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ABSTRACT
We study how social relations between people affect the
way they play the famous resource allocation game called
Colonel Blotto. We report the deployment of a Face-
book application called “Project Waterloo” which allows
users to invite both friends and strangers to play Colonel
Blotto against them. Most previous empirical studies of
Blotto have been performed in a laboratory environment
and have typically employed monetary incentives to at-
tract human subjects to play games. In contrast, our
framework relies on reputation and entertainment incen-
tives to attract players. Deploying the game on a social
network allows us to capture the social relations between
players and analyze their impact on the used strategies.

Following [1] we examine player strategies and contrast
them with game theoretic predictions. We then investi-
gate how strategies are affected by social relations. Our
analysis reveals that knowledge of the opponent affects
the strategies chosen by players and how well they per-
form in the game. We show that players with few Face-
book friends tend to play more games and have a higher
probability of winning, that players responding to a chal-
lenge in the game have a higher probability of winning
than those initiating the game, and that the initiators
of a game have a higher probability of defeating their
friends than strangers.

INTRODUCTION
Economists and game theorists are interested in under-
standing how agents (individuals or institutions) behave
in strategic situations. This knowledge is extremely valu-
able and can be used, for instance, to build more accurate
and robust economic models. Game theory predicts how
agents behave in strategic settings such as auctions and
business interactions. Although it does allow for making
predictions regarding human behaviour, it makes very
strong assumptions. For example, the agents in classical
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game theory are assumed to be fully rational: they base
their decisions solely on maximising utility, are capable
of performing very complex reasoning and assume that
their adversaries are equally rational.

Humans in the real-world, on the other hand, are
quite different. Their behavior is sometimes emotional,
they sometimes base decisions on concepts such as fair-
ness and reciprocity (rather than only on the monetary
amount they get), and are bounded in their reasoning
capabilities and thus often use heuristic reasoning. One
prominent example is the Ultimatum Game, where two
players interact to determine how to divide a sum of
money given to them. In this game, the first player
makes a “take it or leave it” offer to the other player,
suggesting how the sum should be divided. The sec-
ond player may either accept the offer, in which case the
money is divided according to the proposal, or she can
reject the offer, in which case both players get nothing.
When humans, from many cultures, play this game they
often offer equal shares (50:50 offer), and offers below
20% are frequently rejected [11, 17]. This behaviour is
very different from game theoretic solutions according to
which the first player should offer the minimal non-zero
amount and the second player should accept all solutions
with non zero payoffs.

In order to study how people behave in social and eco-
nomic situations, researchers have conducted empirical
studies. Research in this space falls in the very active
field of Behavioral Game Theory [6], which examines how
humans behave in various game theoretic settings [4, 15,
14, 7, 18]. Due to logistical constraints, most such stud-
ies were limited to the laboratory environment and to a
small number of subjects. This introduces a number of
biases in the data collected in these studies. For instance,
Arnett [2] in a survey of empirical studies in psychology
found that ‘96% of subjects were from Western indus-
trialized countries which house just 12% of the world’s
population’. Henrich et al. [12] argue that since human
subjects used in most such studies are from Western, ed-
ucated, industrialized, rich, democratic (WEIRD) coun-
tries it would be inappropriate to generalize the findings
to people from other societies.

Another drawback of much of the empirical research in
behavioral game theory is that it ignores social relations



Game Player F1 F2 F3 F4 F5 BW Result
G1 P1 22 13 22 15 28 2 Loss

P2 0 30 0 35 35 3 Win
G2 P1 21 15 34 26 4 3 Win

P2 10 5 25 40 20 2 Loss

Table 1. Troop distributions in different battlefields (rep-
resented as F1 to F5) in an example Blotto game. (BW
= Battlefields Won)

between players [6]. In typical laboratory experiments
the subjects are strangers interacting in game theoretic
settings. However, in many real-world economic settings,
the interaction is between people who know one another,
and social relations may affect their behavior.

This paper reports our attempt at gathering human be-
havior data from online social networks. We have cre-
ated an application that allows users of a popular online
social network to play a two player turn-based zero-sum
game called Colonel Blotto (or simply, Blotto). Blotto
is well known in Game Theory (See [1] for further dis-
cussion of the game and its origins), and has been used
to model political and economic situations. Calculating
the equilibrium of this game is a hard problem and so
is the choice of the optimal strategy. We analyze how
social relations affect the players’ behavior in this game.

Using online social networks for Behavioral Game The-
ory experiments overcomes many problems associated
with laboratory experiments. Popular social networks
such as Facebook have users from all over the world1.
This allows researchers to study the effect of regional and
cultural differences in the the players’ behaviour. The
players participate in their normal ‘habitat’ rather than
in an artificial lab setting. Additionally, experiments
can be conducted at much larger scales, supporting finer
grade results while maintaining statistical significance.
And lastly, but most importantly, social networks cap-
ture how users are related to each other. This data en-
ables the study of the affect of social relations on the
way people play with each other.

THE COLONEL BLOTTO GAME
The Colonel Blotto game was proposed by Borel [5]. It
attracted a lot of research after it was used to model
a game between two presidential candidates who have
to allocate their limited budgets to campaigns in the
“battlefield” states. A related vote-buying interpreta-
tion of the Blotto game has also been proposed (see My-
erson [16]). The mechanics of the game are as follows.
Each of the two players is endowed with a certain number
of resources, which we call “troops”. They must simul-
taneously distribute these troops across a set of “bat-
tlefields” (without knowing how their opponent player
allocates her troops). A player wins a battlefield if they
have more troops there than their opponent. The player
who wins in more battlefields wins the game.

1According to Facebook, 70% of their
users are from outside USA. See
http://www.facebook.com/press/info.php?statistics.

Figure 1. Choosing a troop allocation and viewing the
game result. The figure shows the different steps of the
Project Waterloo Facebook application. From left to
right: (1) The user chooses a game with either a ran-
dom hidden opponent or a visible one. (2) For a visible
opponent game, the user chooses an opponent from his
Facebook friend list or the list of current users of our ap-
plication. (2) The user distributes the troops and makes
the move. (3) The opponent does the same and the result
is revealed to both players.

Theoretical Analysis and Optimal Strategies
The analysis of the optimal strategy for Blotto games is
quite difficult. The general formulation of discrete Blotto
games with m troops and n battlefields has been inves-
tigated analytically in several papers. For a complete
discussion of solutions to Blotto games see [19] and [10].
Under one definition, the optimal strategy in the Blotto
game is a randomized strategy which allocates troops
to battlefields symmetrically while maintaining that the
marginal distribution of the troops in each battlefield is
uniform in the interval [0, 2m/n].

Previous Experimental Analysis
A number of studies have been conducted on how people
play different variants of Blotto [3, 1, 8, 13]. However,
these are based on a setting where each subject plays
the game once and hence has only one distribution of
troops. This selected distribution is then compared to
the troop distribution of all other players to find rank-
ings for different troop distributions. In contrast, our re-
search focuses on the impact of social relations between
participants on the way they play the game. In our ap-
plication, participants may challenge either people they
know or strangers to play the game. Also, in our setting
the same pair of players may play the game many times,
allowing them to learn about how each of them play the
game and adapt their used strategies over time. This al-
lows us to analyze questions such as whether people play
Blotto differently with people they know as opposed to
strangers, or whether an initiator of a challenge is more



likely to win than the responder.

Our first part of the analysis follows [1], allowing us to
compare our finding to previous work. The analysis in [1]
examines how people play a Blotto game which has 120
troops and six battlefields. Their aim was to explain
the behavior of players using a decision procedure based
on multi-dimensional iterative reasoning. They used two
datasets of played Blotto games. The first dataset, called
Classes, was collected from game theory students who
were asked to play this game by their teachers. The sec-
ond dataset was collected from readers of the Hebrew
business daily, Calcalist. In the analysis section we com-
pare our results to those of [1]. We then turn to focus
on the impact of social relations on the strategies used.

“PROJECT WATERLOO” ON FACEBOOK
We have developed a game, called Project Waterloo2

which allows users of the online social network Facebook
to play the Blotto game with friends and strangers. In
the general Blotto game, each of the players may be en-
dowed with a different number of troops. However, in
our Facebook (Project Waterloo) implementation of the
game, each player had the same number of m = 100
troops, which are to be distributed across n = 5 bat-
tlefields. The implementation allows users to play with
three types of partners: a) random players whose iden-
tity is hidden from the player, b) known players from
their friend list or c) players from a general list of players
who have played the game before (but are not necessar-
ily their Facebook friends). Figure 1 shows screenshots
of the various steps of the Project Waterloo application.

Every instance of the Blotto game in our implementation
starts with a player initiating a challenge against another
player by distributing her troops across the battlefields.
The responding player distributes her troops among the
battlefields and finalizes the game. If a player allocates
more troops in a battlefield than their opponent does,
they win that battlefield. The player who wins more
battlefields wins the game.

Most work in behavioral game theory is based on mon-
etary incentives to recruit human subjects. In contrast,
and similarly to [1], our methodology is based on an
internet game, so we rely on entertainment and reputa-
tion incentives to attract users to play the game. The
reputation incentive is realized by showing users their
rankings (based on performance) among a) all players
and b) players in their friend network. Users are ranked
according to their rating (R) which is computed as:

R =
#Games Won+0.5∗#Games Drawn

#Games Played+10
× 100. As the

#Games Played approaches infinity, the measure con-
verges towards the player’s average score. However, it
also encourages subjects to play more games because for
two players with the same average score it prefers the
player who has ‘proven’ their skill in more games.

STRATEGIC ABSTRACTION
2Available at http://apps.facebook.com/msrwaterloo/.

The number of different (pure) strategies in the Blotto
game is enormous. A game with n battlefields and m
troops has

(
m+n−1
n−1

)
strategies3, so for our implementa-

tion with m = 100 and n = 5 we obtain
(
104
4

)
≈ 4.6M

different strategies. Due to this large strategy space it
is not feasible for a computer or human to evaluate all
possible strategies, so deciding on a strategy requires
abstracting away some details regarding the strategies.
Consider how a subject might play Blotto.

One obvious strategy that can serve as a “focal point” is
spreading troops evenly across the battlefields. In our
games with 100 troops and 5 battlefields, this corre-
sponds to the strategy [20, 20, 20, 20, 20], which we call
the “uniform strategy”. If both sides play this strategy,
there will be a draw on each battlefield, so the entire
game would be a draw. Suppose you believe your oppo-
nent is likely to play this strategy. By focusing your
troops on four battlefields at the expense of the last
battlefield, you would win in each of these battlefields
and lose the last battlefield. For example, by playing
[25, 25, 25, 25, 0] you would be guaranteed to beat the
uniform strategy. However, if your opponent also fo-
cuses their troops, you may again lose. For example, if
your opponent plays an even more focused strategy such
as [34, 33, 33, 0, 0] (i.e. putting troops roughly equally on
only three battlefields), they would beat the strategy of
[25, 25, 25, 25, 0].

The two previous example strategies focus troops
in the left battlefields: the strategy [25, 25, 25, 25, 0]
leaves the last battlefield completely unguarded, and
[34, 33, 33, 0, 0] leaves the last two battlefields com-
pletely unguarded. These unguarded battlefields make
easy and lucrative targets. For example, the strat-
egy [35, 35, 28, 1, 1] beats the previous two strategies,
by putting some troops on those unguarded battle-
fields. Seeing this example you might think it unwise
to leave a battlefield completely undefended, and pro-
pose to slightly change the strategy [34, 33, 33, 0, 0] into
[33, 33, 30, 2, 2] (which would defeat [35, 35, 28, 1, 1] by
slightly strengthening your allocation to the last two bat-
tlefields). But what if your opponent decided to attack
these last two battlefields with slightly more troops, for
example using [35, 33, 26, 3, 3]? How well-guarded would
you like these least-guarded battlefields to be? Further,
the above example strategies place more troops on the
battlefields to the left. But perhaps it might be a good
idea to place more emphasis on the battlefields to the
right ? Or perhaps the center?

One might hope that the Blotto game has a strategy that
defeats all the other strategies. However, this is easy to
disprove. If your opponent knows your troop allocation,
they can always beat you, by placing a single troop more

3Note that a strategy can be represented as a binary string
with n−1 “ones” andm “zeros”, where the number of “zeros”
before the first “one” represents the number of troops on the
first battlefield, the number of “zeros” between the first “one”
and the second “one” represents the number of troops in the
second battlefield and so on.



than you on your three least-defended battlefields, at
the expense of the two remaining battlefields. Thus, if
you always use the same strategy against your opponent,
you might defeat them at first, but once they learn your
never-changing strategy, they can easily defeat you. As a
consequence, to play the game well over time, you must
use some form of randomization.

The Blotto game is complex, and the above discussion
shows that there is no universal strategy for winning
the game. Still one may expect to gain an insight re-
garding playing Blotto using Game Theory. Such an
analysis would perhaps allow deriving two probability
distributions over the strategy space which are the best
responses to one another. In other words, if your oppo-
nent were to play by choosing her strategy at random
from one of these given distributions, your best response
would be to choose your strategy at random from the
other distribution. However, how could you find these
distributions? And even if you could find them, as re-
searchers have done in the past [10], do you have reason
to believe that other players would play the game this
way? Prior research such as [1] shows that a natural way
for humans to tackle the difficulty posed by the large size
of the strategy space is to only consider high level fea-
tures of the various strategies. The brief discussion of
strategies above reveals several possible features.

The näıve focal point strategy of [20, 20, 20, 20, 20] as-
signs each battlefield an equal number of t = m/n =
100/5 = 20 troops. To increase the number of troops
on one battlefield, a player must decrease the num-
ber of troops in another. Following Arad and Rubin-
stein [1] we call a battlefield to which a player assigns
more than m/n troops a reinforced battlefield. An ob-
vious high-level feature of a strategy is the number of
such reinforced battlefields. For example, the strategy
[25, 25, 25, 25, 0] only reinforces the first 4 battlefields,
whereas [5, 5, 30, 30, 30] reinforces only the last 3 bat-
tlefields. A strategy may never have more than 4 rein-
forced battlefields (as that requires putting at least 21
troops in all 5 battlefields, which requires at least 105
troops rather than the m = 100 troops a player has),
and only a single strategy has 0 reinforced battlefields
— [20, 20, 20, 20, 20].

Another simple feature of a strategy relates to those bat-
tlefields that are allocated very few troops. Allocating
no troops to a battlefield is quite risky — the battle-
field is likely to be lost and can at most achieve a draw.
However, allocating a single unit to a battlefield still in-
curs a high risk of losing that battlefield, as the oppo-
nent may allocate two troops. An interesting feature
discussed in [1] relates to the number of troops allocated
to a battlefield with few troops. Following [1] we refer to
the number of troops assigned to a battlefield with less
than 10 troops on it as its unit digit allocation.

The number of reinforced battlefields or the unit digit
allocation of a field are features of a single strategy. As
discussed above, since any strategy can be defeated by

Figure 2. Demographic data on Project Waterloo users.

some other strategy, successfully playing the game over
time requires choosing strategies from a certain distribu-
tion of strategies. Indeed, the game theoretic analysis of
the Blotto game examines mixed-strategy equilibria (i.e.
equilibria where each player chooses a strategy from a
certain distribution of strategies), as no pure Nash equi-
libria exist for the game [10, 19].

One property of such distributions is their tendency to
put more emphasis on some battlefields rather than on
others. If no special emphasis is placed on any field, the
expected number of troops under the distribution must
be equal in all the fields. We refer to distributions in
which some battlefields have a higher expected number
of troops than others as having position bias. A simple
feature that characterizes the position bias is the mean
number of troops in each battlefield under the distribu-
tion. Yet another distribution feature of a similar nature
is the variance of the number of troops in each battle-
field. The game theoretic analysis of the Blotto game
predicts that equilibrium solutions will have no position
bias [19, 10] and focuses on mixed strategy equilibria
where each player uses a distribution with no position
bias. The theoretical analysis in [10] begins by abstract-
ing away specific battlefield allocations and focuses on
a game where players’ strategies are unordered sets of
the number of troops per battlefield, which are then al-
located to the specific battlefields by a random permuta-
tion. Beginning with the section on common strategies
we adopt a similar convention.

In our analysis in the following sections we empiri-
cally examine the above-mentioned high-level features
in games played by users on our implementation of the
Blotto game on Facebook. Specifically we examine the
number of reinforced battlefields, the unit digit alloca-
tion in the battlefields, the position bias and the variance
in the number of troops. We show which features are typ-
ically selected by players and correlate these choices to
the characteristics of the players, such as their properties
in the social network structure.

ANALYSIS OF THE DATA
We now present the results of our analysis of the game
data collected from the users of the ‘Project Waterloo’
Facebook application. We first explain which choices
users can make regarding their challenged opponents.

The Project Waterloo implementation allowed challeng-
ing three types of opponents. One way to initiate a game
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Figure 4. (LEFT) Frequency of troop group size (in percentage of all troop group sizes observed). (RIGHT) Cumulative
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Figure 3. Distribution of the number of friends. The
last histogram bucket contains all users that have 1000 or
more friends.

Dataset 0 1 2 3 4 5 6 7 8 9
Classes 62 10 3 2 4 12 1 1 2 4
Calcalist 56 13 5 2 5 11 1 1 2 4

Our 34 12 9 13 6 12 4 4 3 3

Table 2. Distribution of unit digits (in percentages) in
all the single-field assignments in the data collected by
us and the datasets used by Arad and Rubinstein. Note
that in their study the game involved m = 120 troops to
be distributed among n = 6 battlefields, so the numbers
are not exactly comparable.

is when a player challenges one of her Facebook friends.
We call such opponents friend opponents. Another way
is selecting a “Random Game” option from the menu,
which allows the player to initiate a game against an un-
known opponent. In this case, no information is revealed
regarding the opponent player (the label only contains
the words “Random Opponent”). We call such oppo-
nents hidden opponents (as all the information regard-
ing the opponent is hidden). The final way to initiate a
game is the “Stranger Mode”. When a user selects this
option, our platform creates a list of 50 “Project Wa-
terloo” players who are not the Facebook friends of the
initiator. It displays their names, images and ranking
(based on previous games), and allows the initiator to
select one of them as the opponent. The initiator is un-
likely to know the chosen opponent personally (as they
are not Facebook friends), but does get some minimal

information about the opponent — their name, profile
picture and how well they have played in the past. We
call such opponents stranger opponents.

Demographics
The dataset used for our analysis contains 1,883 games
played by 632 players. In 1,027 of the 1,883 games, the
players initiating the game did not know the identity of
their opponent. For the remaining 856 games, both play-
ers knew each other’s identities. 524 of these 856 games
were played between people who were friends on Face-
book, and the remaining 332 games were played between
players who were not Facebook friends (i.e. stranger op-
ponents or hidden opponents). Examples of some game
instances are shown in Table 1.

The users of our Facebook application come from a wide
range of cities, countries and age groups, and most of
them are male. 4 The gender statistic is interesting be-
cause most games on social networks tend to have more
female users, the popular exception being Texas Hold’em
which has more male users [20]. Detailed demographic
data for users is shown in Figure 2. In the analysis be-
low, we study if and how the number of friends of a user
affects the number of games they play and the number
of games they win. The average number of friends of
subject in our study was 269 which is higher than 130,
which is the average number of friends of all Facebook
users. Figure 3 shows the distribution of the number of
friends for Project Waterloo users.

Troop Allocations and Strategies
We now analyze the different troop group sizes and
strategies used by the players in the Project Waterloo
application. We call each troop distribution a strategy.
We examined the 3,776 strategies that were submitted
by players. Some of the strategies were used more than
once (either several times by the same player, or the same
strategy submitted by several different players), and in
total we had 1,402 unique strategies. While computing
this number we counted all the permutations of a troop

4Self-reported information from their Facebook profile.



%Reinforced 0 1 2 3 4
Hidden 11.98% 14.51% 26.29% 43.23% 3.99%
Friends 5.15% 8.21% 27.48% 49.8092 % 9.35%

All Games 6.24 % 7.67% 23.76% 56.85% 5.47%

Table 3. Proportion of strategies with given number of
reinforced battlefields (ie. battlefields with more than 20
troops).

distribution as a single strategy. Most unique strate-
gies were rarely used (only once or twice) and very few
strategies were frequently used (for example submitted
over than 20 times). Figure 5 shows how many strategies
we had of every given frequency. On the X-axis we have
the frequency of a strategy (as measured by the number
of times it was submitted), and on the Y-axis we have the
number of strategies we had of this frequency. Both the
X-axis and Y-axis are logarithmic. Table 4 shows the
most popular strategies and the number of times they
were used. It can be seen that the frequency of strate-
gies roughly follows a power law, i.e. few strategies are
very common, with a long tail of strategies (large number
of unique strategies) that are infrequently used.

A natural allocation of troops to battlefields is a uniform
allocation of 20 troops to all battlefields. Some users
do follow this strategy, but given this information, it
would be better to allocate slightly more than 20 troops
to at least some of the battlefields. In fact, the most
efficient allocation of troops to a particular city is one
more than the expected allocation of troops made by
the opponent. Players of Blotto typically use iterative
reasoning to come up with a troop allocation. The size
of troop groups used by players in their allocations give
hints about the number of levels of iterated reasoning
they are employing while playing the game. Figure 4
and Table 2 provide statistics about the number of troops
used by players of the game. 97% of the troop groups
used by players had sizes in the interval [0, 40]. Recall
that the theoretical optimal way to play the game is to
choose troop group sizes in the range [0, 2m

n ] = [0, 40].

Number of Reinforced Battlefields
Another indicator of the level of reasoning employed by
players in the Blotto game is the number of reinforced
battlefields. A battlefield is called reinforced if it has
more troops than the uniform allocation of troops, i.e.,
20 troops in our case. Our analysis in Table 3 shows that
the number of reinforced battlefields in the distributions
made by players of Project Waterloo was large. Follow-
ing the discussion on strategic abstraction, this may be
interpreted in favor of the hypothesis that players of the
game are employing multiple levels of iterative reason-
ing.

Relation between strategies
To analyze the winning and losing relations between dif-
ferent strategies we computed the scores of some frequent
strategies when they are played against all the possible
permutations of other strategies. The result of the analy-
sis are shown in Figure 6. A first interesting observation
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Figure 5. Frequency of strategies: the number of unique
strategies of any given frequency.

Strategy Number of Times Used
34 33 33 0 0 271
20 20 20 20 20 235
33 33 33 1 0 127
33 33 32 1 1 97
35 35 30 0 0 68
100 0 0 0 0 67
35 35 10 10 10 58
25 25 25 25 0 50

Table 4. Most frequently used strategies.

is that — somewhat surprisingly — the {100,0,0,0,0}
strategy, which is beaten by almost every other strategy,
is played by a significant number of players. Note that
the strategy map nicely illustrates the intransitivity of
the relation A beats B, which holds when the number
of permutations of battlefields in which A wins over B is
greater than the number of permutations in which B wins
over A. Observe that there are almost deterministic cy-
cles such as: {34, 33, 33, 0, 0} beats {20, 20, 20, 20, 20}
beats {35, 35, 10, 10, 10} beats {34, 33, 33, 0, 0}.
These cycles are also present in non-transitive dice
games, see, e.g., [9]. Assuming stationarity of the strat-
egy distribution, knowledge of this plot for a given player
population would enable a player entering that popula-
tion to choose a strategy that would be most success-
ful given the particular strategies and their frequencies
played in that population.

Best Strategies
For each strategy we computed the proportion of other
strategies it defeats. The top strategies are listed in Ta-
ble 5 where strategies which were submitted more than
once are counted multiple times (multiple counting).

Table 5 shows that the best performing strategies had
three reinforced battlefields, typically where two were
very strongly reinforced and one was reinforced but not
quite as strongly. In these strategies the unit digit of
the non-reinforced battlefields was between one and five.
Table 6 lists the top performing strategies under unique
counting (i.e. several wins against the same strategy
count as a single win).



Figure 6. The strategy map. The figure shows the most
frequently used strategies and their winning and losing
relations. Different strategies are represented by circles.
The area of each circle is proportional to the number of
times the corresponding strategy was used. An edge la-
belled with the value x from a strategy to another strategy
indicates that the ‘from’ strategy beats the ‘to’ strategy
in a fraction x of the possible permutations of the two
strategies. Note that {100,0,0,0,0} is always beaten by
all the other strategies and the arrows are left out for
clarity.

Table 6 shows that strategies that do well in terms of de-
feating unique strategies rather than winning the most
games still typically have 3 reinforced battlefields, but
in many cases all of these are strongly reinforced (rather
than only 2). Also, the unit digit in some of these is 0
(i.e. some battlefields are completely unguarded). In-
terestingly, quite a few of these strategies are very rare,
with very few users playing them (and only a few times).
However, there are examples of top performing strate-
gies that are quite common, indicating that some “focal
point” strategies can be very strong strategies.

EFFECTS OF BIAS, SOCIAL HABITAT, AND KNOWLEDGE
OF OPPONENT
Having explained the theoretical underpinnings of Blotto
games and shown the results of our empirical analysis
on how users on Facebook play these games, we now
investigate the presence of biases and effects of social
habitat in game play.

Broken Symmetry: Positional Bias in Troop Allocations
As mentioned earlier, the optimal strategy in a Blotto
game is to allocate troops to battlefields symmetrically
at random. However, earlier studies have observed that
the order in which troops are allocated to battlefields
introduces a bias in the troop allocations [1]. Arad and
Rubinstein [1] have conjectured that this may be due

Strategy Win Proportion Frequency
[36, 35, 24, 3, 2] 0.74 1
[37, 37, 21, 3, 2] 0.73 17
[35, 35, 26, 2, 2] 0.73 1
[37, 36, 24, 2, 1] 0.73 1
[37, 36, 21, 5, 1] 0.72 1
[36, 34, 28, 1, 1] 0.71 2
[35, 35, 28, 1, 1] 0.71 2
[37, 33, 21, 5, 4] 0.71 1
[34, 34, 25, 4, 3] 0.71 1
[37, 37, 22, 2, 2] 0.71 3
[35, 34, 25, 3, 3] 0.70 3
[34, 34, 28, 2, 2] 0.70 3
[37, 37, 23, 2, 1] 0.70 2
[35, 35, 24, 3, 3] 0.70 13

Table 5. Top performing strategies (multiple counting)

Strategy Win Proportion Frequency
[36, 35, 24, 3, 2] 0.74 1
[36, 34, 28, 1, 1] 0.73 2
[37, 36, 24, 2, 1] 0.73 1
[34, 34, 30, 2, 0] 0.73 2
[34, 33, 32, 1, 0] 0.72 26
[35, 33, 29, 2, 1] 0.71 1
[34, 31, 31, 2, 2] 0.71 7
[37, 33, 30, 0, 0] 0.71 8
[36, 27, 37, 0, 0] 0.71 4
[33, 31, 31, 3, 2] 0.71 2
[35, 35, 28, 1, 1] 0.70 2
[37, 37, 21, 3, 2] 0.70 17

Table 6. Top performing strategies (unique counting)

to a player’s instincts to over-assign troops leading to
‘residual’ allocations at the fringe battlefields. We ob-
serve this bias in the data collected by us (see Table 7
and Figure 4).

On average, players of our Facebook application place
more focus on some battlefields. Table 7 shows that more
emphasis is placed at the center. It shows that there the
mean and median number of troops are quite different
across fields. We have used a Mann-Whitney-Wilcoxon
test 5 (MWW test for short) to examine whether the
differences in means across battlefields are statistically
significant. Each row and column in Table 8 represents
a battlefield, and the table shows “True” if the difference
between the mean number of troops in the row battle-
field and the mean number of troops in the column bat-
tlefield is statistically significant, at a significance level
of p < 1% (and “False” if the difference in means is not
significant at the level of p < 1%).

Table 7 and Table 8 provide strong evidence for a sig-
nificant bias towards certain battlefields when allocating
troops. The focus appears to be on the center rather
than the sides. Interestingly, it appears the difference
between fields 2 and 4 (the center left and center right) is
small and insignificant, but the difference between fields
1 and 5 (extreme left and extreme right) is significant.
Apparently, more troops are allocated to the extreme

5This test is also known as the Mann-Whitney test or
Wilcoxon’s rank-sum test.



Opponent Field 1 Field 2 Field 3 Field 4 Field 5
Mean, Median

H 19.3, 20 20.7, 20 22.0, 20 19.9, 20 18.1, 20
S 17.9, 20 20.0, 21 22.9, 27 20.7, 23 18.4, 20
F 17.8, 18 21.3, 22 21.5, 22 20.8, 23 18.7, 20

NF=H+S 18.8, 20 20.4, 20 22.4, 22 20.2, 20 18.2, 20
All 17.8, 20 20.7, 21 22.1, 24 20.8, 22 18.6, 20

Variance
All 225.4 199.5 201.9 189.4 192.2

Table 7. Position bias in the allocation of troops to differ-
ent battlefields. Mean and variances in troop allocation
across battlefields. (H = Opponent is hidden from player,
S = Opponent is a stranger, F = Opponent is a Facebook
friend of the player)

Field 1 Field 2 Field 3 Field 4 Field 5
Field 1 - True True True True
Field 2 True - True False True
Field 3 True True - True True
Field 4 True False True - True
Field 5 True True True True -

Table 8. Significance of position bias (difference in
means) across battlefields.

right 6.

Another interesting question is whether the people vary
the number of troops they put in some battlefields more
than in others. More precisely, we wish to know whether
the variances in the numbers of troops are significantly
different across battlefields. Table 7 shows the variances
in troop allocations in each battlefield.

Table 7 indicates slight differences in variance. For ex-
ample, variance in field 1 (extreme left) appears to quite
higher than in the other fields. To test whether these
differences are statistically significant we used Levene’s
test. Each row and column in Table 9 represents a bat-
tlefield, and the table shows “True” if the difference be-
tween variances in troop allocation in the row battlefield
and column battlefield is statistically significant, at a
significance level of p < 5% (and “False” if the difference
in variances is not significant at the level of p < 5%).

Table 9 shows that in many cases the differences in vari-
ances are significant. For example, Battlefield 1 has a
significantly higher variance in troops allocated to it than
other fields. However, these differences seem quite small.

Effect of Knowledge About the Opponent
Playing the Blotto game involves reasoning about the
strategy of your opponent. It is thus reasonable to as-
sume that knowledge of the opponent in the game would
affect the way in which a player plays the game. Previous
experimental studies have not been able to capture such
effects. This has primarily been due to the difficulty in

6It would be interesting to see whether this left versus right
bias is flipped in some locations. For examples, participants
coming from countries where the writing direction is right-to-
left rather than left-to-right, such as the middle-east, might
have a reverse bias. However, in the interest of privacy, we
did not store such information regarding each participant,
and only examined the aggregate demographics information
available from Facebook.

Field 1 Field 2 Field 3 Field 4 Field 5
Field 1 - True True True True
Field 2 True - False False True
Field 3 True False - False True
Field 4 True False False - True
Field 5 True True True True -

Table 9. Significance of difference in variances across
battlefields .

obtaining game data where all players know their game
opponents or are their friends. Deploying the game on
an online social network provides access to the friend
relationships of the players.

Troop Distributions against Friends and
Strangers Table 7 and Table 3 show that the
distribution of troops selected by the subjects is
somewhat different in situations when the opponent
is “hidden” (i.e. either a random opponent whose
identity is completely unknown to the initiator, or an
opponent who is not a Facebook friend of the initiator
but whose name and profile picture are revealed) as
opposed to situation where the opponent is a Facebook
friend. An MWW test shows that the differences in the
mean number of troops is statistically significant at the
p < 5% level only for the second and fourth battlefield.
This provides some evidence that players use different
strategies when playing against friends than when
playing against strangers. One possible explanation
for this is that when playing against a friend players
are more likely to play several games against the same
opponent. In this case, the players may examine the
previous games and select an appropriate strategy based
on what they have learned from previous games. On
the other hand, when requesting a “hidden opponent”
game (one of the game modes in our “Project Waterloo”
platform), an opponent is selected at random from
the set of all players. In this case the initiator has
no knowledge of the opponent, and is likely to choose
a “generic” strategy that she believe is suitable to a
random opponent. We have also tried to see whether
the variances of troop allocation in each battlefield is
different when playing against friends and non-friends,
however the test showed no significant difference in the
variance between these two conditions.

Winning Against Friends and Strangers One key
question is whether the knowledge of a player about
their opponent affects their chances of winning the game.
As discussed in the analysis section, we have consid-
ered three categories — friend opponents, hidden op-
ponents and stranger opponents. We have first exam-
ined players who have initiated games in all these cate-
gories. For these players, the mean score when initiating
a game against friend opponents was 53.02%, whereas
their mean score when playing against hidden opponents
was only 40.76%. This difference in probabilities is quite
large, and an MWW test shows that this difference is
significant at the level of p < 10%, providing some evi-
dence that indeed players are more likely to win against
a hidden opponent.
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Figure 7. Distribution of number of games. The last
histogram bucket represents all users that have played
more than 25 or more games.

Threshold Users ¡ T friends Users ≥ T friends
T (Average #Games) (Average #Games)
100 162, (6.97) 470, (5.61)
300 428, (5.96) 204, (5.95)
500 556, (6.28) 76, (3.64)

Table 10. The table shows the number of users which have
a specific number of friends (controlled by threshold T)
and the average number of games played by these users.

One possible explanation for this effect is that the ini-
tiators decide who to invite, and use the knowledge of
their opponents to challenge more predictable players.
They can then use a strategy tailored to defeating these
opponents.

We also examined aggregate statistics regarding games
initiated against friends and strangers. In total our
dataset contained 524 games initiated against friends,
332 initiated against strangers and 1,027 against hid-
den opponents. The probability of the initiator win-
ning against friends was 51.34%, only 47.89% against
strangers and 38% against hidden opponents. This also
supports the conjecture that initiators manage to find
opponents that they find easy to defeat (note that when
initiating a game against a hidden opponent, the hidden
opponent does get to examine information regarding the
initiator).

Effect of social network on games played and won
Figure 7 shows that the number of users which play a
specific number of games obeys a rough power law dis-
tribution. We first investigated whether the number of
friends of a user affects the number of games played by
them. We observed that users with more friends on Face-
book in general played less games on our application.
The results are summarized in Table 10 and Figure 8. It
can be observed that people with many friends tend to
play relatively fewer games on average. We performed a
similar analysis with the number of games won by users.
The results are shown in Table 11.

Effect of experience on winning
In most games of skill one would expect the players to
become better as they play more games. Figure 9 shows
the winning rates and games played for all users. It can
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Figure 8. The average number of friends and games
played by some user groups. The groups were constructed
by clustering (grouping) users with similar numbers of
friends. The size of the group can be seen by the radius
of the circle.

Threshold Users ¡ T friends Users ≥ T friends
T (Average Score) (Average Score)
100 162, (3.52) 470, (2.79)
300 428, (3.00) 204, (2.93)
500 556, (3.17) 76, (1.59)

Table 11. The table shows the number of users which
have a specific number of friends and the mean score of
these users. The mean score is shown in brackets.

be seen that the average winning rate of player groups
increases as they play more games.
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Figure 9. The winning rates and games played
for all users. The winning rate was computed as:
#wins+0.5∗#draws

#games played
. The figure shows also how the average

winning rate of groups of users (grouped by number of
games played) changes with the average number of games
played in the group.

DISCUSSION AND FUTURE WORK
Our data gathered from behavioral game theory exper-
iments conducted using online social networks is some-
what consistent with previous studies, indicating that
this research tool may allow overcoming the scalability
limitation of laboratory experiments. More importantly,
we have shown that this new source of data can help



uncover interesting relations between player strategies
and the game context. We found that the strategies
adopted by players change if their opponents are their
friends. Our results suggest that players with few Face-
book friends tend to play more games and have higher
probabilities of winning, that players responding to a
challenge in the game have higher probabilities of win-
ning than those initiating the game, and that the ini-
tiators of a game have higher probabilities of defeating
their friends than strangers.

There are a number of interesting issues that remain un-
explored. Questions on how users learn and change their
strategies with more games, how their play is affected by
their age, gender, location, etc., are promising directions
for future work. To conclude, we hope that our success-
ful demonstration of how a large-scale behavioural game
theory experiment can be carried on an online social net-
work will motivate others to conduct similar empirical
studies using this medium. We believe that online social
networks have the potential to become a very useful re-
source for empirical research in fields such as behavioral
game theory and experimental economics.
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