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ABSTRACT
We examine correlated equilibria in the recently introduced formal-
ism of graphical games, a succinct representation for multiplayer
games. We establish a natural and powerful relationship between
the graphical structure of a multiplayer game and a certain Markov
network representing distributions over joint actions. Our first main
result establishes that this Markov network succinctly represents all
correlated equilibria of the graphical game up to expected payoff
equivalence. Our second main result provides a general algorithm
for computing correlated equilibria in a graphical game based on its
associated Markov network. For a special class of graphical games
that includes trees, this algorithm runs in time polynomial in the
graphical game representation (which is polynomial in the number
of players and exponential in the graph degree).

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complexity]: Gen-
eral

General Terms
Algorithms, Theory, Economics

Keywords
Game Theory, Correlated Equilibria, Graphical Games, Graphical
Models

1. INTRODUCTION
Graphical games are a compact representation of multiplayer

games that exploit a graph-theoretic or network structure of strate-
gic interaction among the participants. A number of recent papers
have established algorithms for computing Nash equilibria directly
on the graph representation, including provably efficient algorithms
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for computing all approximate Nash equilibria in tree-structured
games [Kearns et al.(2001)Kearns, Littman, and Singh] [Littman
et al.(2002)Littman, Kearns, and Singh], and convergent heuristics
for general graphs that seem to exhibit promising experimental be-
havior [Ortiz and Kearns(2003)] [Vickrey and Koller(2002)]. Just
as graphical models for probabilistic inference (such as Bayesian
and Markov networks) have revolutionized the applicability of prob-
abilistic modeling in a wide variety of domains, graphical games
are part of an overarching program to develop compact models, and
algorithms that exploit them, in order to create a richer computa-
tional toolbox for game theory [Koller and Milch()] [La Mura(2000)].

Like much of the history of game theory generally, the study of
graphical games so far has been dominated by Nash’s classical no-
tion of equilibrium, for which it always suffices to consider product
distributions over the players’ joint actions. In this paper, we ex-
aminecorrelated equilibria[Aumann(1974)] in graphical games,
which allow arbitrary joint distributions. Correlated equilibria offer
a number of conceptual and computational advantages over Nash
equilibria, including the facts that new and sometimes more “fair”
payoffs can be achieved, that correlated equilibria can be computed
efficiently for games in standard normal form, and that correlated
equilibria are the convergence notion for several natural learning
algorithms [Foster and Vohra(1999)]. Furthermore, it has been ar-
gued that correlated equilibria are the natural equilibrium concept
consistent with the Bayesian perspective [Aumann(1987)][Foster
and Vohra(1997)]. In this paper, we present a series of fundamen-
tal results examining the representational and computational issues
that arise when considering correlated equilibria in the compact
language of graphical games.

The first issue that arises in this investigation is the problem of
representingcorrelated equilibria. Unlike Nash equilibria, even in
very simple graphical games there may be correlated equilibria of
essentially arbitrary complexity (for instance, any mixture distribu-
tion of Nash equilibria is a correlated equilibrium). Since one of our
primary goals is to maintain the succinctness of graphical games,
some way of addressing this distributional complexity is required.
For this we turn to another graphical formalism — namely, undi-
rected graphical models for probabilistic inference, also known as
Markov networks.

Our main results establish a natural and powerful relationship
between a graphical game and a certain associated Markov net-
work. Like the graphical game, the associated Markov network is
a graph over the players. While the interactions between vertices
in the graphical game are entirelystrategicand given by local pay-



off matrices, the interactions in the associated Markov network are
entirely probabilistic and given by local potential functions. The
graph of the associated Markov network retains the parsimony of
the graphical game.

Our first main result shows that the associated Markov network
is sufficient for representinganycorrelated equilibria of the graph-
ical game, up to expected payoff equivalence. In other words, the
fact that a multiplayer game can be succinctly represented by a
graph implies that its entire space of correlated equilibria, up to
payoff equivalence, can be represented graphically with compara-
ble succinctness. This basic result establishes a new sense in which
graphical games are a powerful formalism, and highlights the nat-
ural relationship between computational game theory and modern
probabilistic modeling.

Our second main result establishes thecomputationalbenefits of
this relationship. The fact that correlated equilibria are character-
ized by a set of linear inequalities is not helpful for unrestricted
multiplayer games, since in general there are an exponential num-
ber of such inequalities. Here again the graphical representations
reap benefits. We show that a graphical game gives rise to a small
set of linear inequalities (comparable in size to the game repre-
sentation itself) with a non-empty feasible region that includes all
correlated equilibria. In the case that the associated Markov net-
work is chordal, which includes graphical games that are trees as
a special case, we prove that any point in the feasible region can
be efficiently mapped to a correlated equilibrium on the associated
Markov network, thus yielding a polynomial time algorithm for
computing correlated equilibria in a large class of graphical games.
This algorithm also applies generally to non-chordal graphs, but in
the worst case may require an exponential increase in the Markov
network size.

2. BACKGROUND AND PRELIMINARIES

2.1 Game Theory and Notions of Equilibria
A multiplayer game consists ofn players, each with a finite set

of pure strategiesor actions available to them, along with a spec-
ification of thepayoffsto each player. Throughout the paper, we
useAi as a variable representing the chosen action of playeri, and
ai as a specific value ofAi. For simplicity we assume a binary
action space, soai 2 f0; 1g. (The generalization of our results to
the multi-action setting is straightforward.) The payoffs to player
i are given by a table or matrixMi, indexed by the joint action
~a 2 f0; 1gn. The valueMi(~a), which we assume without loss of
generality to lie in the interval[0; 1], is the payoff to playeri re-
sulting from the joint action~a. Multiplayer games described in this
way are referred to asnormal formgames.

A number of different notions ofequilibria have been proposed
for normal form games, includingNash equilibriaandcorrelated
equilibria. We begin with the latter because it is more general and
our main interest.

Correlated equilibria [Aumann(1974)] can be viewed as distri-
butionsP (~a) over joint actions satisfying a certain conditional ex-
pectation property. Let

P jai � Pr ~A�P [A1; :::; AnjAi = ai]

denote the conditional distribution over actions given the event that
Ai = ai. Let~a[i : b] be the vector~a, but with theith component
fixed tob 2 f0; 1g.

DEFINITION 1. Acorrelated equilibrium (CE)for a normal form

game is a distributionP (~a) over actions satisfying

8i 2 f1; :::; ng; 8ai; a
0 2 f0; 1g :

E~a�P jai [Mi(~a)] � E~a�P jai [Mi(~a[i : a
0])]

Intuitively, in a CE the action played by any player is a best re-
sponse (in the expected payoff sense) to the conditional distribu-
tion over the other players given that action, and thus no player
has aunilateral incentive to deviate from playing their role in the
CE. Note that a CE may be an arbitrarily complex joint distribu-
tion. In contrast, aNash equilibrium[Nash(1951)] is a special
case of CE in which we demand thatP be a product distribution
(P (~a) =

Qn

i=1 Pi(ai) for some distributionsPi), so every player
acts independently of all others.

Nash equilibria have been extensively studied in the game the-
ory literature, including in the context of graphical games (defined
shortly). However, as discussed in the Introduction, CE offer a
number of interesting conceptual and computational advantages not
shared by Nash equilibria. One of the most interesting aspects of
CE is that they broaden the set of “rational” solutions for normal
form games without the need to address often difficult issues such
as stability of coalitions and payoff imputations [Aumann(1987)].
The traffic signal is often cited as an informal everyday example of
CE, in which a single bit of shared information allows a fair split
of waiting times [Owen(1995)]. In this example, no player stands
to gain greater payoff by unilaterally deviating from the correlated
play, for instance by “running a light”.

2.2 Graphical Games
In a graphical game[Kearns et al.(2001)Kearns, Littman, and

Singh], each playeri is represented by a vertex in an undirected1

graphG. We useN(i) � f1; : : : ; ng to denote theneighborhood
of playeri in G — that is, those verticesj such that the edge(i; j)
appears inG. By conventionN(i) always includesi itself as well.
If ~a is a joint action, we use~a i to denote the induced vector of
actions just on the players inN(i).

DEFINITION 2. A graphical gameis a pair (G;M), whereG
is an undirected graph over the verticesf1; : : : ; ng, andM is a
set ofn local game matrices. For any joint action~a, the local game
matrixMi 2 M specifies the payoffMi(~a

i) for player i, which
depends only on the actions taken by the players inN(i).

Graphical games are a potentially more compact way of repre-
senting games than standard normal form. In particular, rather than
requiring size exponential in the number of playersn, a graphical
game requires size exponential only in the sized of the largest lo-
cal neighborhood. Thus ifd << n, the graphical representation
is exponentially smaller than the normal form. Note that we can
represent any normal form game as a graphical game by lettingG
be the complete graph, but the representation is most useful when
a considerably sparser graph can be found.

3. CORRELATED EQUILIBRIA IN GRAPH-
ICAL GAMES: REPRESENTATION

Specifying a CE as a table of joint probabilities over the binary
actions requires2n�1 parameters. One might hope that if we have
a compact graphical game then we could also concisely represent
1Undirected graphs are used for simplicity. A directed graphical
game where each edge denotes “i affects the payoff ofj” is more
complicated but may result in a sparser graph and further represen-
tational savings [Vickrey and Koller(2002)]. The results presented
in this paper have natural extentions to directed graphical games.



the CE. Unfortunately, arbitrary high-order correlations might exist
in a CE, even for a concisely represented game2.

However, we shall show that there is a naturalsubclassof the
set of all CE, based onexpected payoff equivalence, whose rep-
resentation size is linearly related to the representation size of the
graphical game. Note that merely finding distributions giving the
same payoffs as the CE is not especially interestingunlessthose
distributions are themselves CE. In other words, we do not want to
only compactlydescribethe payoffs achievable under CE; we want
to be able toprescribeCE strategies (joint distributions) yielding
these payoffs. Our primary tool for accomplishing this goal will
be the notion of local neighborhood equivalence, or the preserva-
tion of local marginal distributions. Below we establish that lo-
cal neighborhood equivalence both implies payoff equivalence and
preserves CE. In the following subsection, we describe how to rep-
resent this natural subclass in a certainMarkov network, where the
structure of the Markov network is closely related to the structure
of the graphical game.

3.1 Expected Payoff Equivalence and Local
Neighborhood Equivalence

DEFINITION 3. Two distributionsP andQ over joint actions~a
areexpected payoff equivalent, denotedP �EP Q, if P andQ yield
the same expected payoff vector: for eachi, E~a�P [Mi(~a

i)] =
E~a�Q[Mi(~a

i)].

Payoff equivalence of two distributions is, in general, dependent
upon the reward matrices of a graphical game. Let us consider the
following (more stringent) equivalence notion, which is based only
on the graphG of a game.

DEFINITION 4. For a graphG, two distributionsP andQ over
joint actions~a are local neighborhood equivalentwith respect to
G, denotedP �LN Q, if for all playersi, and for all settings~a i of
N(i), P (~a i) = Q(~a i).

In other words, the marginal distributions over all local neighbor-
hoods defined byG are identical. Since the graph is always clear
from context, we shall just writeP �LN Q. The following lemma
establishes that local neighborhood equivalence is indeed a more
stringent notion of equivalence than expected payoff.

LEMMA 1. For all graphsG, for all joint distributionsP andQ
on actions, and for all graphical games with graphG, if P �LN Q
thenP �EP Q. Furthermore, there exists payoff matricesM such
that for the graphical game(G;M), if P 6�LN Q thenP 6�EP Q.

PROOF. The first statement follows from the observation that
the expected payoff to playeri depends only on the marginal dis-
tribution of actions inN(i). To prove the second statement, if
P 6�LN Q, then there must exist a playeri and a joint action~a i

for its local neighborhood which has a different probability under
P andQ. Simply setMi(~a

i) = 1 andMi = 0 elsewhere. Theni
has a different payoff underP andQ, and soP 6�EP Q.

Essentially, local neighborhood equivalence implies payoff equiv-
alence, but the converse is not true in general (though there exists
some payoff matrices where the converse is correct).

Let CE(G;M) denote the set of of all correlated equilibria for a
graphical game(G;M). We now establish that local neighborhood
equivalence also preserves CE. It is important to note that this result
doesnot hold for expected payoff equivalence.
2For example, the CE of a game always include all mixture dis-
tributions of Nash equilibria, so any game with an exponential
number of Nash equilibria can yield extremely complex CE. Such
games can be easily constructed with very simple graphs.

LEMMA 2. For any graphical game(G;M), if P 2 CE(G;M)
andP �LN Q thenQ 2 CE(G;M).

PROOF. The lemma follows by noting that the correlated equi-
librium expectation equations are only dependent upon the marginal
distributions of local neighborhoods, which are preserved inQ.

While explicitly representingall CE is infeasible even in simple
graphical games, we next show that wecan concisely represent,
in a single model, all CEup to local neighborhood (and therefore
payoff) equivalence. The amount of space required is comparable
to that required to represent the graphical game itself, and allows
us to explore or enumerate the different outcomes achievable in the
space of CE.

3.2 Correlated Equilibria and Markov Nets
In the same way that graphical games provide a concise language

for expressing local interaction in game theory,Markov networks
exploit undirected graphs for expressing local interaction in prob-
ability distributions. It turns out that (a special case of) Markov
networks are a natural and powerful language for expressing the
CE of a graphical game, and that there is a close relationship be-
tween the graph of the game and its associated Markov network
graph. We begin with the necessary definitions.

DEFINITION 5. A local Markov networkis a pairM � (G;	)
where

1. G is an undirected graph on verticesf1; : : : ; ng;

2. 	 is a set ofpotential functions, one for each local neighbor-
hoodN(i), mapping binary assignments of values ofN(i)
to the range[0;1) :

	 � f i : f~a
ig ! [0;1):g

Heref~a ig is simply the set of all2jN(i)j settings toN(i).

A local Markov networkM compactly represents a probability
distributionPM as follows. For any binary assignment~a to the
vertices, define

PM (~a) �
1

Z

 
nY
i=1

 i(~a
i)

!

whereZ =
P

~a

Qn
i=1  i(~a

i) > 0 is the normalization factor.
Note that any joint distribution can be represented as a local

Markov network on a sufficiently dense graph. (Note that if we
letG be the complete graph then we simply have a single potential
function over the entire joint action space~a.) However, ifd is the
size of the maximal neighborhood inG, then the representation size
of a distribution in this network isO(n2d), a considerable savings
over a tabular representation ifd << n.

Local Markov networks are a special case of Markov networks, a
well-studied probabilistic model in AI and statistics [Pearl(1988)].
A Markov network is typically defined with potential functions
ranging over settings of maximal cliques in the graphs. Another
approach we could have taken is to transform the graphG to a
graphG0 which forms cliques of the local neighborhoodsN(i),
and then used standard Markov networks overG0 as opposed to
local Markov networks overG. However, this can sometimes re-
sult in an unnecessary exponential blow-up of the size of the model
when the resulting maximal cliques are much larger than the orig-
inal neighborhoods. As the following lemma shows, for our pur-
poses, it is sufficient to define the potential functions over just local
neighborhoods (as in our definition) rather than maximal cliques in



G0, which avoids this potential blow-up. (However, we will some-
times find it useful to discussG0 at various points when connecting
with the Markov network literature.)

The following technical lemma, which is the cornerstone of our
first main theorem below, establishes that a local Markov network
always suffices to represent a distribution up to local neighborhood
equivalence.

LEMMA 3. For all graphsG, and for all joint distributionsP
over joint actions, there exists a distributionQ that is representable
as a local Markov network with graphG such thatQ �LN P with
respect toG.

The proof is provided in the appendix. The main result of this
section now follows from the previous lemmas, and shows that we
can represent any correlated equilibria of a graphical game(G;M),
up to payoff equivalence, with a local Markov network(G;	).

THEOREM 4. (CE Representation Theorem) For all graphical
games(G;M), and for all distributionsP 2 CE(G;M), there
exists a distributionQ such that:

1. Q 2 CE(G;M);

2. Q �EP P ;

3. Q can be represented as a local Markov network with graph
G.

Note that the representation size for any local Markov network
with graphG is linear in the representation size of the graphical
game, and thus we can represent the CE of the game parsimo-
niously.

4. CORRELATED EQUILIBRIA IN GRAPH-
ICAL GAMES: ALGORITHMS

Having established in Theorem 4 that a concise graphical game
yields a concise representation of its CE up to payoff equivalence,
we now turn our attention to algorithms forcomputingCE. In the
spirit of our results thus far, we are interested in algorithms that can
efficiently exploit the compactness of graphical games.

It is well-known that it is possible to compute CE via linear pro-
gramming in time polynomial in the standardnon-compactnormal
form. In this approach, one variable is introduced for every possi-
ble joint action probabilityP (~a), and the constraints enforce both
the CE condition and the fact that the variables must define a prob-
ability distribution. It is not hard to verify that the constraints are
all linear and there areO(2n) variables and constraints in the bi-
nary action case. By introducing any linear optimization function,
one can get an algorithm based on linear programming for comput-
ing a single exact CE that runs in time polynomial in the size of the
normal-form representation of the game (that is, polynomial in2n).

For graphical games this solution is clearly unsatisfying, since
it may require time exponential in the size of the graphical game.
What is needed is a more concise way to express the CE and distri-
butional constraints — ideally, linearly in the size of the graphical
game representation. We shall show that this is indeed possible
for tree graphical games (and more generally for game graphsG
where a Markov network on the graphG0 — obtained by forming
cliques of the neighborhoods ofG — can be represented by a lo-
cal Markov network onG andG0 is chordal). The basic idea is to
express both the CE and distributional constraints entirely in terms
of the local marginals, rather than the global probabilities of joint
actions. We begin with a lemma establishing that doing so for the
CE constraints is straightforward.

LEMMA 5. For all graphical games(G;M), and for all action
distributionsP , P 2 CE(G;M) if and only if for all players i and
actionsa; a0:X

~a i:ai
i
=a

P (~a i)Mi(~a
i) �

X
~a i:ai

i
=a

P (~a i)Mi(~a
i[i : a0]):

PROOF. Due to the locality of theMi, the CE constraint condi-
tion (Definition 1) simplifies to using only local expectations:

E~a�P jai=aMi(~a) = E~a i�P (~a ijai=a)
Mi(~a

i)

SinceP (ai = a) is a constant, we can multiply this on both sides
of the equation and prove the “if” direction. For the “only if” di-
rection, reverse the derivation.

Furthermore, for the case in which the game graph is a tree, it
suffices to introduce linear distributional constraints over only the
local marginals, along withconsistencyconstraints on theintersec-
tions of local marginals. We thus have the following three cate-
gories of local constraints defining our linear program:

Variables: For every playeri and every assignment~a i, there is a
variablePi(~a i).
LP Constraints:

1. CE Constraints:for all playersi and actionsa; a0,X
~a i:ai

i
=a

Pi(~a
i)Mi(~a

i) �
X

~a i:ai
i
=a

Pi(~a
i)Mi([~a

i[i : a0])

2. Neighborhood Marginal Constraints:for all playersi,

8~a i : Pi(~a
i) � 0;

X
~a i

Pi(~a
i) = 1

3. Intersection Consistency Constraints:for all playersi andj,
and for any assignment~y ij to theintersection neighborhood
N(i) \N(j),

Pi(~a
ij) �

X
~a i:~a ij=~y ij

Pi(~a
i)

=
X

~a j :~a ij=~y ij

Pj(~a
j)

� Pj(~a
ij)

Choices for the objective function are discussed below.
Note that ifd is the size of the largest neighborhood, this system

involvesO(n2d) variables andO(n2d) linear inequalities, which
is linear in the representation size of the original graphical game,
as desired.

It is clear that any CE must satisfy these constraints. Here we
must solve the inverse problem: given only a set of marginal as-
signmentsfPi(~a i)g satisfying the constraints, we would like to
construct a CE. Of course, by Lemma 5, if we can find a distribu-
tionQwhose marginals match the assignments (8i; 8~a i; Q(~a i) =
Pi(~a

i)), thenQ must be a CE. In general finding such aQmay be
a difficult problem (and may have no solution), but for tree graph-
ical games, it turns out that any solution to the constraints yields
a unique joint distribution that can be represented in a the local
Markov network. The following lemma states this.

LEMMA 6. (Consistent Tree) For all graphical games(G;M)
in whichG = (V;E) is a tree, and for all assignmentsfPi(~a i)g



satisfying the consistency equations, there is a unique joint distri-
butionQ, defined by

Q(~a) �

Q
i2V Pi(~a

i)Q
(i;j)2E;i<j Pi(~a

ij)
(1)

such thatQ 2 CE(G;M) andQ is representable as a local Markov
network with graphG. Furthermore, the marginals ofQ will be
consistent with the assignment:8i;~a i; Qi(~a

i) = Pi(~a
i).

PROOF. Given the graphG = (V;E), we construct a graph
G0 = (V;E0) whereE0 = f(i; j) : 9k 2 V : i 6= j; fi; jg �
N(k)g: Thus,G0 has a clique for each local neighborhood inG.
G0 is a chordal graph3 and every maximal cliqueC 2 G0 is a sub-
set of some neighborhood (9i : C � N(i)). From this, Theorem
2.6 of [Dawid and Lauritzen(1993)] implies that the joint distribu-
tionQ is unique, consistent and is representable by a local Markov
network with graphG.

To see thatQ 2 CE(G;M), note that8i;~a i; Q(~a i) = Pi(~a
i)

implies that the correlated equilibrium constraints hold forQ.

This result allows us to keep the number of constraints linear in
the graphical game size, and an efficient LP algorithm emerges. Be-
fore presenting this algorithm, we note that for trees, we have com-
pactly specified the convex polytope ofall CE up to local neigh-
borhood (and therefore payoff) equivalence. LetCElocal(G;M)
be the set of all distributionsQ:

Q(~a) �

Q
i2V Pi(~a

i)Q
(i;j)2E;i<j Pi(~a

ij)

obtained by ranging over all solutionsfPi(~a i)g to the consistency
constraints. The following theorem shows that this set is expected
payoff equivalent toCE(G;M).

THEOREM 7. (Completeness) For all graphical games(G;M)
such thatG is a tree, we haveCElocal(G;M) � CE(G;M); and
if P 2 CE(G;M) then there exists aQ 2 CElocal(G;M) such
thatP �EP Q.

PROOF. Lemma 6 gives usCE local(G;M) � CE(G;M). The
remainder of the proof is constructive. GivenP , first define:

Qi(~a
i) � P (~a i)

then constructQ using Equation 1. By construction, we haveQ 2
CElocal(G;M) andP �EP Q holds by Lemma 6.

Finally, to define a concrete LP algorithm we must simply spec-
ify an appropriate linear optimization function. One possibility is
choosing a correlated equilibrium with the highest total expected
payoff over all players:

max
subject to the constraints onPi(~a

i)

X
i

X
~a i

Pi(~a
i)Mi(~a

i):

Our main algorithmic result follows.

THEOREM 8. (Efficient Tree Algorithm) For all tree graphical
games(G;M) and all linear objective functionsF (fPi(~a

i)g),
linear programming computes a CE in time polynomial in the size
of the graphical game. The CE computed can be varied by varying
the objective functionF .

Hence, the algorithm is polynomial inn and exponential ind for
trees. For the multiple action setting, it is straightforward to see
that the previous complexity result still holds.
3A chord is an edge which connects two nonadjacent nodes in a
cycle. A chordal graph is an undirected graph where every cycle
larger than 3 has a chord.

5. DISCUSSION AND EXTENSIONS
While Theorem 8 establishes that we can efficiently compute dif-

ferent CE by varying the chosen linear optimization function, an
even more powerful result follows by combining the convexity of
the classCElocal(G;M) with the results of [Dyer et al.(1991)Dyer,
Frieze, and Kannan], who provide an efficient algorithm for sam-
pling nearly uniformly from an arbitrary convex body. This yields
a method for sampling CE inCElocal(G;M) nearly uniformly in
time polynomial in the size of a tree graphical game.

An important advantage of the Markov net formalism for repre-
senting CE (that we will elaborate on in future work) is the ability
to immediately infer various conditional independences and proba-
bilistic semantics from the graph alone. Indeed, this is perhaps the
main power of graphical models for probabilistic inference, and the
results presented here import that power into the domain of game
theory. As just one example, letG be the graph of the game, andG0

be the graph obtained by forming cliques of local neighborhoods in
G. Let i andj be any two players in the game, and letS be any set
of players forming a cut ofG0 such thati andj lie in different com-
ponents. Then classical Markov net semantics, combined with our
results, establish that for any CE, there exists a local neighborhood
equivalent CE in which the distribution onai is independent ofaj
given the actions inS. In other words, the Markov net derived from
the game graph allows us to easily “read off” which conditional
dependencies are essential, and which are spurious, in representing
all CE. We expect that many other interesting and powerful inter-
actions between the strategic and probabilistic aspects of CE will
emerge with further study.
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8. APPENDIX
Proof of Lemma 3: The objective is to find a single distribution

Q that is consistent with the players local neighborhood marginals
underP and is also a Markov network with graphG. It is an imme-
diate consequence of previous work on maximum entropy models
(see [Berger et al.(1996)Berger, Pietra, and Pietra]) that the max-
imum entropy distributionQ�, subject toP �LN Q�, is a local
Markov network.

More formally, we show that the solution to the following con-
strained maximum entropy problem is representable inG:

Q� = argmax
Q

H(Q) � argmax
Q

X
~a

Q(~a) log(1=Q(~a))

subject to

1. Q(~a i) = P (~a i), for all i;~a i.

2. Q is a proper probability distribution.

Note first that this problem always has a unique answer sinceH(Q)
is strictly concave and all constraints are linear. In addition, the
feasible set is non-empty, as it containsP itself.

To get the form ofQ�, we solve the optimization problem by
introducing the Lagrange multipliers~� � (�i;~a i ; 8i;~a i) to take
care of the neighborhood marginal constraints (condition 1), and
� to take care of the normalization constraint (condition 2). The
optimization becomes

Q� = argmax
Q;~�;�

L(Q;~�; �)

� argmax
Q;~�;�

H(Q) +
X
i2V

X
~a i

�i;~a i(Q(~a i)� P (~a i))

+�(
X
~a

Q(~a)� 1)

whereQ(~a) is constrained to be positive. Here,L is the Lagrangian
function.

First note that for all~a, if P (~a) = 0, thenQ�(~a) = 0. A
necessary condition forQ� is that@L=@Q(~a)jQ=Q� = 0, for all
~a such thatP (~a) > 0. After taking derivatives and some algebra,
this condition implies, for all~a,

Q�
~�
(~a) = (1=Z~�)

nY
v=1

I[P (~a i) 6= 0] exp(�i;~a i)

whereI[P (~a i) 6= 0] is an indicator function which evaluates to1
iff P (~a i) 6= 0. We use the subscript~� onQ�

~�
andZ~� to explicitly

denote they are parameterized by the Lagrange multipliers.
It is important to note at this point that regardless of the value

of the Lagrange multipliers, each�i;~a i is only a function of the

~a is (that are consistent with~a). Let the dual functionF (~�) �

L(Q�
~�
(~a); ~�; 0), and let~�� maximize this function. Note that those

�i;~a i that correspond toP (~a i) = 0 are irrelevant parameters

sinceF (~�) is independent of them. So for alli and~a i such that
P (~a i) = 0, we set��i;~a i = 0. For all i;~a i, we define the func-

tions �
i (~a

i) � I[P (~a i) 6= 0] exp(��i;~a i). Hence, we can express
the maximum entropy distributionQ� as, for all~a,

Q�
~��

= (1=Z~��)

nY
i=1

 �
i (~a

i)

which completes the proof.


