
A Note on the Representational Incompatibility
of Function Approximation and Factored

Dynamics

Eric Allender
Computer Science Department

Rutgers University
allender@cs.rutgers.edu

Sanjeev Arora
Computer Science Department

Princeton University
arora@cs.princeton.edu

Michael Kearns
Department of Computer and Information Science

University of Pennsylvania
mkearns@cis.upenn.edu

Cristopher Moore
Department of Computer Science

University of New Mexico
moore@santafe.edu

Alexander Russell
Department of Computer Science and Engineering

University of Connecticut
acr@cse.uconn.edu

Abstract

We establish a new hardness result that shows that the difficulty of plan-
ning in factored Markov decision processes isrepresentationalrather
than just computational. More precisely, we give afixed family of fac-
tored MDPs with linear rewards whose optimal policies and value func-
tions simply cannot be represented succinctly inanystandard parametric
form. Previous hardness results indicated thatcomputinggood policies
from the MDP parameters was difficult, but left open the possibility of
succinct function approximation for any fixed factored MDP. Our result
applies even to policies which yield a polynomially poor approximation
to the optimal value, and highlights interesting connections with the com-
plexity class ofArthur-Merlin games.

1 Introduction

While a number of different representational approaches to large Markov decision pro-
cesses (MDPs) have been proposed and studied over recent years, relatively little is known
about the relationships between them. For example, in function approximation, a para-
metric form is proposed for the value functions of policies. Presumably, for any assumed
parametric form (for instance, linear value functions), rather strong constraints on the un-
derlying stochastic dynamics and rewards may be required to meet the assumption. How-
ever, a precise characterization of such constraints seems elusive.

Similarly, there has been recent interest in making parametric assumptions on the dynam-
ics and rewards directly, as in the recent work on factored MDPs. Here it is known that
the problem of computing an optimal policy from the MDP parameters is intractable (see
[7] and the references therein), but exactly what the representational constraints on such
policies are has remained largely unexplored.

In this note, we give a new intractability result for planning in factored MDPs that exposes
a noteworthy conceptual point missing from previous hardness results. Prior intractability
results for planning in factored MDPs established that the problem ofcomputingoptimal
policies from MDP parameters is hard, but left open the possibility that for anyfixedfac-
tored MDP, there might exist a compact, parametric representation of its optimal policy.
This would be roughly analogous to standard NP-complete problems such as graph color-
ing — any 3-colorable graph has a “compact” description of its 3-coloring, but it is hard to
compute it from the graph.

Here we dismiss even this possibility. Under a standard and widely believed complexity-
theoretic assumption (that is even weaker than the assumption that NP does not have poly-
nomial size Boolean circuits), we prove that a specific family of factored MDPs does not
evenpossess“succinct” policies. By this we mean something extremely general — namely,
that for each MDP in the family, it cannot have an optimal policy represented by an arbitrary
Boolean circuit whose size is bounded by a polynomial in the size of the MDP description.
Since such circuits can represent essentially any standard parametric functional form, we
are showing that there exists no “reasonable” representation of good policies in factored
MDPs, even if we ignore the problem of how to compute them from the MDP descrip-
tion. This result holds even if we ask only for policies whose expected returnapproximates
the optimal within a polynomial factor. (With a slightly stronger complexity-theoretic as-
sumption, it follows that obtaining an approximation even within anexponentialfactor is
impossible.)

Thus, while previous results established that there was at least acomputationalbarrier to
going from factored MDP parameters to good policies, here we show that the barrier is
actuallyrepresentational, a considerably worse situation. The result highlights the fact that
even when making strong and reasonable assumptions about one representational aspect of
MDPs (such as value functions or dynamics), there is no reason in general for this to lead
to any nontrivial restrictions on the others.

The construction in our result is ultimately rather simple, and relies on powerful results
developed in complexity theory over the last decade. In particular, we exploit striking
results on the complexity class associated with computational protocols known asArthur-
Merlin games.

We note that recent and independent work by Liberatore [5] establishes results similar to
ours. The primary differences between our work and Liberatore’s is that our results prove
intractability of approximation and rely on different proof techniques.

2 DBN-Markov Decision Processes

A Markov decision processis a tuple(Q;A; Æ; r) whereQ is a set ofstates, A is a set of
actions, Æ = hÆq;ai is a family of probability distributions onQ, one for each(q; a) 2
Q � A, andr : Q ! R+ is a reward function. We will denote byÆq;a(q0) the probability
that actiona in stateq results in stateq0. When started in a stateq0, and provided with
a sequence of actionsa0; a1; : : : ; the MDP traverses a sequence of statesq0; q1; q2; : : :,
where eachqi+1 is a random sample from the distributionÆqi;ai(�). Such a state sequence
is called apath. The
-discounted returnassociated with such a path isr
(q0; q1; : : :) =P1

i=1 r(qi)

i.

A policy � : Q ! A is a mapping from states to actions. When the action sequence is
generated according to this policy, we denote byp[q0; �] = (q0; q1; : : :) the state sequence
produced as above. A policy� is optimal if for all policies �0 and allq 2 Q, we have
Exp[r
(p[q; �])] � Exp[r
(p[q; �

0])]:

We consider MDPs where the transition lawÆ is represented as adynamic Bayes net, or
DBN-MDPs. Namely, if the state spaceQ has size2n, thenÆ is represented by a2-layer
Bayes net. There aren+ 1 variables in the first layer, representing then state variables at
any given timet, along with the action chosen at timet. There aren variables in the second
layer, representing then state variables at timet+1. All directed edges in the Bayes net go
from variables in the first layer to variables in the second layer; for our result, it suffices to
consider Bayes nets in which the indegree of every second-layer node is bounded by some
constant. Each second layer node has a conditional probability table (CPT) describing its
conditional distribution for every possible setting of its parents in the Bayes net. Thus
the stochastic dynamics of the DBN-MDP are entirely described by the Bayes net in the
standard way; the next-state distribution for any state is given by simply fixing the first
layer nodes to the settings given by the state. Any given action choice then yields the next-
state distribution according to standard Bayes net semantics. We shall assume throughout
that the rewards are a linear function of state.

3 Arthur-Merlin Games

The complexity class AM is a probabilistic extension of the familiar class NP, and is typ-
ically described in terms ofArthur–Merlin games (see [2]). An Arthur–Merlin game for a
languageL is played by two players (Turing machines),V (the Verifier, often referred to as
Arthur in the literature), who is equipped with a random coin and only modest (polynomial-
time bounded) computing power; andP (the Prover, often referred to asMerlin), who is
computationally unbounded. Both are supplied with the same inputx of lengthn bits. For
instance,x might be some standard encoding of an undirected graphG, andP might be
interested in proving toV thatG is 3-colorable. Thus,P seeks to prove thatx 2 L; V is
skeptical but willing to listen. At each step of the conversation,V flips a fair coin, perhaps
several times, and reports the resulting bits toV ; this is interpreted as a “question” or “chal-
lenge” toP . In the graph coloring example, it might be reasonable to interpret the random
bits generated byV as identifying a random edge inG, with the challenge toP being to
identify the colors of the nodes on each end of this edge (which had better be different, and
consistent with any previous responses ofP , if V is to be convinced). ThusP responds
with some number of bits, and the protocol proceeds to the next round. After poly(n) steps,
V decides, based upon the conversation, whether toacceptthatx 2 L or reject.

We say that the languageL is in the class AM[poly] if there is a (polynomial-time) algo-
rithm V such that:

� Whenx 2 L, there is always a strategy forP to generate the responses to the
random challenges that causesV to accept.

� Whenx 62 L, regardless of howP responds to the random challenges, with prob-
ability at least1� 2�jxj = 1� 2�n, V rejects. Here the probability is taken over
the random challenges.

In other words, we ask that there be a polynomial time algorithmV such that ifx 2 L,
there is alwayssomeresponse to the random challenge sequence that will convinceV of
this fact; but ifx 62 L, theneveryway of responding to the random challenge sequence has
an overwhelming probability of being “caught” byV .

What is the power of the class AM[poly]? From the definition, it should be clear that
every language in NP has an (easy) AM[poly] protocol in whichP , the prover, ignores

the random challenges, and simply presentsV with the standard NP witness tox 2 L
(e.g., a specific 3-coloring of the graphG). More surprisingly, every language in the class
PSPACE (the class of all languages that can be recognized in deterministic polynomial
space, conjectured to be much larger than NP) also has an AM[poly] protocol, a beautiful
and important result due to [6, 9]. (For definitions of classes such as P, NP, and PSPACE,
see [8, 4].)

If a languageL has an Arthur-Merlin game where Arthur asks only aconstantnumber
of questions, we say thatL 2 AM [2]. NP corresponds to Arthur-Merlin games where
Arthur saysnothing, and thus clearly NP� AM [2]. Restricting the number of questions
seems to put severe limitations on the power of Arthur-Merlin games. Though AM[poly] =
PSPACE, it is generally believed that

NP = AM [2] (PSPACE:

4 DBN-MDPs Requiring Large Policies

In this section, we outline our construction proving that factored MDPs may not have any
succinct representation for (even approximately) optimal policies, and conclude this note
with a formal statement of the result.

Let us begin by drawing a high-level analogy with the MDP setting. LetA be a language
in PSPACE, and letV andP be the Turing machines for the AM[poly] protocol forA.
SinceV is simply a Turing machine, it has some internal configurations (sufficient to
completely describe the tape contents, read/write head position, abstract computational
state, and so on) at any given moment in the protocol withP . Since we assumeP is all-
powerful (computationally unbounded), we can assume thatP has complete knowledge of
this internal states of V at all times. The protocol at roundt can thus be viewed:V is in
some state/configurationst; a random bit sequence (the challenge)bt is generated; based
onst andbt, P computes some response oractionat; and based onbt andat, V enters its
next configurationst+1. From this description, several observations can be made:

� V ’s internal configurationst constitutes state in the Markovian sense — combined
with the actionat, it entirely determines the next-state distribution. The dynamics
are probabilistic due to the influence of the random bit sequencebt.

� We can thus viewP as implementing apolicy in the MDP determined by (the
internal configuration of)V — P ’s actions, together with the stochasticbt, de-
termine the evolution of thest. Informally, we might imagine defining the total
return toP to be 1 ifP causesV to accept, and 0 ifV rejects.

� The MDP so defined in this manner is not arbitrarily complex — in particular, the
transition dynamics are defined by the polynomial-time Turing machineV .

At a high level, then, if every MDP so defined by a language in AM[poly] had an “efficient”
policyP , then something remarkable would occur: the arbitrary power allowed toP in the
definition of the class would have been unnecessary. We shall see that this would have
extraordinary and rather implausible complexity-theoretic implications. For the moment,
let us simply sketch the refinements to this line of thought that will allow us to make the
connection to factored MDPs: we will show that the MDPs defined above can actually be
represented by DBN-MDPs with only constant indegree and a linear reward function. As
suggested, this will allow us to assert rather strong negative results about even theexistence
of efficient policies, even when we ask for rather weak approximation to the optimal return.

We now turn to the problem of planning in a DBN-MDP. Typically, one might like to have
a “general-purpose” planning procedure — a procedure that takes as input a description
of a DBN-MDPM = (Q;A; Æ;N; r), and returns a description of the optimal policy��.

This is what is typically meant by the term planning, and we note that it demands a certain
kind of uniformity— a singleplanning algorithm that can efficiently compute a succinct
representation of the optimal policy for any DBN-MDP. Note that the existence of such a
planning algorithm would certainly imply that every DBN-MDPhasa succinct representa-
tion of its optimal policy — but the converse does not hold. It could be that the difficulty of
planning in DBN-MDPs arises from the demand of uniformity — that is, that every DBN-
MDP possessesa succinct optimal policy, but the problem ofcomputingit from the MDP
parameters is intractable. This would be analogous to problems in NP — for example, ev-
ery 3-colorable graph obviously has a succinct description of a 3-coloring, but it is difficult
to compute it from the graph.

As mentioned in the introduction, it has been known for some time that planning in this
uniform sense is computationally intractable. Here we establish the stronger and concep-
tually important result that it isnot the uniformity giving rise to the difficulty, but rather
that there simply exist DBN-MDPs in which the optimal policy does not possess a succinct
representation inany natural parameterization. We will present a specific family of DBN-
MDPsfMng (whereMn has states withn components), and show that, under a standard
complexity-theoretic assumption, the corresponding family of optimal policiesf��ng can-
not be represented by arbitrary Boolean circuits of size polynomial inn. We note that such
circuits constitute a universal representation of efficiently computable functions, and all of
the standard parametric forms in wide use in AI and statistics can be computed by such
circuits.

We now provide the details of the construction. LetA be any language in PSPACE, and
let V be a polynomial-time Turing machine running in timemk on inputs of lengthm,
implementing the algorithm of “Arthur” in the AM protocol forA. Letn be the maximum
number of bits needed to write down a complete configuration ofV that may arise during
computation on an input of lengthm (son = O(mk), since no computation takingmk

time can consume more thanmk space). Each state of our DBN-MDPMn will have n
components, each corresponding to one bit of the encoding of a configuration. No states
will have rewards, except for the accepting states, which have reward1=
m

k

. (Without loss
of generality, we may assume thatV never enters an accepting state other than at time time
mk.) Note that we can encode configurations so that there is one bit position (say, the first
bit of the state vector) that records if the current state ofV is accepting or not. Thus the
reward function is obviously linear (it is simply1=
m

k

times the first component).

There are two actions:A = f0; 1g. Each action advances the simulation of the AM game
by one time step. There are three types of steps:

1. Steps whereP is choosing a bit to send toV ; actionb 2 A corresponds toP
choosing to send a “b” to V .

2. Steps whereV is flipping a coin; each actionb 2 A yields probability1=2 of
having the coin come up “heads”.

3. Steps whereV is doing deterministic computation; each actionb 2 A moves the
computation ahead one step.

It is straightforward to encode this as a DBN-MDP. Note that each bit of the next move
relation of a Turing machine depends on onlyO(1) bits of the preceding configuration (i.e.,
on the bits encoding the contents of the neighboring cells, the bits encoding the presence
or absence of the input head in one of those cells, and the bits encoding the finite state
information of the Turing machine). Thus the DBN-MDPMn describingV on inputs of
lengthm has constant indegree; each bit is connected to theO(1) bits on which it depends.

Note that a path in this MDP corresponding to an accepting computation ofV on an input
of lengthm has total reward1; a rejecting path has reward0. A routine calculation shows

that the expected reward of the optimal policy is equal to the fraction of coin flip sequences
that causeP to accept when communicating with an optimalV . That is,

Prob(V accepts) = (Optimal expected reward)

With the construction above, we can now describe our result:

Theorem 1. If PSPACEis not contained inP/POLY, then there is a family of DBN-MDPs
Mn, n � 1, such that for any two polynomials,s(n) anda(n), there exist infinitely many
n such that no circuitC of sizes(n) can compute a policy having expected reward greater
than1=a(n) times the optimum.

Before giving the formal proof, we remark that the assumption that PSPACE is not con-
tained in P/POLY is standard and widely believed, and informally asserts that not every-
thing that can be computed in polynomial space can be computed by a non-uniform family
of small circuits.

Proof. LetA be any language in PSPACE that is not in P/POLY, and letMn be as described
above. Suppose, contrary to the statement of Theorem, that for large enoughn there is
indeed a circuitC of sizes(n) computing a policy forMn whose return is within a1=a(n)
factor of optimal. We now consider the probabilistic circuitD that operates as follows.D
takes a stringx as input, and estimates the expected return of the policy given byC (which
is the same as the probability that the proverP associated withC is able to convinceV that
x 2 A). Specifically,D builds the stateq corresponding to the start state ofV protocol on
inputx, and then repeats the following procedurea(n) times:

Given stateq, if q is a state encoding a configuration in which it isP ’s
turn, useC to compute the message sent byP and setq to the new state
of the AM protocol.

Otherwise, ifq is a state encoding a configuration in which it isV ’s turn,
flip a coin at random and setq to the new state of the AM protocol.
Repeat until anacceptor reject state is encountered.

If any of these repetitions result in anaccept,D accepts; otherwiseD rejects.

Note now that ifx 2 A, then the probability thatD rejects is no more than

(1� 1=a(n))a(n) � 1=e � :37;

since in this case we are guaranteed that each iteration will accept with probability at least
1=a(n). On the other hand, ifx 62 A, thenD accepts with probability no more than
a(n)=2n, since each iteration accepts with probability at most2�n. AsD has polynomial
size and a probabilistic circuit can be simulated by a deterministic one of essentially the
same size, it follows thatA is in P/POLY, a contradiction.

It is worth mentioning that, by the worst-case-to-average-case reduction of [1], if PSPACE
is not in P/POLY then we can select such a languageA so that the circuitC will perform
badly on a non-negligible fraction of the statesq of Mn. That is, not only is it hard tofind
anoptimalpolicy, it will be the case thateverypolicy that can be expressed as a polynomial
size circuit will performverybadly onverymany inputs.

Finally, we remark that by coupling the above construction with the approximate lower
bound protocol of [3], one can prove (under a stronger assumption) that there are no suc-
cinct policies for the DBN-MDPsMn which even approximate the optimum return to
within anexponentialfactor.

Theorem 2. If PSPACEis not contained inAM [2], then there is a family of DBN-MDPs
Mn, n � 1, such that for any polynomials there exist infinitely manyn such that no circuit
C of sizes(n) can compute a policy having expected reward greater than2�n+1 times the
optimum.

References

[1] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs.Complexity Theory, 3:307–318,
1993.

[2] L. Babai and S. Moran. Arthur-merlin games: a randomized proof system, and a
hierarchy of complexity classes.Journal of Computer and System Sciences, 36(2):254–
276, 1988.

[3] S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof
systems.Advances in Computing Research, 5:73–90, 1989.

[4] D. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor,Handbook of
Theoretical Computer Science, volume A. The MIT Press, 1990.

[5] P. Liberatore. The size of MDP factored policies. InProceedings of AAAI 2002. AAAI
Press, 2002.

[6] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems.Journal of the ACM, 39(4):859–868, 1992.

[7] M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender. Complexity of finite-horizon
Markov decision process problems.Journal of the ACM, 47(4):681–720, 2000.

[8] C. Papadimitriou.Computational Complexity. Addison-Wesley, 1994.

[9] A. Shamir. IP = PSPACE.Journal of the ACM, 39(4):869–877, 1992.

