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ABSTRACT

We examine correlated equilibria in the recently introduced formal-

ism of graphical games, a succinct representation for multiplayer
games. We establish a natural and powerful relationship between

the graphical structure of a multiplayer game and a certain Markov
network representing distributions over joint actions. Our first main
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for computing all approximate Nash equilibria in tree-structured
games [Kearns et al.(2001)Kearns, Littman, and Singh] [Littman
et al.(2002)Littman, Kearns, and Singh], and convergent heuristics
for general graphs that seem to exhibit promising experimental be-
havior [Ortiz and Kearns(2003)] [Vickrey and Koller(2002)]. Just
as graphical models for probabilistic inference (such as Bayesian

result establishes that this Markov network succinctly represents all an?_ M_arkov nel_two_rks) ha_ve revqlutior}ized th? applicaEi_Iityl of prob-
correlated equilibria of the graphical game up to expected payoff abilistic modeling in a wide variety of domains, graphical games

equivalence. Our second main result provides a general algorithm
for computing correlated equilibria in a graphical game based on its
associated Markov network. For a special class of graphical games

that includes trees, this algorithm runs in time polynomial in the
graphical game representation (which is polynomial in the number
of players and exponential in the graph degree).

Categories and Subject Descriptors

F.2.0 JAnalysis of Algorithms and Problem Complexity]: Gen-
eral

General Terms
Algorithms, Theory, Economics

Keywords
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1. INTRODUCTION

are part of an overarching program to develop compact models, and
algorithms that exploit them, in order to create a richer computa-
tional toolbox for game theory [Koller and Milch()] [La Mura(2000)].

Like much of the history of game theory generally, the study of
graphical games so far has been dominated by Nash’s classical no-
tion of equilibrium, for which it always suffices to consider product
distributions over the players’ joint actions. In this paper, we ex-
aminecorrelated equilibrialAumann(1974)] in graphical games,
which allow arbitrary joint distributions. Correlated equilibria offer
a number of conceptual and computational advantages over Nash
equilibria, including the facts that new and sometimes more “fair”
payoffs can be achieved, that correlated equilibria can be computed
efficiently for games in standard normal form, and that correlated
equilibria are the convergence notion for several natural learning
algorithms [Foster and Vohra(1999)]. Furthermore, it has been ar-
gued that correlated equilibria are the natural equilibrium concept
consistent with the Bayesian perspective [Aumann(1987)][Foster
and Vohra(1997)]. In this paper, we present a series of fundamen-
tal results examining the representational and computational issues
that arise when considering correlated equilibria in the compact
language of graphical games.

The first issue that arises in this investigation is the problem of

Graphical games are a compact representation of multiplayer representingcorrelated equilibria. Unlike Nash equilibria, even in

games that exploit a graph-theoretic or network structure of strate-

very simple graphical games there may be correlated equilibria of

gic interaction among the participants. A number of recent papers essentially arbitrary complexity (for instance, any mixture distribu-

have established algorithms for computing Nash equilibria directly
on the graph representation, including provably efficient algorithms
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tion of Nash equilibria is a correlated equilibrium). Since one of our
primary goals is to maintain the succinctness of graphical games,
some way of addressing this distributional complexity is required.
For this we turn to another graphical formalism — namely, undi-
rected graphical models for probabilistic inference, also known as
Markov networks

Our main results establish a natural and powerful relationship
between a graphical game and a certain associated Markov net-
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a graph over the players. While the interactions between vertices
in the graphical game are entiredfrategicand given by local pay-



off matrices, the interactions in the associated Markov network are game is a distributior(a@) over actions satisfying
entirely probabilistic and given by local potential functions. The Vi 1 Va.. 011 -
graph of the associated Markov network retains the parsimony of i€{l,..,n},Vai,a’ € {0,1}:

the graphical game. Eiplo; [Mi(@)] > Egmpja, [M: (@i : a')))
Our first main result shows that the associated Markov network N ) ) )
is sufficient for representinany correlated equilibria of the graph- Intuitively, in a CE the action played by any player is a best re-

ical game, up to expected payoff equivalence. In other words, the SPonse (in the expected payoff sense) to the conditional distribu-
fact that a multiplayer game can be succinctly represented by ation over the other players given that action, and thus no player
graph implies that its entire space of correlated equilibria, up to has aunilateralincentive to deviate from playing their role in the
payoff equivalence, can be represented graphically with compara- CE. Note that a CE may be an arbitrarily complex joint distribu-
ble succinctness. This basic result establishes a new sense in whicfion. In contrast, aNash equilibrium[Nash(1951)] is a special
graphical games are a powerful formalism, and highlights the nat- case of CE in which we demand thBtbe a product distribution
ural relationship between computational game theory and modern(P(@) = I[;_, P:(a:) for some distributions™), so every player
probabilistic modeling. acts independently of all others.

Our second main result establishes tbenputationabenefits of Nash equilibria have been extensively studied in the game the-
this relationship. The fact that correlated equilibria are character- OrY literature, including in the context of graphical games (defined
ized by a set of linear inequalities is not helpful for unrestricted shortly). However, as discussed in the Introduction, CE offer a
multiplayer games, since in general there are an exponential num-number of interesting conceptual and computational advantages not
ber of such inequalities. Here again the graphical representationsshared by Nash equilibria. One of the most interesting aspects of
reap benefits. We show that a graphica| game gives rise to a Sma”CE is that they broaden the set of “rational” solutions for normal
set of linear inequalities (comparable in size to the game repre- form games without the need to address often difficult issues such
sentation itself) with a non-empty feasible region that includes all as stability of coalitions and payoff imputations [Aumann(1987)].
correlated equilibria. In the case that the associated Markov net- The traffic signal is often cited as an informal everyday example of
work is chordal which includes graphical games that are trees as CE. in which a single bit of shared information allows a fair split
a special case, we prove that any point in the feasible region canof waiting times [Owen(1995)]. In this example, no player stands
be efficiently mapped to a correlated equilibrium on the associated 0 gain greater payoff by unilaterally deviating from the correlated
Markov network, thus yielding a polynomial time algorithm for ~ Play, for instance by “running a light”.
computing correlated equilibria in a large class of graphical games. ;

Thisglgo?ithm also app?ies generally tg non-chor(?al graphs? but in 2.2 Graphlcal Games

the worst case may require an exponential increase in the Markov N @ graphical gamefKearns et al.(2001)Kearns, Littman, and
network size. Singh], each playef is represented by a vertex in an undire¢ted

graphG. We useN (i) C {1,...,n} to denote theeighborhood
of player: in G — that is, those verticegsuch that the edgg, 5)

2. BACKGROUND AND PRELIMINARIES appears irG. By convention\ (i) always includes itself as well.
If @ is a joint action, we usé& "’ to denote the induced vector of
2.1 Game Theory and Notions of Equilibria actions just on the players IN(i).

A multiplayer game consists of players, each with a finite set DEFINITION 2. A graphical gamés a pair (G, M), whereG
of pure strategieor actions available to them, along with a spec- s an undirected graph over the verticés, . .. 7n’}, and M is a
ification of thepayoffsto each player. Throughout the paper, we  set ofp, local game matricesFor any joint actiond, the local game
useA; as a variable representing the chosen action of playaerd matrix M; € M specifies the payoffZ; (@ ) for playeri, which

a; as a specific value ofi;. For simplicity we assume a binary depends only on the actions taken by the playery {i).

action space, sa; € {0,1}. (The generalization of our results to

the multi-action Setting is Straightforward.) The payoffs to player Graphica| games are a potentia”y more Compact way of repre-
i are given by a table or matri%/;, indexed by the joint action  senting games than standard normal form. In particular, rather than
a € {0,1}". The valueM;(a), which we assume without loss of  requiring size exponential in the number of players graphical

generality to lie in the interva, 1], is the payoff to playet re- game requires size exponential only in the sizef the largest lo-
sulting from the joint actio. Multiplayer games described inthis  cal neighborhood. Thus i << n, the graphical representation
way are referred to asormal formgames. is exponentially smaller than the normal form. Note that we can
A number of different notions oéquilibria have been proposed  represent any normal form game as a graphical game by lefting
for normal form games, includiniyash equilibriaand correlated be the complete graph, but the representation is most useful when

equilibria. We begin with the latter because it is more general and a considerably sparser graph can be found.
our main interest.

Correlated equilibria [Aumann(1974)] can be viewed as distri- 3. CORRELATED EQUlLlBRlA IN GRAPH-

butions P (@) over joint actions satisfying a certain conditional ex-

pectation property. Let ICAL GAMES: REPRESENTATION
Specifying a CE as a table of joint probabilities over the binary
Plai =Prz_p[Ai, ..., AnlAi = ai] actions required3™ — 1 parameters. One might hope that if we have

a compact graphical game then we could also concisely represent

denote the conditional distribution over actions given the event that
A; = a;. Letdl[s : b] be the vectod, but with theith component lUndirected graphs are used for simplicity. A directed graphical
fixed tob € {0, 1}. game where each edge denotésiffects the payoff ofj” is more
' complicated but may result in a sparser graph and further represen-
tational savings [Vickrey and Koller(2002)]. The results presented
DEFINITION 1. Acorrelated equilibrium (CHpr a normal form in this paper have natural extentions to directed graphical games.



the CE. Unfortunately, arbitrary high-order correlations might exist
in a CE, even for a concisely represented gdme

However, we shall show that there is a natwsabclassof the
set of all CE, based omxpected payoff equivalencehose rep-

resentation size is linearly related to the representation size of the

graphical game. Note that merely finding distributions giving the
same payoffs as the CE is not especially interestingssthose

LEMMA 2. Forany graphical gaméG, M), if P € CE(G, M)
andP = Q then@ € CE(G, M).

PrROOF The lemma follows by noting that the correlated equi-
librium expectation equations are only dependent upon the marginal
distributions of local neighborhoods, which are preserveg.in [

While explicitly representingll CE is infeasible even in simple

distributions are themselves CE. In other words, we do not want to graphical games, we next show that wen concisely represent,

only compactlydescribethe payoffs achievable under CE; we want
to be able toprescribeCE strategies (joint distributions) yielding
these payoffs. Our primary tool for accomplishing this goal will

be the notion of local neighborhood equivalence, or the preserva-

tion of local marginal distributions. Below we establish that lo-

cal neighborhood equivalence both implies payoff equivalence and
preserves CE. In the following subsection, we describe how to rep-

resent this natural subclass in a certisliarkov networkwhere the
structure of the Markov network is closely related to the structure
of the graphical game.

3.1 Expected Payoff Equivalence and Local
Neighborhood Equivalence

DEerFINITION 3. Two distributionsP and@ over joint actionsi
areexpected payoff equivalerdenoted” =ep Q, if P and(Q yield
a')] =

the same expected payoff vector: for eagcEz~ p[M;(d
Ea~o[Mi(a")].

Payoff equivalence of two distributions is, in general, dependent

upon the reward matrices of a graphical game. Let us consider the

following (more stringent) equivalence notion, which is based only
on the graplG of a game.

DEFINITION 4. For a graphG, two distributionsP and () over
joint actionsa are local neighborhood equivalemtith respect to
G, denotedP =n Q, if for all playersi, and for all settingsi * of

N(i), P@@") =Q(a").

In other words, the marginal distributions over all local neighbor-
hoods defined by7 are identical. Since the graph is always clear
from context, we shall just writ¥® =y Q. The following lemma

establishes that local neighborhood equivalence is indeed a more

stringent notion of equivalence than expected payoff.

LEMMA 1. For all graphsG, for all joint distributionsP and @
on actions, and for all graphical games with graph if P =.n Q
thenP =gp (). Furthermore, there exists payoff matricé$ such
that for the graphical gaméG, M), if P #Z.n Q thenP Zep Q.

PROOF The first statement follows from the observation that
the expected payoff to playérdepends only on the marginal dis-
tribution of actions inN(i). To prove the second statement, if
P % Q, then there must exist a playgand a joint action !
for its local neighborhood which has a different probability under
P andQ. Simply setM; (&) = 1 andM; = 0 elsewhere. Then
has a different payoff unddP and@, and soP Zep Q. [

Essentially, local neighborhood equivalence implies payoff equiv-

in a single model, all CHip to local neighborhood (and therefore
payoff) equivalenceThe amount of space required is comparable
to that required to represent the graphical game itself, and allows
us to explore or enumerate the different outcomes achievable in the
space of CE.

3.2 Correlated Equilibria and Markov Nets

In the same way that graphical games provide a concise language
for expressing local interaction in game thedwarkov networks
exploit undirected graphs for expressing local interaction in prob-
ability distributions. It turns out that (a special case of) Markov
networks are a natural and powerful language for expressing the
CE of a graphical game, and that there is a close relationship be-
tween the graph of the game and its associated Markov network
graph. We begin with the necessary definitions.

DEFINITION 5. Alocal Markov networkis a pair M = (G, ¥)
where

1. G is an undirected graph on verticdg, . ..

y 1Y

2. ¥ is a set opotential functionsone for each local neighbor-
hood N (i), mapping binary assignments of valuesNofi)
to the rang€0, co) :

U= {4 :{@'} =[0,00).}
Here {@ '} is simply the set of a!V ! settings taV (i).

A local Markov networkM compactly represents a probability
distribution Py, as follows. For any binary assignmeiitto the
vertices, define

Pu(d) = (H wi(ai)>

whereZ = 3" [T, ¢i(@*) > 0 is the normalization factor.

Note that any joint distribution can be represented as a local
Markov network on a sufficiently dense graph. (Note that if we
let G be the complete graph then we simply have a single potential
function over the entire joint action spa@e However, ifd is the
size of the maximal neighborhood @, then the representation size
of a distribution in this network i€ (n2?), a considerable savings
over a tabular representationdif< < n.

Local Markov networks are a special case of Markov networks, a
well-studied probabilistic model in Al and statistics [Pearl(1988)].
A Markov network is typically defined with potential functions

alence, but the converse is not true in general (though there existsranging over settings of maximal cliques in the graphs. Another

some payoff matrices where the converse is correct).
LetCE(G, M) denote the set of of all correlated equilibria for a
graphical gaméG, M). We now establish that local neighborhood

approach we could have taken is to transform the gr@pto a
graph G’ which forms cliques of the local neighborhood&(s),
and then used standard Markov networks ofiéras opposed to

equivalence also preserves CE. It is important to note that this resultlocal Markov networks ove€. However, this can sometimes re-

doesnot hold for expected payoff equivalence.

2For example, the CE of a game always include all mixture dis-
tributions of Nash equilibria, so any game with an exponential
number of Nash equilibria can yield extremely complex CE. Such
games can be easily constructed with very simple graphs.

sultin an unnecessary exponential blow-up of the size of the model
when the resulting maximal cliques are much larger than the orig-
inal neighborhoods. As the following lemma shows, for our pur-

poses, itis sufficient to define the potential functions over just local
neighborhoods (as in our definition) rather than maximal cliques in



G, which avoids this potential blow-up. (However, we will some-
times find it useful to discus§’ at various points when connecting
with the Markov network literature.)

The following technical lemma, which is the cornerstone of our
first main theorem below, establishes that a local Markov network
always suffices to represent a distribution up to local neighborhood
equivalence.

LeEmmA 3. For all graphsG, and for all joint distributionsP
over joint actions, there exists a distributiGhthat is representable
as a local Markov network with grap8y’ such thatQ) =.n P with
respect taG.

The proof is provided in the appendix. The main result of this
section now follows from the previous lemmas, and shows that we
can represent any correlated equilibria of a graphical gaem ),
up to payoff equivalence, with a local Markov netwdr®, ¥).

THEOREM 4. (CE Representation Theorem) For all graphical
games(G, M), and for all distributionsP € C&£(G, M), there
exists a distributior@) such that:

1. Q eCEG,M);
2. Q =Ep P;

3. @ can be represented as a local Markov network with graph
G.

Note that the representation size for any local Markov network
with graphG is linear in the representation size of the graphical

LEMMA 5. For all graphical gamegG, M), and for all action
distributionsP, P € CE(G, M) if and only if for all players i and
actionsa, a’:

>

a t:at=a
i

g

a')M;(

a‘t:aat=a
i

PROOF Due to the locality of thé\/;, the CE constraint condi-
tion (Definition 1) simplifies to using only local expectations:

Bipla;=aMi(@) = Bz ip(a iay=a)Mi(@")

SinceP(a; = a) is a constant, we can multiply this on both sides
of the equation and prove the “if” direction. For the “only if” di-
rection, reverse the derivation[]

Furthermore, for the case in which the game graph is a tree, it
suffices to introduce linear distributional constraints over only the
local marginals, along withonsistencygonstraints on thatersec-
tions of local marginals. We thus have the following three cate-
gories of local constraints defining our linear program:

Variables: For every playei and every assignmedt’, there is a
variableP;(a *).
LP Constraints:

1. CE Constraintsfor all playersi and actions:, a’,

S R@HM@E)> Y P@)Mi(['ic o)

a

i.qt—, i.qt—,
at:a;=a ai=a

game, and thus we can represent the CE of the game parsimo-

niously.

4. CORRELATED EQUILIBRIAIN GRAPH-
ICAL GAMES: ALGORITHMS

Having established in Theorem 4 that a concise graphical game

yields a concise representation of its CE up to payoff equivalence,
we now turn our attention to algorithms foomputingCE. In the
spirit of our results thus far, we are interested in algorithms that can
efficiently exploit the compactness of graphical games.

Itis well-known that it is possible to compute CE via linear pro-
gramming in time polynomial in the standamdn-compachormal
form. In this approach, one variable is introduced for every possi-
ble joint action probabilityP (@), and the constraints enforce both
the CE condition and the fact that the variables must define a prob-
ability distribution. It is not hard to verify that the constraints are
all linear and there ar®(2") variables and constraints in the bi-
nary action case. By introducing any linear optimization function,
one can get an algorithm based on linear programming for comput-
ing a single exact CE that runs in time polynomial in the size of the
normal-form representation of the game (that is, polynomiarin

For graphical games this solution is clearly unsatisfying, since
it may require time exponential in the size of the graphical game.

2. Neighborhood Marginal Constraintdor all playersi,

Vai': P(@h)>0; Y Pi@')=1

3. Intersection Consistency Constraintsr all playersi and,
and for any assignmet* to theintersection neighborhood

N(@) N N(j),
P@v) = D AR
dt:q@ti=y1ii
= > p@)
@7:@ii=y1
= P](ﬁl])

Choices for the objective function are discussed below.

Note that ifd is the size of the largest neighborhood, this system
involves O(n2%) variables and)(n2?) linear inequalities, which
is linear in the representation size of the original graphical game,
as desired.

It is clear that any CE must satisfy these constraints. Here we
must solve the inverse problem: given only a set of marginal as-

What is needed is a more concise way to express the CE and distri-signments{ P;(@ ¢)} satisfying the constraints, we would like to

butional constraints — ideally, linearly in the size of the graphical

game representation. We shall show that this is indeed possibletion Q whose marginals match the assignme¥is\{a *, Q(

for tree graphical games (and more generally for game gréphs
where a Markov network on the gragif — obtained by forming
cliques of the neighborhoods &f — can be represented by a lo-
cal Markov network orG andG' is chordal). The basic idea is to
express both the CE and distributional constraints entirely in terms
of the local marginals, rather than the global probabilities of joint
actions. We begin with a lemma establishing that doing so for the
CE constraints is straightforward.

construct a CE. Of course, by Lemma 5, if we can find a distribu-
a') =
P;(@")), thenQ must be a CE. In general finding sucianay be
a difficult problem (and may have no solution), but for tree graph-
ical games, it turns out that any solution to the constraints yields
a unique joint distribution that can be represented in a the local

Markov network. The following lemma states this.

LEMMA 6. (Consistent Tree) For all graphical gamé&, M

inwhichG = (V, E) is a tree, and for all assignmen{s; (a *

)
}



satisfying the consistency equations, there is a unique joint distri-
bution@, defined by

ey Pi(@")
H(l J)EE;i<y P; (a‘ 7(])

such that) € CE(G, M) andQ is representable as a local Markov
network with graphG. Furthermore, the marginals ap will be

Q(a)

@)

consistent with the assignmeiti, @ *, Q; (3 *) = P;(a@ *).
PROOF Given the graphG = (V, E), we construct a graph
G' = (V,E')whereE = {(i,j) : Ik € V : i # j,{i,j} C

N(k)}. Thus, G’ has a clique for each local neighborhoodGi
G' is a chordal graphand every maximal cliqué€’ € G’ is a sub-
set of some neighborhood{: C C N(7)). From this, Theorem
2.6 of [Dawid and Lauritzen(1993)] implies that the joint distribu-
tion  is unique, consistent and is representable by a local Markov
network with graplG.

To see that) € CE(G, M), note thatvi, @, Q(@ *) = Pi(@ )
implies that the correlated equilibrium constraints hold@or [

This result allows us to keep the number of constraints linear in

the graphical game size, and an efficient LP algorithm emerges. Be-

fore presenting this algorithm, we note that for trees, we have com-
pactly specified the convex polytope alf CE up to local neigh-
borhood (and therefore payoff) equivalence. C&pcai(G, M)

be the set of all distribution:

. P(d?
Q) = e M)
i jyemicy £i(@Y)
obtained by ranging over all solutiof#; (@ %)} to the consistency

constraints. The following theorem shows that this set is expected
payoff equivalent t€ £(G, M).

THEOREM 7. (Completeness) For all graphical gam@s, M)
such thatG is a tree, we hav€&iocai (G, M) C CE(G, M); and
if P € CE(G, M) then there exists & € C&iocai(G, M) such
that P =gp Q

PROOF Lemma 6 gives UEEocqi (G, M) C CE(G, M). The
remainder of the proof is constructive. Givén first define:

Qi@") =Pp@a"

then construc® using Equation 1. By construction, we haijee
C&iocat (G, M) andP =gp @ holds by Lemma 6. [J

Finally, to define a concrete LP algorithm we must simply spec-
ify an appropriate linear optimization function. One possibility is
choosing a correlated equilibrium with the highest total expected

payoff over all players:
o2 2 P

subject to the constramts an; (@ i)

g

a

Our main algorithmic result follows.

THEOREM 8. (Efficient Tree Algorithm) For all tree graphical
games(G, M) and all linear objective functiong({P;(a@")}),
linear programming computes a CE in time polynomial in the size
of the graphical game. The CE computed can be varied by varying

the objective functiod'.

Hence, the algorithm is polynomial inand exponential ia for
trees. For the multiple action setting, it is straightforward to see
that the previous complexity result still holds.

3A chord is an edge which connects two nonadjacent nodes in a
cycle. A chordal graph is an undirected graph where every cycle
larger than 3 has a chord.

5. DISCUSSION AND EXTENSIONS

While Theorem 8 establishes that we can efficiently compute dif-
ferent CE by varying the chosen linear optimization function, an
even more powerful result follows by combining the convexity of
the clas® € 0cq1 (G, M) with the results of [Dyer et al.(1991)Dyer,
Frieze, and Kannan], who provide an efficient algorithm for sam-
pling nearly uniformly from an arbitrary convex body. This yields
a method for sampling CE i6E0cqi(G, M) nearly uniformly in
time polynomial in the size of a tree graphical game.

An important advantage of the Markov net formalism for repre-
senting CE (that we will elaborate on in future work) is the ability
to immediately infer various conditional independences and proba-
bilistic semantics from the graph alone. Indeed, this is perhaps the
main power of graphical models for probabilistic inference, and the
results presented here import that power into the domain of game
theory. As just one example, l6tbe the graph of the game, a6d
be the graph obtained by forming cliques of local neighborhoods in
G. Leti andj be any two players in the game, and$ebe any set
of players forming a cut of’ such that andj lie in different com-
ponents. Then classical Markov net semantics, combined with our
results, establish that for any CE, there exists a local neighborhood
equivalent CE in which the distribution a@n is independent of;
given the actions i¥. In other words, the Markov net derived from
the game graph allows us to easily “read off” which conditional
dependencies are essential, and which are spurious, in representing
all CE. We expect that many other interesting and powerful inter-
actions between the strategic and probabilistic aspects of CE will
emerge with further study.
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8. APPENDIX

Proof of Lemma 3: The objective is to find a single distribution
@ that is consistent with the players local neighborhood marginals
underP and is also a Markov network with grajgh Itis an imme-
diate consequence of previous work on maximum entropy models
(see [Berger et al.(1996)Berger, Pietra, and Pietra]) that the max-
imum entropy distributior)*, subject toP =n Q~, is a local
Markov network.

More formally, we show that the solution to the following con-
strained maximum entropy problem is representabl&:in

Q= argglax HQ) = argmaxz Q(a@) log(1/Q(a))

subject to

1. Q@ =pr@h,foralia’

2. @ is a proper probability distribution.
Note first that this problem always has a unique answer ihEg)
is strictly concave and all constraints are linear. In addition, the
feasible set is non-empty, as it contaistself.

To get the form of@Q*, we solve the optimization problem by
introducing the Lagrange multipliers = (A\igi,Vi,d') to take
care of the neighborhood marginal constraints (condition 1), and
3 to take care of the normalization constraint (condition 2). The
optimization becomes

Q" = argmaxL(Q,X,B)
Q.58

+ﬁ(Z Q@) —

whereQ(@) is constrained to be positive. Hetlejs the Lagrangian
function.

First note that for allz, if P(@) = 0, thenQ*(@) = 0. A
necessary condition faR* is thatdL/0Q(@)|qg=o~ = 0, for all
@ such thatP(a@) > 0. After taking derivatives and some algebra,
this condition implies, for al&,

Q3(@) = (1/25) H ) # 0lexp(A; 1)

whereI[P(@ ") # 0] is an indicator function which evaluatesto
iff P(@%) # 0. We use the subscripton Q% andZj; to explicitly
denote they are parameterized by the Lagrange multipliers.

It is important to note at this point that regardless of the value
of the Lagrange multipliers, eacky ; : is only a function of the

= 0 are irrelevant parameters

since_F(X) is independent of them. So for allandd * such that
P(@') =0, weset\; ;; = 0. Foralli,a’, we define the func-

;). Hence, we can express

i=1



