))7)?. It is now straightforward to describe the details of our ap-

proximate algorithmApproximateTreeNash This algo-
The lemma holds if-2k7+ (k(log(k/2))7)? < 0. Solving  rithm is identical to algorithnTreeNashwith the following
for 7 yields < 2/(klog®(k/2)). 0 exceptions:
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Figure 2: An example game, and the tables computed by the downstream pass of algspiphoximateTreeNash Each vertex in

the tree is a player with two actions. Although we omit the exact payoff matrices, intuitively each “M” player maximizes its payoff by
matching its child’s action, while each “O” player maximizes its payoff by choosing the opposite action of its child. The relative payoff

for matching or unmatching is modulated by the parent values, and also varies from player to player within each vertex type. The grid
figures next to each edge are a visual representation of the actual tables computed in the downstream pass of the algorithm, with the
settingsr = 0.01 ande = 0.05; 1s are drawn as black and Os as gray. Approximate Nash equilibria for the game are computed from the
tables by the upstream pass of the algorithm. One example of a pure equilibiion.,ig, 0,0, 1, 0, 0); the tables represent a multitude

of mixed equilibria as well.

¢ The algorithm now takes an additional input See Figure 2 for an example of the behavior of algorithm

ApproximateTreeNash
e For any vertex/ with child V, the tableT (v, v) will PP

contain only entries forx andv multiples ofr.
6 EXACT ALGORITHM
e All computations of best responses in algorithm
TreeNash become computations a@fbest responses |n this section, we describe an implementation of the miss-
in algorithmApproximateTreeNash ing details of algorithmTreeNash that computes exact,
rather than approximate, equilibria. In the worst case, the
Lemma 3 establishes that there will be such an approximatglgorithm may run in time exponential in the number of
best response on thegrid, while Lemma 4 ensures thatthe vertices. We remind the reader that even this result is
overall computation results in aaNash equilibrium. For  nontrivial, since there are no finite-time algorithms known
the running time analysis, we simply note that each tabldor computing exact Nash equilibria in general-sum, multi-
has(1/7)* entries, and that the computation is dominatedparty games.
by the downstream calculation of the tables (Step 2(d)ii of -
algorithmTreeNash. This requires ranging over all table As before, lel/ = Uy, ..., Uy be the parents o, andw

entries for allk parents, a computation of ordé /7)2)*. the child. We assume for induction that each tab{e, ;)
passed froni/; to V' on the downstream pass can be repre-

Theorem 5 For anye > 0, let sented in a particular way—namely, that the sefofu;)
. i , pairs wherel'(v, u;) = 1 is a finite union of axis-parallel
7 < min(e/(2"F*(klog(k))), 2/ (klog® (k/2))). rectangles (or line segments or points, degenerately) in the

unit square. We formalize this representation by assuming

ThenApproximateTreeNashcomputes al-Nash equilib- each (v, u;) is given by an ordered list called thelist,

rium for the tree gaméd, M). Furthermore, forevery
exact Nash equilibrium, the tables and witness lists com- 0= <2 < <oy <oy =1,
puted by the algorithm contain anNash equilibrium that
is within 7 of this exact equilibrium (i, norm). The run-
ning time of the algorithm is polynomial itye, n and 2, ' '
and thus polynomial in the size @, M). tu.unt

defining intervals of the mixed strategy For eachuv-
interval[vg, vey1] (1 < £ < m), there is a subset ¢f, 1]



where eachf C [0,1] is an interval of[0, 1], and these

SinceA (4, w) is a linear function of;, it is a monotonic

intervals are disjoint without loss of generality. By taking function ofu;; we will use this property shortly.

the maximum, we can assume without loss of generalit)i\I
that the number of setsin the union associated with any
v-interval is the same. The interpretation of this represen-

tation is that7'(v,w;) = 1 if and only if v € [vs, vey1]
impliesu; € 11 U- - U I)'*. We think of eachv,, vi41] as
defining a horizontal strip df' (v, «;), while the associated
union/if U - -
is 1 within this strip.

We can assume that the tablE¢v, ;) share a common

v-list, by simply letting this common-list be the merging
of the k£ separatev-lists. Applying algorithmTreeNash

to this representation, we now must address the followin

question for the computation @f(w, v) in the downstream
pass. Fix a-interval[v,, v¢41]. Fix any choice of indices
Ji, - Jk € {1,...,t}. Aswe allowid = (uy, ..., u) to
range across the rectangular regigrf x - - x 7%, what
is the setV of values ofw for which somev € [vy, ve41]
is a best response fbandw?

Assumingv, # 0 andwv,11 # 1 (which is the more dif-

ficult case), a value ifv,, ve41] can be a best response

to @ andw only if the payoff forlV = 0 is identical to
the payoff for’VV = 1, in which caseany value in[0, 1]

(and thus any value ifv;, ve41]) is @ best response. Thus,

T(w,v) will be 1 across the regiomV x [vs, v,41], and
the union of all such subsets aof x v across allm — 1
choices of the-interval[v, ve41], and allt* choices of the
indicesji, ..., jx € {1,...,1}, completely defines where

T(w,v) = 1. We now prove that for any fixed choice of

v-interval and indices, the seV is actually a union of at
most two intervals ofu, allowing us to maintain the induc-

U I}'* defines vertical bars where the table

ow by the continuity ofA (@, w) in w, w € W if and only
€ Ws> N W, where

if w
Ws ={we[0,1]:Fad ey x --- x I A(d,w) >0}
and

We={wel0,1]:Fael; x - x I A(d,w)<0}.

First considenV, as the argument fan'< is symmetric.
Now w € W- if and only if maxger, x...xr, { A4, w)} >
0. But since A(#,w) is a monotonic function of each

%u, this maximum occurs at one of thé extremal points

vertices) of the region; x --- x [;. In other words,
if we let I; = [¢;,r;] and define the extremal sét =
{1, 71} x - x {lg,ri}, we have

Ws = [ {w: A, w) > 0}

q4er

For any fixedu, the set{w : A(u,w) > 0} is of the form

[0, 2] or [z, 1] by linearity, and sdV> (andW< as well) is
either empty, an interval, or the union of two intervals. The
same statement holds fa¥ = > NW<. Note that by the
above arguments)y’ can be computed in time exponential
in k£ by exhaustive search over the extremal/set O

Lemma 6 proves that any fixed choice of one rectangular
region (where the table is 1) from ea€ljv, ;) leads to at
most 2 rectangular regions wheféw, v) is 1. It is also
easy to show that the tables at the leaves have at most 3
rectangular regions. From this it is straightforward to show
by induction that for any vertex in the tree with childv,

tive hypothesis of finite union-of-rectangle representationsthe number of rectangular regions whére, u) = 1 is at

Lemma6 Let V' be a player in anyk + 2-player game
against opponent#’y, ..., U, and W. Let My (v, i, w)
denote the expected payoffitounder the mixed strategies
V = U = @ andW = w, and defineA (&, w) =
My (0,4, w) — My (1,4, w). Letly,..., I each be con-
tinuous intervals irff0, 1], and let
W={wel0,1]:Fde L x - x Iy Alid,w)=0}.

ThenW is either empty, a continuous interval i, 1], or
the union of two continuous intervals |, 1].

Proof:
A, w) =

2.

Zze{0,1}F ye{0,1}
(wl_y(l —w)Y

Note that for anyu,;, A(@, w) is a linear function ofu;, as
each term of the sum above includes only eitheor 1 —u;.

We begin by writing

(Mv (0, %,y) — My (1, %, y)) x

k
1=

(ui)l_x’(l — ul)x’) .

1

most2¢=3%« wherea, andb, are the number of internal
vertices and leaves, respectively, in the subtree rooted at
This is a finite bound (which is at mo$t at the root of the
entire tree) on the number of rectangular regions required
to represent any table in algorithfreeNash We thus have
given an implementation of the downstream pass—except
for the maintainence of the witness lists. Recall that in the
approximation algorithm, we proved nothing special about
the structure of witnesses, but the witness lists were finite
(due to the discretization of mixed strategies). Here these
lists may be infinite, and thus cannot be maintained explic-
itly on the downstream pass. However, it is not difficult to
see that witnesses can easily be generated dynamically on
the upstream pass (according to a chosen deterministic rule,
randomly, non-deterministically, or with some additional
bookkeeping, uniformly at random from the set of all equi-
libria). This is because givefw, v) such thall'(w, v) = 1,

a witness is simply any such thatl'(v, u;) = 1 for all <.
Algorithm ExactTreeNashis simply the abstract algorithm

TreeNashwith the tables represented by unions of rectan-
gles (and the associated implementations of computations



use of the polytree algorithm on sparse, non-tree-structured
Bayes nets. As in that case, the main step is the merging of
vertices (whose action set will now be the product action
space for the merged players) to convert arbitrary graphs
into trees. To handle the merged vertices, we must en-
sure that the merged players are playing approximate best
responses to each other, in addition to the upstream and
downstream neighbors. With this additional bit of com-
plexity (again proportional to the size of the representation
of the final tree) we recover our result (Theorem 5).

As with the polytree algorithm, running time will scale ex-
ponentially with the largest number of merged players, so

Figure 3: Example of a table produced by the exact algorithm. it is wta] to minimize this cluster size. How best to accom-
The table is the one generated for vertex 6 in Figure 2. BlackPlish this we leave to future work.

cells indicate where the exact table is 1, while dark gray cells

indicate where the approximate table is 1 for comparison. We Se(§peC|aI Equ'“_b”,a' The approx!matlon algorlthm hgs the
that the non-rectangular regions in Figure 2 are the result of th@"operty that it finds an approximate Nash equilibrium for
approximation scheme. every exact Nash equilibrium. The potential multiplicity

of Nash equilibria has led to a long line of research in-
i . i , vestigating Nash equilibria satisfying particular properties.
described in this section), and withesses computed on thgy appropriately augmenting the tables computed in the
upstream pass. We thus have: downstream pass of our algorithm, it is possible to identify
Nash equilibria that (approximately) maximize the follow-
ing measures in the same time bounds:

Theorem 7 Algorithm ExactTreeNashcomputes a Nash
equilibrium for the tree gaméG, M). Furthermore, the
tables computed by the algorithm represent all Nash equi-
libria of (G, M). The algorithm runs in time exponential

in the number of vertices @F. ¢ Social OptimumTotal expected reward, summed over
all players.

¢ Player OptimumExpected reward to a chosen player.

To provide a feel for the tables produced by the exact al-
gorithm, Figure 3 shows the exact table for vertex 6 in the  Welfare Optimum Expected reward to the player
graph game in Figure 2. whose expected reward is smallest.

7 EXTENSIONS Equilibria with any of these properties are known to be NP-
hard to find in the exact case, even in games with just two

We have developed a number of extensions and generalizBlayers (Gilboa and Zemel 1989).

tions of the results presented here. We describe some of

them briefly, leaving details for the long version of this pa- References
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Vertex Merging for Sparse Graphs The extension to
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