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Abstract

We introduce a natural new network formation game
in which buyers and sellers may purchase edges repre-
senting trading opportunities between themselves, and
then accrue wealth in the resulting exchange economy.
Our main result is an exact characterization of the set
of bipartite graphs G that are Nash equilibria for this
game. This characterization provides sharp limits on
the amount and structure of wealth variation that can
occur, as well as on the allowable equilibrium exchange
rates.

1 Introduction

Recently there has been interest in both the computer
science and economics communities in network forma-
tion games. Broadly speaking, in these multiplayer
games, individuals may choose to share the cost of build-
ing a network by purchasing edges incident on them-
selves. Each player’s overall utility consists of two, usu-
ally competing, components — on the one hand, the
edge costs incurred by the player, and on the other,
some measure of “benefit” accrued to the player by their
participation or position in the network.

For instance, in one well-studied model [11, 1],
individuals wish to minimize their edge purchases plus
the sum of their (shortest-path) distances to all other
players. Clearly there is a trade-off between these
two components. Within such models there have been
studies of the structural properties of those networks
that are (pure strategy) Nash equilibria of the game,
Price of Anarchy bounds, and other analyses. (See
Related Work.)

As in the example above, in much of the prior
research the benefit to a player for participating in the
network measures some notion of their centrality or
connectivity — shortest-path distances to other players,
number of other players in the same component, and so
on. In this paper we introduce and analyze a natural
alternative — namely, we view the network formed
by the players as defining trading opportunities , and

measure the network benefit to a player by the wealth
they accrue from those trading opportunities.

Our point of departure is a recently introduced
networked version of classical exchange economies [17],
and more specifically its specialization to bipartite
buyer-seller networks [16]. In the latter, there is
an exogenously specified bipartite network between n
buyers (who each have an endowment of 1 divisible
unit of an abstract commodity called cash) and n
sellers (who each have an endowment of 1 divisible
unit of an abstract commodity called wheat). Buyers
have utility only for wheat and sellers only for cash,
thus ensuring mutual interest in trade. The bipartite
network is viewed as specifying all and only those
pairs of buyers and sellers who may trade. Earlier
work [17] established the existence of (market-clearing)
equilibria in which prices and wealths may vary across
the network due to topological asymmetries, paving
the way for the later study [16] in which the network
is generated according to standard stochastic (non-
strategic) network generation models. There it was
established (for example) that Erdos-Renyi networks
exhibit essentially no price or wealth variation, while
those generated according to preferential attachment
have unbounded wealth variation (growing as a root of
the population size).

In this paper we start with the same bipartite
buyer-seller model, but now endogenize the creation of
the network to arrive at a natural network formation
game. More precisely, we assume that any buyer
(respectively, seller) is free to purchase an edge to any
seller (respectively, buyer) at a cost of α. The selection
of which edges to purchase by all parties specifies an
undirected bipartite network G, and in this network
each party i achieves some exchange equilibrium wealth
ω(G, i). Our network formation game is then defined
by specifying the overall utility to i as

ui = −α × e(G, i) + ω(G, i)

where e(G, i) is the number of edges in G purchased by



i. We view the ui as defining a one-shot, simultaneous
move game over the 2n players, in which each player’s
action is a selection of which edges to purchase; see
Section 2 for a formal definition and discussion of the
game.

The network formation game given by the ui is
similar in broad spirit to previous network formation
games, but quite different in its details. As with
previous models, each player is balancing an outlay of
wealth for edge creation (trading opportunities) against
some resulting participatory benefit in G; but now the
participatory benefit is measured in terms of wealth
gained from trade rather than connectivity or shortest
paths.

Our main results provide a precise structural char-
acterization of all the networks G that are Nash equilib-
ria of the game defined by the payoffs ui above. More
precisely, we establish exact conditions on the amount
of exchange equilibrium wealth variation that can oc-
cur for any given values of α and n, and show that this
in turn sharply limits the connectivity structure of any
Nash equilibrium network G. We then show that these
limits are tight by demonstrating specific Nash equilib-
rium networks G that saturate them, thus yielding a
comprehensive catalog of all Nash equilibria. The re-
sulting characterization also places sharp limits on the
possible exchange rates or prices that are possible. For
example, while any rational price can exist at exchange
equilibrium with an exogenously specified graph, only
very specific prices can exist in a graph that is a Nash
equilibrium of the formation game — an exchange rate
of 2/5, for instance, is impossible.

To our knowledge this is the first network forma-
tion game of comparable complexity for which such a
complete understanding of its Nash equilibria has been
given; for prior models only broad structural restrictions
have been established.

Related Work. Networks play a major role in the
economics literature. The structure and characteristics
of such networks were first theoretically researched by
Aumann and Myerson [4], but were empirically stud-
ied long before. For example, Granovetter [13] found
that most residents of Massachusetts found their jobs
through social contacts. For a recent and detailed re-
view of social science and economics models see Jack-
son [14].

Remaining in the economics literature, but more di-
rectly related to our work, Corominas-Bosch [7] recently
considered bipartite exchange economies, but focused
on an iterated bargaining pricing mechanism (the Ru-
binstein mechanism), and analyzed the sub-game per-
fect equilibria of the game; network formation issues
were not addressed. In other recent work, Kranton

and Minehart [19] also considered bipartite exchange
economies and network formation. In their models,
buyer valuations are drawn from a known distribution,
and the pricing mechanism used is that of a generalized
English (ascending-bid) auction. Their main interests
were the study of the efficiency of the formed networks
and in showing that Nash equilibria networks are effi-
cient; they also characterize Nash equilibrium structure
for certain values of the edge cost. In contrast to these
works, here we examine exchange equilibrium and pro-
vide a complete characterization of all Nash equilibrium
networks.

Within computer science, most works have concen-
trated on network formation routing games, and the
main interest has been the quality of the resulting equi-
librium, as measured by the price of anarchy and the
price of stability. We now survey most of these results.

Anshelevich et al. [3, 2] considered a network for-
mation game in which each player or node is given a set
of nodes to which she wishes to connect. Players are
allowed to share the cost of an edge and thus may pay
for remote edges. In the first work [3], any cost-sharing
mechanism was considered and it was proven that there
is a pure approximate 3-Nash equilibrium whose cost is
that of the social optimum. An efficient algorithm to
calculate an efficient 4.65-Nash was also provided. In
the second paper [2] only a fair sharing mechanism that
uses the Shapely value was considered. The price of
anarchy in this setting is trivially O(n), but they dis-
covered that the price of stability was O(log n), and a
matching lower bound was provided.

Fabrikant et al. [11], followed by Albers et al. [1],
studied a game in which the goal of each player or node
is to minimize the sum of distances to the other nodes
and his edge costs, where the cost of each edge is α.
The main results of these papers prove constant price
of anarchy for almost every edge price α. A different
variant of this model was studied by Corbo and Parkes
[5] where the cost of an edge was shared equally by its
endpoints; once again the main interest was in the price
of anarchy, not in network structure.

Recently, Moscibroda et al. [20] studied a similar
model with applications to peer-to-peer topologies. The
goal of each player is to minimize the sum of stretches
to other nodes and the edge costs. (The stretch is
defined as the distance in the formed graph divided by
an initial distance, which is decided according to the
input metric). They also study the price of anarchy
and the existence of pure Nash equilibrium.

Johari et al. [15] also considered a routing-based
formation game. They considered a directed network,
where each node wishes to send a given amount of traffic
to other nodes. The cost function for a node/player v



is composed of three components: the first is negative
and is due to the edges purchased by v; the second is
positive and is due to the nodes reachable from v; and
the third is negative and is due to the amount of traffic
that goes through v. The edges are bought by bilateral
negotiation between the endpoints. The main results
of [15] provide an equilibrium existence proof and a
study of the equilibrium structure conditioned on the
payoff function.

Finally, recently Even-Dar and Kearns [10], follow-
ing earlier work by Kleinberg [18], examined a network
formation routing game in which more distant edges are
more expensive; they show a sharp threshold result for
constant diameter at Nash equilibrium.

2 The Network Formation Game

We begin by reviewing the bipartite exchange economy
model studied in [17, 16], and then extend this model
to our network formation game.

2.1 Bipartite Exchange Economies. A bipartite
exchange economy consists of a bipartite graph G =
(B, S, E), where nodes on one side of the bipartition
represent buyers (B), and nodes on the other side of the
bipartition represent sellers (S), and all edges in E are
between B and S. There are two abstract commodities
that, without loss of generality, we shall call cash and
wheat . Buyer i has an infinitely divisible endowment of
1 unit of cash to trade for wheat; seller j has an infinitely
divisible endowment of 1 unit of wheat to trade for cash.
Buyers have utility x for x units of wheat and 0 utility
for cash; similarly, sellers have utility x for x units of
cash and 0 utility for wheat1. The semantics of the
graph are as follows: buyer i can trade with seller j if
and only if there is an edge between i and j.

Before describing the standard notion of equilib-
rium for this model, we note that it is a significant and
deliberate specialization of the model first considered
in [17], which among other features permitted varying
initial endowments and utility functions, as well as an
arbitrary number of commodities. As in [16], where
the same specialization was adopted, our interests here
are in the structures that arise purely from “network
effects”, as opposed to those arising from imbalances
in supply and demand, variations in consumer utilities,
and so on. We view the model adopted here — in which
there is complete (initial) symmetry across all players —
as the simplest model ensuring that any resulting net-
work structure arises purely from the strategic aspects

1The exact form of these functions is irrelevant as long as each

party has non-zero and increasing utility only for the “other”

good.

of the formation game, and we leave elaborations for
future work.

We now describe our notion of exchange equilibrium
for a bipartite exchange economy. Let ωs

j denote the
exchange rate (or price), in terms of cash per unit
wheat, that seller j is offering. Similarly, let ωb

i denote
the exchange rate, in terms of wheat per unit cash,
that buyer i is offering. Let xij denote the amount
of seller j’s wheat that buyer i consumes. A set of
exchange rates, {ωb

i} and {ωs
j}, and consumption plans,

{xij}, constitutes an exchange equilibrium for G if the
following two conditions hold [16]:

1. The market clears, i.e. supply equals demand.
More formally, for each seller j,

∑
i∈N(sj)

xij = 1

where N(i) = {j|(i, j) ∈ E}. The value of 1 on the
right hand side represents j’s endowment.

2. For each buyer i, their consumption plan {xij}j is
optimal. By this we mean that according to the
consumption plan, buyers only buy from the sellers
in their neighborhood offering the best exchange
rate. That is, xij > 0 if and only if ws

j =
minsk∈N(bi) ws

k.

We note that the role of buyers and sellers in a bipartite
exchange economy is completely symmetric. Given
buyer i’s exchange rate, wb

i , one can determine how
much of buyer i’s cash seller j consumes. Thus, one
could equivalently define Item 1 above from the point
of view of the buyers and Item 2 above from the point
of view of the sellers. In this model, it turns out that
an exchange equilibrium for G always exists if each
seller has at least one neighboring buyer (see [12, 17]).
Furthermore, the equilibrium exchange rates are unique,
and at equilibrium, if xij > 0 then ωs

j = 1/ωb
i .

Since each seller starts off with 1 unit of wheat and
his exchange rate is in terms of cash per unit wheat,
at exchange equilibrium each seller will earn exactly
his exchange rate in dollars. Thus we will also call
each sellers exchange rate ws

j her wealth. Similarly,
at exchange equilibrium each buyer will earn exactly
his exchange rate in wheat, so we call the buyers
exchange rate wb

i her wealth as well. We say there is no
wealth variation at exchange equilibrium of a bipartite
exchange economy when the wealth of all of the sellers
are equal and the wealth of all of the buyers are equal.
We say there is wealth variation at exchange equilibrium
if some buyers earn a different amount of wealth than
other buyers and/or some sellers earn a different amount
of wealth than other sellers. In a bipartite exchange
economy where the number of buyers and sellers are
equal, at exchange equilibrium the average wealth will
be 1, so some player has wealth less than 1 if and only
if some other player has wealth greater than 1.



Next we consider the graphical aspects of exchange
equilibria. First, observe that in a bipartite exchange
economy an exchange equilibrium not only determines
the wealth of each player, but the consumption plan
also determines on which edges trading takes place. We
call the subgraph that consists of edges where trading
occurred an exchange subgraph.

Definition 2.1. Let G = (B, S, E) be a bipartite ex-
change economy. Let {ωb

i}, {ωs
j}, and {xij} be an ex-

change equilibrium. Then the exchange subgraph of G
is G′ = (B, S, E′), where E′ = {(i, j)|xij > 0}.

In contrast to the exchange equilibrium wealth,
the exchange subgraph need not be unique. We say
that exchange subgraph G′ is minimal if the removal
of any edge from G′ changes the exchange equilibrium
wealths. Note that even when G is connected its
exchange subgraph may be disconnected. We thus call
the connected components of the exchange subgraph
trading components. We say that a trading component
is (m, k) if there are m buyers and k sellers, which will
result in the wealth of each buyer in such component
being k/m, and the wealth of each seller being m/k.
Thus, wherever there is a wealth variation in G there
are at least two trading components that have a different
ratio between buyers and sellers in them.

In the bipartite exchange economy model described
so far, the graph over which the buyers and sellers trade
is exogenously defined. That is, the graph is fixed a
priori , and then the players trade according to it. The
main contribution of the work of [16] is to describe how
the topology of the graph affects variation in price of
the goods. The main contribution of this work is to
make the formation of the graph endogenous to the
game. That is, players are allowed to buy edges to other
players, as opposed to having a topology imposed on
them. We now give the formal definition of this new
model.

2.2 The Network Formation Game. In this sec-
tion we give a formal definition of the network formation
game. This game consists of two sets of players, B and
S, where |B| = |S| = n. The set B is defined as the
buyer set, and the set S is defined as the seller set. As
in the bipartite exchange economy we assume that each
buyer starts off with an infinitely divisible endowment
of 1 unit of an abstract good, which we call cash. Each
seller starts off with an infinitely divisible endowment
of 1 unit of another abstract good, which we call wheat.

The action of a buyer bi is denoted ab
i ∈ {0, 1}n

and the action of seller j is denoted as
j ∈ {0, 1}n.

These actions encode which edges, if any, a player
buys. An edge (bi, sj) is bought by player bi only if

ab
i(j) = 1 and it is bought by sj only if as

j(i) = 1.
(At equilibrium, an edge (bi, sj) will be bought by bi

or sj or neither, but not both.) A strategy is said to
be pure if no player is randomizing over her actions;
in this paper we study only pure strategies. Next, let
a = ab

1 × · · · × ab
n × as

1 × · · · × as
n be the joint action

of all the players. Let the set of edges that bi buys be
denoted Eb

i (a) = {(bi, sj)|ab
i (j) = 1}, and let the set

of edges that sj buys be Es
j (a) = {(bi, sj)|a

s
j(i) = 1}.

The joint action of all the players defines a bipartite
graph, G(a) = (B, S, E) as follows. The nodes on
one side of the graph represent the buyers and on the
other side represent the sellers. The set of edges E are
the edges that the players bought, or more formally:
E =

⋃
i∈[n],t∈{b,s} Et

i (a).
Observe that every graph G defines a bipartite ex-

change economy. We call the price vector and consump-
tion plan that form an equilibrium of the bipartite ex-
change economy an exchange equilibrium. This equilib-
rium will determine the wealth each player earns; the
wealth that buyer bi earns is denoted ωb

i = ωb
i (G), and

the wealth that seller sj earns is denoted ωs
j = ωs

i (G).
The wealth each player earns will form the positive com-
ponent of that player’s utility function. The negative
component will be determined by how many edges each
player buys. More formally, we define the utility func-
tions of the players of type t ∈ {b, s} in the network
formation game as follows:

ut
i(a) = ut

i(a
t
i, a

t
−i) = ωt

i − α|Et
i |.

A joint action a = ab
1 × · · · × ab

n × as
1 × · · · × as

n is said
to be a Nash equilibrium if for every player i we have
ut

i(a
t
i, a

t
−i) ≥ ut

i(â
t
i, a

t
−i) for every action ât

i. Since we
only consider pure strategies for the players actions, we
also only consider pure Nash equilibrium. Thus, each
Nash equilibrium strategy a induces a graph, G, which
we call an equilibrium graph.

Some important comments on this model are in or-
der here. First, the utility functions ut

i above specify
the utilities or payoffs to the players of a standard one-
shot, simultaneous move game: all players simultane-
ously choose the set of edges they wish to purchase,
which in turn determines G and therefore the utility
components ωt

i . Second, it is important to note that
there are two distinct equilibrium concepts we shall need
to reason about. Our primary interest is in the (pure)
Nash equilibrium of the game defined by the ut

i, which
is the network formation game. However, the defini-
tion of ut

i itself involves another equilibrium quantity
— namely, the wealth ωt

i that i receives at exchange
equilibrium in the fixed network G. For clarity we shall
always refer to equilibria of the formation game given
by the ui simply as Nash equilibria, and to the latter



notion as the exchange equilibria for a fixed G. Third,
note that the ut

i treat the initial purchase of edges and
the exchange equilibrium wealths as taking place in the
same “currency”, which differs depending on the type of
agent: buyers end with wealth measured in wheat, while
sellers end with dollars. We can view this as modeling
a central “edge banker” who is willing to extend credit
in either currency to the players in order to allow the
trade network to be built2.

3 Summary of Main Results

In this section, we state and discuss our main results;
analysis and proofs of the theorems are given in Sec-
tion 4. Our first result relates the edge cost α to the min-
imum exchange equilibrium wealth in any Nash equilib-
rium graph.

Theorem 3.1. Let G be a Nash equilibrium graph of
the network formation game, and let ωmin be the min-
imum exchange equilibrium wealth in G of any player.
Then α ≥ 1 − ωmin, or equivalently, ωmin ≥ 1 − α.

Recalling that the average exchange equilibrium
wealth is always 1 (since all endowments are equal),
Theorem 3.1 states a natural limit on how much ex-
change equilibrium wealth variation can result from the
formation game — the smaller the edge costs α, the
more equitable these wealths must be. Great variation
in wealths can only arise in the presence of high edge
costs. The intuition behind this result is that a player
of sufficiently low exchange wealth should be able to
find another such player to trade with, with the result-
ing wealth gain more than covering the edge cost. The
proof behind this intuition is somewhat subtle owing to
the fragility of exchange equilibria — a small change
to the underlying graph may cause large and distant
changes to the exchange equilibrium.

Theorem 3.2. Let G be any bipartite graph, and let
C be a trading component of G with buyer set B′ and
seller set S′ such that |B′| = m and |S′| = k, m > k.
Then there exists a node s in S′ and an edge e incident
on s such that the removal of e from G decreases the
exchange equilibrium wealth of s by at most most 1/k.
Furthermore, if G is a Nash equilibrium graph of the
network formation game, then α ≤ 1/k.

The second claim in Theorem 3.2 follows from the
first by virtue of the fact that at Nash equilibrium, all of
the edges in the trading component C must have been

2If desired, the notion of the edge banker can be made formal

and endogenous to the game as a third player type with edges as

initial endowments and equal utility for dollars and wheat.

purchased by S′ — since m > k, the buyers in B′ are
being “exploited” by the smaller number of sellers in S′,
and thus have better choices of edge purchases.

Now together Theorems 3.1 and 3.2 provide up-
per and lower bounds on the edge cost α in terms of
the minimum exchange wealth and the possible trading
component structure. It can be shown that together
these bounds strongly constrain the possible Nash equi-
librium graphs of the formation game, and that in turn
the remaining possibilities can all in fact be realized,
leading to a precise characterization of all Nash equilib-
rium graphs. Before stating our main theorem precisely,
we define the following types of graphs.

• Perfect Matchings. The class of all perfect match-
ings between the buyers and sellers. In this class
all exchange rates or wealths are equal to 1.

• Exploitation Graphs. These are graphs in which
every trading component has a single party of one
type (say, sellers) “exploiting” a (possibly much)
larger set of parties of the other type, or vice-versa
(a single buyer exploiting many sellers). The collec-
tion of such components must meet the constraint
that there must be an equal number of buyers and
sellers, but also a much stronger constraint on the
number of possible different components that can
be present simultaneously. More precisely, for any
k, ℓ > 1, let G be a graph consisting of the union of
n1 (1, k)-trading components, n2 (1, k + 1)-trading
components, n3 (ℓ, 1)-trading components, and n4

(ℓ+1, 1)-trading components, where n1+n2+n3ℓ+
n4(ℓ + 1) = n1k + n2(k + 1) + n3 + n4 (equal num-
ber of buyers and sellers). Note that in any such
graph there may be at most 4 different (say) seller
wealth values: 1/k, 1/(k + 1), ℓ and ℓ + 1. Thus for
large values of k or ℓ there is great wealth varia-
tion. The class of Exploitation Graphs consists of
all such graphs G. See Figure 1 for an example.

• Balanced Graphs. While still permitting some
inequality, these graphs are closer to the Perfect
Matchings than to the Exploitation Graphs, in that
wealth variation is strongly limited. More precisely,
for any k > 2, let G be a graph consisting of the
union of n1 trading components that are either
(k − 1, k) or (k, k + 1) and n1 trading components
that are either (k, k− 1) or (k + 1, k), k > 2. (Note
that since the number of buyers is 1 less than the
number of sellers in a (k− 1, k)-trading component
and a (k, k+1)-trading component, any mixture of
n1 such components is balanced by any mixture of
n1 (k, k − 1) and (k + 1, k)-trading components.)
In such a graph there are again at most 4 different
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Figure 1: Top row: An example of an exploitation graph with k = 2, ℓ = 4 and n = 17. Seller exchange equilibrium
wealth values are 1/2, 1/3, 4 and 5. Bottom row: An example of a balanced graph with n = 14. Seller exchange
equilibrium wealth values are 2/3, 3/2, 3/4 and 4/3.

seller wealth values: k/(k− 1), (k +1)/k, (k− 1)/k,
and k/(k + 1), but unlike in Exploitation Graphs,
unbounded wealth variation is not possible, and for
large k all wealths are nearly equal. See Figure 1
for an example.

Armed with these definitions, we can now state our
main theorem, which provides a complete characteriza-
tion of every Nash equilibrium of our network formation
game.

Theorem 3.3. Let NE(n, α) be the set of all Nash
equilibria graphs of the network formation game for a
fixed population size n and edge cost α, and let NE be
the union of NE(n, α) over all n and α. Then the set
NE equals the union of classes Perfect Matchings, Ex-
ploitation Graphs, and Balanced Graphs defined above.

As has been suggested, the proof that NE is con-
tained in the stated union will follow from Theorems 3.1
and 3.2 above, while the proof that it contains the union
will be shown by explicit constructions which we sketch
in Appendix A. We emphasize that Theorem 3.3 places
very strong constraints on the Nash equilibrium graphs,
and accordingly, on the nature of wealth variation. For
instance, the characterization rules out certain exchange
rates or wealths — 2/5 is one example of an unattain-
able value. Wealth variation can essentially occur only
in monopolistic form (the exploitation graphs).

Our results rely on one final structural characteri-
zation that is of independent interest, and concerns the
“compactness” of Nash equilibrium graphs. More pre-
cisely, we show that a Nash equilibrium graph G cannot
contain redundant edges — that is, the removal of any
edge in G will change the exchange subgraph and the
exchange rates or wealths. The intuition behind this
theorem is that if redundant edges existed, the nodes
that purchased them can remove them from the graph
without effecting their wealth, and thus it is not a Nash
equilibrium. It is interesting to note that in other for-
mation games, such as that in [1], cycles can exist at

equilibrium, which can be seen as an analog of redun-
dant edges in our formation game.

Theorem 3.4. Let G be a Nash equilibrium graph of
the network formation game. Then G is equal to its
minimal exchange subgraph.

4 The Analysis

4.1 Relating Topology to Equilibria. In [16] the
authors prove a few theorems that characterize the
topology of graphs that give rise to wealth variation
in a bipartite exchange economy. First we will state a
theorem from [16] that provides sufficient and necessary
conditions to wealth variation in bipartite exchange
economy, where the number of buyers equals the number
of sellers. Then we will extend it to economies where the
number of buyers and sellers may not be equal. This will
later help us compute the wealth of the sellers in each
trading component, since in a given trading component,
the number of buyers need not equal the number of
sellers. For a bipartite graph G = (B, S, E) if W is
a set of nodes from one side of the bipartition, then
N(W ) denotes the set of nodes connected by an edge to
some node in W .

Theorem 4.1. A necessary and sufficient condition for
a bipartite exchange economy, G = (B, S, E), to have
no wealth variation among sellers is that for all subsets
S′ ⊆ S, |N(S′)| ≥ |S′|.

A symmetric argument can be made to show that
there will be no wealth variation among the buyers, if
for all subsets of buyers B′ ⊆ B, |N(B′)| ≥ |B′|. By
a trivial application of Hall’s Theorem [6], we get the
following result.

Theorem 4.2. There is no wealth variation in a bipar-
tite exchange economy if and only if there is a perfect
matching in the underlying graph.



Input : G1 = (B1, S1, E) a bipartite exchange
economy

Output: the trading components of G1

i = 1;
repeat

Let Ui = argmaxU⊆Bi

|U|
|N(U)| ;

Ci = {Ui, N(Ui)};
Bi+1 = Bi \ Ui, Si+1 = Si \ N(Ui);
Ei+1 = Ei \ {(u, v)|u ∈ Ui or v ∈ N(Ui)};
i = i + 1;
Gi = (Bi, Si, Ei);

until Bi = ∅;

Algorithm 1: This algorithm takes as input a
bipartite exchange economy, G1, and outputs the
trading components, C1, ..., Cr of G1.

4.2 Structure of the Nash Equilibria. The proofs
of our main results use an algorithm for determining
the trading components of a bipartite exchange econ-
omy. Algorithm 1 (see the figure) works by iteratively
choosing the subset of buyers, U ⊆ B that maximizes
|U |/|N(U)|, outputs U and N(U), removes them from
the graph, and repeats. Intuitively the set of buyers,
U , that maximizes this ratio will be getting fairly low
wealth since there are many buyers connected to only a
few sellers in N(U). Furthermore, buyers not in U that
are attached to the sellers in N(U) will likely buy from
other sellers since the price in N(U) will be relatively
high. We note that while there are more general and
more efficient algorithms [8] for the equilibrium com-
putation performed by Algorithm 1, its simplicity and
properties (as we shall demonstrate) make it ideal for
our structural analysis of the formation game Nash equi-
libria.

The proof of the following theorem is omitted due to
space considerations, but is sketched in Appendix B and
given in detail in an extended version of this paper [9].

Theorem 4.3. If Algorithm 1 is given any bipartite
exchange economy G, then it will output all of the
trading components of G (which comprises the exchange
subgraph of G), along with the wealth of each buyer and
seller in G. Furthermore, the connected components
output by the algorithm are sorted according to the

buyers’ wealth in non-decreasing order, i.e., |Ui|
|N(Ui)|

≥
|Ui+k|

|N(Ui+k)| , for k > 0.

A key implication of the above theorem is an analog
for Theorem 4.1.

Corollary 4.1. Let C = (B̃, S̃). Then C is a trading

component if and only if for every subset B′ ⊆ B̃, we

have |B′|
|N(B′)| ≤

|B̃|

|N(B̃)|
.

A symmetric claim holds for the sellers.
We now prove the main results stated in Section 3

using the properties of the algorithm. Note that
although the proofs rely on Algorithm 1, the statements
are independent of the algorithms used to compute the
exchange equilibria. We begin with the proof that α is
lower bounded by 1 minus the minimum wealth.

Proof of Theorem 3.1. Let C1, ..., Cr denote
the connected components output by Algorithm 1 when
its input is G (since G is an equilibrium graph of the
network formation game, by Theorem 3.4 the connected
components are G itself). Without loss of generality we
assume that a buyer achieves the minimum wealth. Let
|U1| = m and |N(U1)| = ℓ and assume that m > ℓ so
that m = ℓ + k, k > 0, otherwise there is no wealth
variation, and the bound is trivially satisfied. Also note
that in Cr we have that Ur = m′ and Vr = ℓ′, where
ℓ′ > m′. This is because in G the number of sellers
equals the number of buyers and by Theorem 4.3 the
ratio in Cr is the minimum ratio.

Now assume u ∈ U1 connects to v ∈ Vr , and
call the resulting graph G′. We now consider the set
U−

1 = U1\{u}. By definition we have that |U−
1 | = m−1,

and Theorem 4.3 implies that U1 achieves the maximum
ratio in G, so we must have that |N(U−

1 )| = |N(U1)|.
Thus we have |U−

1 | = |N(U−
1 )|+ k − 1. More generally,

by the maximality of U1 in G we have that for every
W ⊂ U1, |W | ≤ |N(W )| + k − 1.

Our next step is to run Algorithm 1 on G′. Consider
the iteration in which the last part of U−

1 is removed.
Let W ′ be the part of U−

1 removed in all of the previous
iterations, by the maximality of U1 in G we have that
|W ′| ≤ |N(W ′)|+k−1, then |U−

1 \W ′| ≥ |N(U−
1 \W ′)|

and by Corollary 4.1 the last part of U−
1 will be removed

with buyers’ wealth at most 1. Thus, by Theorem 4.3,
the buyers’ wealth up to this point is at most 1. Buyer u
could not be removed as a part of any previous set with
wealth strictly smaller than 1 as u would have added
one node to the set itself, and also would have added one
node v to the neighbor set, and hence decrease the ratio.
Therefore, we can assume that either u has not been
removed up to this iteration, or it has been removed
with wealth exactly 1. We next show that if it was not
removed yet, it would also be removed with wealth 1.

For any set W that does not contain u and that
{v} ⊆ N(W ), we have |W |/|N(W )| < 1 (otherwise v
would have had a higher wealth at G). Since after the
removal of U−

1 , we have |{u}|/|N({u})| = 1 and this
is u’s only edge remaining, u and v will be removed
together and the wealth of each will be 1. Therefore, the



wealth of u would increase by 1 − wmin by buying the
edge, and since G is an equilibrium graph it implies that
α ≥ 1−wmin. This completes the proof of Theorem 3.1.

Note that although the proof is referring to an
equilibrium graph, we can deduce from the proof the
fact that every node with wealth less than 1 can achieve
price 1 by buying an additional edge. We also note that
the following proposition regarding the identities of the
players buying the edges follows from the same line of
argument.

Theorem 4.4. Let G be a Nash equilibrium graph of
the network formation game. Then the exchange equi-
librium wealth of each node which buys an edge is at
least 1.

We now provide the upper bound theorem proof,
which states that if an (m, k) trading component (k <
m) is part of an equilibrium graph, then α is at most
1/k.

Proof of Theorem 3.2. Let C = (B̃, S̃) be an
(m, k)-trading component. We first find the strict sub-
set of buyers inside the component with the maximum
ratio and also its corresponding set of sellers.

Γ = argmax
Γ:Γ⊂B̃ and (|Γ|6=m) and W=N(Γ)

|Γ|

|W |

Lemma 4.1. Let β = |Γ|
|W | , then β ≥ m−1

k

Proof. Let us fix a set Γ′ of size m−1 then its neighbor
set is W ′ = N(Γ′). Observe that the cardinality of W ′

is k, otherwise Γ′’s ratio would be m−1
k−ℓ

≥ m−1
k−1 > m

k
,

which by Corollary 4.1 contradicts the fact that (m, k)
is a trading component. Applying Corollary 4.1 again
implies either the component (Γ′, W ′) has no wealth
variation, or it has a subset with higher ratio (which
has no wealth variation).

Returning to the proof of Theorem 3.2, we now
show the existence of a node in W that can remove one
of its edges and decrease its wealth by at most 1/k as
desired. Let us examine the nodes of W ; we know that
there exists at least one node v ∈ W such that it has
a neighbor, u /∈ Γ, otherwise the component (m, k) is
not connected. Now we consider the value of (v, u) to v.
Let G′ be the graph after the removal of (v, u). Now let
M1 = (U1, V1), ..., MK = (Uk, Vk) be the sets removed
by the algorithm before v is removed (i.e v ∈ Vk+1). It
remains to show that after the removal of these sets v’s
wealth is at least β, i.e.

|Uk+1|
|Vk+1|

is at least m−1
k

. In the

next steps we use the following notation: Wi = W
⋂

Vi,

Γi = Γ
⋂

Ui, W̄k =
⋃k

i=1 Wi and Γ̄k =
⋃k

i=1 Γi.

Lemma 4.2. For every k > 1, Γ̄k

W̄k
≤ β

Proof. For every i, for every node x ∈ Γi we have that in
G, N({x}) ⊆ W , therefore the only difference between
N({x}) with respect to Gi and N({x}) with respect to
G1 are the nodes in Wj , j < i (note that the edge (u, v)
has no influence here). Thus, N(Γ̄k) ⊆ W̄k in G, and
by definition (W̄k, Γ̄k) cannot attain a ratio larger than
β.

We now complete the proof of Theorem 3.2. Note
that |Ui|/|Vi| might be larger than β. Next we observe
that if we partition Γ to two sets, Γ \ Γ̄k and Γ̄k such
that |Γ|/|N(Γ)| ≥ |Γ̄k|/|N(Γ̄k)|, then we must have
|Γ \ Γ̄k|/|N(Γ \ Γ̄k)| ≥ |Γ|/|N(Γ)| = β. Therefore, when
v is removed, it is part of a set with ratio at least β which
implies (as Algorithm 1 chooses the set that maximizes
the ratio) that the set in which it is actually removed
with has a ratio at least β as well (note that it is not
necessarily S\S̄k), and thus its wealth is at least β. Now
the decrease in the wealth of v is at most m/k−β ≤ 1/k,
which concludes the first part of theorem. Furthermore,
if the trading component is part of an equilibrium graph
of the network formation game, then by Theorem 4.4,
v buys all of the edges incident on it and thus α ≤ 1/k.
This completes the proof of Theorem 3.2.

We are finally ready to prove half of Theorem 3.3
— namely, the claim that the set of Nash equilibrium
is contained in the three stated types of graphs. In
Appendix A we sketch the proof that each such graph
type is indeed a Nash equilibrium.

Proof of Theorem 3.3: NE contained in the

three graph types. Let C be an (m, k) trading
component of the graph. We next show that only a few
values of (m, k) can occur. By Theorem 3.1 we have
that α ≥ 1− k

m
. By Theorem 3.2 we have that α ≤ 1/k,

combining these two inequalities we have that

1/k ≥ 1 − k/m ⇒ m ≥ k(m − k)

which holds only for k = 1 and k = m−1, and for k = 2
and m = 4. However, the (4, 2)-trading component
can only occur as a disjoint union of two (2, 1) trading
components. Therefore, the only possible families of
trading components are (1, k) and (k, k + 1). First we
show that (1, k) trading component cannot coexist with
(ℓ, ℓ + 1) trading components (unless k = ℓ = 2). The
first trading component implies that α ≥ 1 − 1/k, and
the second implies that α ≤ 1/ℓ, and both can only
simultaneously hold for ℓ = k = 2 (and in such case the
(1, 2) trading component can be considered as either an
exploitation graph or a balanced graph).

Now consider the case where (1, k) trading compo-
nent exists along with (1, k + ℓ) for ℓ ≥ 2, and let u be
the sole buyer in the (1, k) trading component. Now u
can buy an edge to a node v in the (1, k+ℓ) component;



it is easy to see that now v will trade with u, and v will
earn wealth 1/(k + 1), rather than trading inside the
k + ℓ component and earning wealth 1/(k + ℓ). There-
fore, it cannot be an equilibrium graph of the network
formation game. It sill remains to show that (k, k + 1)
cannot coexist with (ℓ, ℓ+1). Let us see what are the re-
strictions imposed by such component. By Theorem 3.2
and Theorem 3.1, we have that

1

k + 1
≤ α ≤

1

k

This immediately implies that only consecutive trading
components, i.e, (k − 1, k) and (k, k + 1), can coexist.
This completes the proof of the first part Theorem 3.3;
see Appendix A for a sketch of the construction of the
equilibrium graphs.
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A Construction of Equilibrium Graphs

In this section we show that there are Exploitation(k, ℓ)
which are Nash equilibria of the network formation
game.

We start by providing a technical lemma.

Lemma A.1. If α > 1 − 1/ℓ then at Nash equilib-
rium of the network formation game, no seller in a
Exploitation(k, ℓ) graph would buy an edge to a buyer
of degree ℓ or ℓ + 1.

Proof. Let s be a seller, and let b be a buyer of degree ℓ
or ℓ + 1. At Nash equilibrium of the network formation
game, b’s wealth is at most 1/ℓ. Since the players
are rational, the only way for trade to occur over a
(b, s) edge is if s offered a price lower than 1/ℓ. Since



α > 1−1/ℓ, s would only decrease her utility by buying
an edge to b.

Now we are ready to show that Exploitation(k, ℓ)
graphs can be equilibria graphs of the network forma-
tion game.

Lemma A.2. If α > 1 − 2/(max(k + 1, ℓ + 1))2, then
any Exploitation(k, ℓ) graph where nodes with degree k
or k + 1 and ℓ or ℓ + 1 buy all the edges incident on
them, is a Nash equilibrium of the network formation
game.

Proof. Let s be a seller with degree k or k + 1. By
Lemma A.1 we know that at Nash equilibrium of the
network formation game s will not buy any edges to
buyers of degree ℓ or ℓ + 1. Next, let w1, . . . , wk′ be
the buyers attached to s in a Exploitation(k, ℓ) graph.
Now say s bought a set of edges that did not contain
all of the wi. Then, since α < 1 and no other players
are connected to the wi, s could increase its utility by
buying edges to the those unconnected wi. Thus we can
assume, at Nash equilibrium of the network formation, s
buys all the edges to the wi. Next, we show at formation
equilibrium s does not buy edges to other degree 1
nodes.

By the market clearing condition, the wealth of each
of the wi is either 1/k or 1/(k + 1), and s wealth is
either k or k + 1. If s has wealth k + 1 and it buys
edges to buyers that have wealth k, these buyers have
no incentive to switch to s so it would not be rational
for s to buy an edge to such a buyer. Next, if s wealth is
k and it buys an edges to a buyer b that is also getting
price k, b would not buy from s for the following reason.
Assume that if (b, s) is not an edge in the graph b buys
from s′, but when (b, s) is an edge in the graph b buys
from s. Then at market clearing s would offer price k+1
and then s′ would offer price k − 1. Thus it would not
be rational for b to switch sellers. Finally, if s wealth
is k + 1 and a buyer b is getting price k from s′, s will
not buy the edge to b. If s did, then b will split its good
evenly between s and s′. Since the cost of an edge is
α > 1 − 1/(max(k + 1, ℓ + 1))2, where k, ℓ > 1 and this
edge only increased the utility of s by 1/2, s would not
buy this edge.

Next, let s be a seller of degree 1. Again, by
Lemma A.1 we know that at equilibrium s will not buy
any edges to buyers of degree ℓ or ℓ + 1. So, all we
have to show is that at equilibrium s will not buy any
edges to buyers of degree 1. Consider the result of s
buying a edges to a set of buyers B, where |B| = m. If
m > ⌊(ℓ + 1)/2⌋, s wealth would only be ⌊(ℓ + 1)/2⌋.
So m ≤ ⌊(ℓ + 1)/2⌋, in which case s wealth would
be m and pay mα for the edges to B. Observe that

m(1− α) ≤ (ℓ + 1)(1− α)/2 < 1/(k + 1). Thus, buying
these m edges would only decrease the utility of s.

Thus, we have shown that at Nash equilibrium of
the network formation game sellers would buy only
those edges designated by the Exploitation(k, l) graph.
The case for buyers is entirely symmetric.

Due to space considerations, we omit the proof that
shows that for 1/(k + 1) ≤ α ≤ 1/(k), any balanced
graph consisting n1 (k, k+1) trading components and n1

(k+1, k) trading components is an equilibrium graph of
the network formation game, and that for α = 1/(k+1),
a balanced graph consisting n1 (k − 1, k) or (k, k + 1)
trading components and n1 (k, k − 1) or (k + 1, k)
trading components is an an equilibrium graph of the
network formation game. Full details can be found in
an extended version of this paper [9].

B Proof Sketch of Theorem 4.3

Due to space considerations we only sketch the main
ideas of the proof of Theorem 4.3, which establishes the
correctness of Algorithm 1. Full details can be found in
an extended version of this paper [9].

The first step is to extend Theorem 4.2 (which
provides a necessary and sufficient condition to have
no wealth variation in a graph in which the number of
buyers equals the number of sellers) to graphs where
the number of buyers does not equal the number of
sellers. We then provide a construction that transforms
a graph with an unequal number of buyers and sellers
to a graph with an equal number of buyers and sellers
and show that there exists no wealth variation in the
original graph if and only if its transformed graph has a
perfect matching. The importance of this construction
is to show that every connected component produced
by the algorithm can be a trading component and does
not have wealth variation in it. The last step to the
proof is to show that the ratio of the size of the subsets
of buyers to the size of their neighbor sets produced by
the algorithm, |Ui|/|N(Ui)|, is non-increasing. This is
essential to the proof of correctness of the algorithm,
because the algorithm assumes that Ui and N(Ui)
will form a trading component, and this result shows
that neither set will have better trading opportunities
outside these sets. Combining these facts yields the
algorithm correctness proof.


