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Abstract. In this paper we initiate an investigation of generalizations of the Probably Approx-
imately Correct (PAC) learning model that attempt to signi�cantly weaken the target function
assumptions. The ultimate goal in this direction is informally termed agnostic learning, in which
we make virtually no assumptions on the target function. The name derives from the fact that
as designers of learning algorithms, we give up the belief that Nature (as represented by the tar-
get function) has a simple or succinct explanation. We give a number of positive and negative
results that provide an initial outline of the possibilities for agnostic learning. Our results include
hardness results for the most obvious generalization of the PAC model to an agnostic setting,
an e�cient and general agnostic learning method based on dynamic programming, relationships
between loss functions for agnostic learning, and an algorithm for a learning problem that involves
hidden variables.
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1. Introduction

One of the major limitations of the Probably Approximately Correct (or PAC)
learning model (Valiant, 1984) (and related models) is the strong assumptions
placed on the so-called target function that the learning algorithm is attempting
to approximate from examples. While such restrictions have permitted a rigorous
study of the computational complexity of learning as a function of the representa-
tional complexity of the target function, the PAC family of models diverges from
the setting typically encountered in practice and in empirical machine learning
research. Empirical approaches often make few or no assumptions on the target
function, but search a limited space of hypothesis functions in an attempt to �nd
the \best" approximation to the target function; in cases where the target function
is too complex, even this best approximation may incur signi�cant error.

In this paper we initiate an investigation of generalizations of the PAC model
in an attempt to signi�cantly weaken the target function assumptions whenever
possible. Our ultimate goal is informally termed agnostic learning,1 in which we
make virtually no assumptions on the target function. We use the word \agnos-
tic" | whose root means literally \not known" | to emphasize the fact that as
designers of learning algorithms, we may have no prior knowledge about the target
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function. It is important to note that in this paper we make no attempt to remove
the assumption of statistical independence between the examples seen by a learn-
ing algorithm, another worthwhile research direction that has been pursued by a
number of authors (Aldous & Vazirani, 1990; Helmbold & Long, 1994). .

This paper describes a preliminary study of the possibilities and limitations for
e�cient agnostic learning. As such, we do not claim to have a de�nitive model but
instead use a rather general model (based on the work of Haussler (1992)) that
allows easy consideration of many natural modi�cations. Perhaps not surprisingly
in light of evidence from the standard PAC model, e�cient agnostic learning in its
purest form (no assumptions on target function or distribution) is hard to come by,
as some of our results will demonstrate. Thus, we will consider several variations of
these perhaps overly ambitious criteria in an attempt to �nd positive results with
target assumptions that are at least signi�cantly weakened over the standard PAC
setting.

There are several prior studies of weakened target assumptions for PAC learning
that are relevant to our work. The �rst is due to Haussler (1992) who describes a
powerful generalization of the standard PAC model based on decision theory and
uniform convergence results. Haussler's results are of central importance to much
of the research described here. Indeed, the agnostic model that we describe is quite
similar to Haussler's, di�ering only in the introduction of a \touchstone" class (see
Section 2). However, while Haussler's concern is exclusively on the information-
theoretic and statistical issues in agnostic learning, we are here concerned almost
exclusively with e�cient computation. Also relevant is the large body of research
on nonparametric density estimation in the �eld of statistics (see, for instance,
Izenman's (1991) excellent survey).

Another relevant investigation is the work on probabilistic concepts of Kearns and
Schapire (1990), as well as the work of Yamanishi (1992a) on stochastic rules. Here,
the target function is a conditional probability distribution, typically on a discrete
range space, such as f0; 1g. A signi�cant portion of the research described in this
paper extends this work. Some of the results presented are also closely related to
the work of Pitt and Valiant on heuristic learning (Pitt & Valiant, 1988; Valiant,
1985), which can be viewed as a variant of our agnostic PAC model.

The following is a brief overview of the paper: in Section 2 we motivate and de-
velop in detail the general learning framework we will use. In Section 3 we consider
the restriction of this general model to the case of agnostic PAC learning and give
strong evidence for the intractability of even rather simple learning problems in
this model. In Section 4 we discuss the empirical minimization of loss and give
a general method for agnostic learning of \piecewise" functions that is based on
dynamic programming. Section 5 gives a useful relationship in the agnostic setting
between two common loss functions, the quadratic and prediction loss, and gives
applications of this relationship. In Section 6 we investigate a compromise between
agnostic learning and the strong target assumptions of the standard PAC model by
providing an e�cient learning algorithm in a model for learning problems involving
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hidden variables. Finally, in Section 7, we list a few of the many problems that
remain open in this area.

2. De�nitions and models

In this section we de�ne our notation and the generalized framework we will use in
our attempt to weaken the target function assumptions needed for e�cient learn-
ing. Our approach is strongly in
uenced by the decision-theoretic learning model
that was introduced to the computational learning theory community by Haussler
(1992). In giving our de�nitions, we err on the side of formality | in order to lay
the groundwork for future research on agnostic learning, we wish to give a model
that is both precise and quite general. For most of the paper, however, we will be
using various restrictions of this general model that will be locally speci�ed using
less cumbersome notation.
Let X be a set called the domain; we refer to points in X as instances, and we

intuitively think of instances as the inputs to a \black box" whose behavior we wish
to learn or to model. Let Y 0 be a set called the range, and let Y be a set called
the observed range. We think of Y 0 as the space of possible values that might be
output by the black box; however, we introduce Y because we may not have direct
access to the output value, but only to some quantity derived from it. In general,
we make no assumptions about the relationship between Y and Y 0. We call a pair
(x; y) 2 X � Y an observation.

2.1. The assumption class A

The assumption class A is a class of probability distributions on the observation
space X � Y . We use A to represent our assumptions on the phenomenon we are
trying to learn or model, and the nature of our observations of this phenomenon.
Note that in this de�nition of A, there may be no functional relationship between
x and y in an observation (x; y). However, there are two special cases of this
generalized de�nition that we wish to de�ne.
In the �rst special case, there is a functional relationship, and an arbitrary domain

distribution. Thus, consider the case where Y = Y 0 and there is a class of functions
F mapping X to Y 0. Suppose A is the class obtained by choosing any distribution
D over X and any f 2 F , and letting AD;f 2 A be the distribution generating
observations (x; f(x)), where x is drawn randomly from D. Then we say that A
is the functional decomposition using F , and we have a familiar distribution-free
function learning model.
In the second special case, we have Y 0 = [0; 1], Y = f0; 1g and there is again a

class of functions F mapping X to Y 0. Now, however, the functional value is not
directly observed. Instead, let A be the class obtained by choosing any distribution
D over X and any f 2 F , and letting AD;f 2 A be the distribution generating
observations (x; b), where x is drawn randomly from D and b = 1 with probability
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f(x) and b = 0 with probability 1�f(x). We call F a class of probabilistic concepts
(or p-concepts), and we say that A is the p-concept decomposition using F . Here
we have a distribution-free p-concept learning model.
In the case that A is either the functional or p-concept decomposition using a

class F , we refer to F as the target class, and if the distribution AD;f 2 A generates
the observations we call f the target function or target p-concept and D the target
distribution.

2.2. The hypothesis class H and the touchstone class T

We next introduce two classes of functions fromX to Y 0: the hypothesis classH, and
the touchstone class T . Usually it will be the case that T � H. The intuition is that
a learning algorithm will attempt to model the behavior from A that it observes
with a hypothesis function h 2 H. In our model, where we seek to eliminate
restrictions on A as much as possible, we must ask against what standard the
hypothesis function will be measured, since nearness to the target may be impossible
or unde�ned. This is the purpose of the touchstone class T . This class provides a
standard of measurement for hypotheses, and we will ask that the performance of
the hypothesis h 2 H be \near" the performance of the \best" t 2 T , where \near"
and \best" will be formalized shortly. Although it seems natural to ask that the
hypothesis chosen approach the best performance in the class H (corresponding
to the case T = H), we will see that in some circumstances it is interesting and
important to relax this restriction. By leaving the class T �xed and increasing
the power of H, we may overcome certain representational hurdles presented by
the choice T = H, in the same way that k-term DNF (disjunctive normal form)
formulas are e�ciently learnable in the standard PAC model provided we allow
the more expressive k-CNF (conjunctive normal form) hypothesis representation
(Kearns, Li, Pitt & Valiant, 1987; Pitt & Valiant, 1988).

2.3. The loss function L

Now we formalize the possible meanings of the \best" function in a class. Given the
domain X, the range Y 0, and the observed range Y , a loss function is a mapping
L : Y 0 � Y ! [0;M ] for some positive real number M . Given an observation
(x; y) 2 X � Y and a function h : X ! Y 0, the loss of h on (x; y) is denoted
Lh(x; y) = L(h(x); y). The loss function measures the \distance" or discrepancy
between h(x) and the observed value y. Typical examples include the prediction
loss (also known as the discrete loss), where

Z(y0; y) =

�
0 if y0 = y
1 if y0 6= y

and the quadratic loss
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Q(y0; y) = (y0 � y)2:

Since observations are drawn according to a distribution A 2 A, we can de�ne
the expected loss E(x;y)2A[Lh(x; y)] of the function h, which we abbreviate E[Lh]

when A is clear from the context. Now we are prepared to de�ne the best possible
performance in a class of functions with respect to the loss function L. For the hy-
pothesis class H, we de�ne opt (H) = inf h2HfE[Lh]g. Similarly, for the touchstone
class T , we de�ne opt(T ) = inf t2T fE[Lt]g. Note that opt(H) and opt (T ) have an
implicit dependence on A 2 A that we omit for notational brevity.
We will often need to refer to estimates of these quantities from empirical data.

Thus, if S is a sequence of observations, we can estimate E[Lh] by

ÊS [Lh] =
1

jSj �
X

(x;y)2S

Lh(x; y):

This allows us to de�ne the estimated optimal performance for H and T , de�ned
by ^optS(H) = inf h2HfÊS [Lh]g and ^optS(T ) = inf t2T fÊS [Lt]g. Usually S will be

clear from the context, and we will write Ê[Lf ], ^opt (H) and ^opt (T ).

2.4. The learning model

We are now ready to give our generalized de�nition of learning.

De�nition. Let X be the domain, let Y 0 be the range, let Y be the observed range,
and let L : Y 0 � Y ! [0;M ] be the loss function. Let A be a class of distributions
on X � Y , and let H and T be classes of functions mapping X to Y 0. We say
that T is learnable by H assuming A (with respect to L) if there is an algorithm
Learn and a function m(�; �) that is bounded by a �xed polynomial in 1=� and 1=�
such that for any distribution A 2 A, and any inputs 0 < �; � � 1, Learn draws
m(�; �) observations according to A, halts and outputs a hypothesis h 2 H that
with probability at least 1� � satis�es E[Lh] � opt(T ) + �. If the running time of
Learn is bounded by a �xed polynomial in 1=� and 1=�, we say that T is e�ciently
learnable by H assuming A (with respect to L).

In the case that A is the functional decomposition using a class F , we replace the
phrase \assuming A" with the phrase \assuming the function class F"; in the case
that A is the p-concept decomposition using a class F , we replace it with the phrase
\assuming the p-concept class F ." If we wish to indicate that the touchstone class
T is learnable by some H assuming A without reference to a speci�c H, we will say
T is (e�ciently) learnable assuming A.
There will often be a natural complexity parameter n associated with the domain

X, the distribution class A and the function classes H and T , in which case it will be
understood that X =

S
n�1Xn, A =

S
n�1An, H =

S
n�1Hn, and T =

S
n�1 Tn.

Standard examples for n are the number of boolean variables or the number of real
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dimensions. In these cases, we allow the number of observations and the running
time of the algorithm in De�nition 2.4 to also have a polynomial dependence on n.

2.5. Generating some old and new models

We now de�ne several previously studied and new models of learning by appropriate
settings of the parameters A, H, T and L.

First of all, if F is any class of boolean functions, A is the functional decomposition
using F , H = T = F , and L is the prediction loss function Z , then we obtain the
restricted PAC model (Valiant, 1984), where the hypothesis class is the same as the
target class. If we retain the condition T = F but allow H � F , we obtain the
standard PAC model (Kearns et al., 1987), where the hypothesis class may be more
powerful than the target class.

Next, if A is the p-concept decomposition using a class F of p-concepts, T = F ,
and H � F , then we obtain the p-concept learning model (Kearns & Schapire,
1990), and there are at least two interesting choices of loss functions. If we choose
the prediction loss function Z then we ask for the optimal predictive model for the
f0; 1g observations (also known as the Bayes optimal decision), which may be quite
di�erent from the actual probabilities given by f 2 F . This rule has the minimum
probability of incorrectly predicting the y-value of a random observation, given the
observation's x-value. Alternatively, we may choose the quadratic loss function
Q. Here it is known that the quadratic loss will lead us to �nd a hypothesis h
minimizing the quadratic distance between f and h, i.e., E[(f � h)2] (Kearns &
Schapire, 1990; White, 1989).

Now consider the following generalization of the standard PAC model: let F be
the class of all boolean functions over the domain X, and let A be the functional
decomposition using F . Thus we remove all assumptions on the target concept
(except the existence of some concept consistent with the data). Now if we let
H = T , and choose the prediction loss function Z, then we wish to �nd a good
predictive concept in H regardless of the nature of the target concept. We will refer
to this particular choice of the parameters as the agnostic PAC model.

3. Agnostic PAC learning

In this section we examine the agnostic PAC model. Our main results here demon-
strate relationships between the agnostic PAC model and some other previously
studied variations of the standard PAC model, and provide a strong argument for
the need for further restrictions or di�erent models if we wish learning algorithms
to be e�cient. Related results, also indicating intractability for learning with weak-
ened target concept assumptions, are given by Valiant (1985) and Pitt and Valiant
(1988) for a model of heuristic learning.
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3.1. Agnostic learning and malicious errors

Our �rst result shows that agnostic PAC learning is at least as hard as PAC learning
with malicious errors (Kearns & Li, 1993; Valiant, 1985) (and in fact, a partial
converse holds as well). Although we will not formally de�ne the latter model, it is
equivalent to the standard PAC model with the addition of a new parameter called
the error rate �, and now each observation has probability � of being generated by
a malicious adversary rather than by the target function and target distribution.
The goal in the malicious error model remains that of achieving an arbitrarily good
predictive approximation to the underlying target function.

Theorem 1 Let T be a class of boolean functions over X that is e�ciently learn-
able in the agnostic PAC model, and assume that the Vapnik-Chervonenkis dimen-
sion of T is bounded by a polynomial in the complexity parameter n. Then T
is e�ciently learnable (using T ) in the PAC model by an algorithm tolerating a
malicious error rate of � = �(�).

Proof: The idea is to demonstrate the equivalence of the problem of learning T in
the agnostic PACmodel and a natural combinatorial optimization problem based on
T , the disagreement minimization problem for T , a problem known to be equivalent
(up to constant approximation factors) to the problem of learning with malicious
errors (Kearns & Li, 1993). In this problem, we are given as input an arbitrary
multiset S = f(x1; b1); : : : ; (xm; bm)g of pairs, where xi 2 X and bi 2 f0; 1g for all
1 � i � m. The correct output for the instance S is the h� 2 T that minimizes
dS(h) = jfi : h(xi) 6= bigj over all h 2 T .
It follows from standard arguments (Blumer, Ehrenfeucht, Haussler & Warmuth,

1989) that if the Vapnik-Chervonenkis dimension of T is polynomially bounded by
the complexity parameter n, an algorithm that e�ciently solves the disagreement
minimization problem for T can be used as a subroutine by an e�cient algorithm
for learning T in the agnostic PAC model. (See Section 4.1 for more details.)
For the other direction of the equivalence, suppose we have an algorithm for

e�ciently learning T in the agnostic PAC model, and wish to use this algorithm in
order to solve the disagreement minimization problem for T on a �xed instance S.
We �rst give the argument assuming that no instance xi appears with two di�erent
labels in S; thus, the pairs of S may be thought of as being consistent with a
boolean function f , where f(xi) = bi for each 1 � i � n.
Let us create the distributionD on the instances xi in the multiset S, giving equal

weight 1=m to each instance (instances appearing more than once in S will receive
proportionally more weight, and instances outside S receive zero weight). We run
the agnostic learning algorithm, choosing � < 1=m, and drawing instances from D
and labeling them according to the target function f (note that this is equivalent to
simply drawing labeled pairs randomly from S). The algorithm must then output
a hypothesis h 2 T that satis�es

Pr[h 6= f ] � Pr[h� 6= f ] + � < Pr[h� 6= f ] +
1

m
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where h� minimizes dS(h) over all h 2 T . This implies Pr[h 6= f ] = Pr[h� 6= f ]
because a single disagreement with f incurs error 1=m with respect to D. Since for
any h we have Pr[h 6= f ] = dS(h)=m, we have dS(h) = dS(h

�), and our optimization
problem is solved.
In the case that S contains con
icting labels for some instance and thus is not

consistent with any function, we can simply remove from S all pairs of con
icting
instances (xi; 0) and (xi; 1) until the remaining multiset S0 is consistent with a
function. Notice that any function disagrees with exactly half of S � S0, and thus
minimization of dS(h) reduces to minimization of dS0(h). We now simply perform
the above reduction on S0.
Finally, the desired algorithm for learning in the malicious error models follows

from the above equivalence of agnostic learning and disagreement minimization,
and an equivalence up to constant approximation factors between disagreement
minimization and learning T in the restricted PAC model with malicious errors, a
fact proved by Kearns and Li (1993, Theorem 19). In fact, this latter equivalence
can be used to obtain a weakened converse to Theorem 1: learning T with malicious
error rate � = �(�) implies an algorithm �nding an h 2 T satisfying Pr[h 6= f ] �
c � opt(T ) for some constant c (a weaker multiplicative rather than additive error
bound).
Although there are a number of variations of agnostic PAC learning that may not

be directly covered by Theorem 1, we essentially interpret the result as negative
evidence for hopes of e�cient agnostic PAC learning algorithms, because previous
results indicate that a �(�) malicious error rate can be achieved for only the most
limited classes T (Kearns & Li, 1993) (such as the class of symmetric functions on
n boolean variables).
Other results for agnostic PAC learning may be obtained via Theorem 1 and

the previous work on learning in the presence of malicious errors. For instance, if
T is any class of boolean functions, and T is (e�ciently) learnable in the error-
free PAC model, then there is an (e�cient) algorithm for �nding h 2 T satisfying
Pr[h 6= f ] � O(dH � opt(T )) where f is the target function and dH is the Vapnik-
Chervonenkis dimension of the hypothesis class H (this follows from Theorems 11
and 19 of Kearns and Li (1993).)

3.2. Intractability of agnostic PAC learning of conjunctions

Now we give a reduction indicating the di�culty of learning simple boolean con-
junctions in the agnostic PAC model. If we let Xn = f0; 1gn and set Tn = Hn to be
the class of all conjunctions of literals over the boolean variables x1; : : : ; xn, then in
the agnostic PAC model we wish to �nd an algorithm that can �nd a conjunction in
Tn that has a near-minimum rate of disagreement with an unknown boolean target
function f . We can show this problem to be hard even for rather restricted f :

Theorem 2 Let Xn = f0; 1gn, and let Fn be the class of polynomial-size disjunc-
tive normal form formulas over f0; 1gn. Let Tn be the class of conjunctions of
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literals over the boolean variables x1; : : : ; xn. Then T is not e�ciently learnable
using T assuming the function class F , unless RP = NP.

Proof: Suppose to the contrary of the theorem's statement that there exists an
e�cient algorithm for the stated learning problem. We show how such an algorithm
can be used probabilistically to solve the minimum set cover problem (Garey &
Johnson, 1979) in polynomial time, thus implying that RP = NP. A similar proof
is given in the context of PAC learning with malicious errors by Kearns and Li
(1993), and can be used with Theorem 1 to obtain a similar but weaker result than
the one we now derive.
An instance of the minimum set cover problem is a set of objects O = fo1; : : : ; otg

to be covered, and a collection of subsets of the objects S = fS1; : : : ; Sng. The goal
is to �nd the smallest subset S0 � S that covers all objects (so that for all oi 2 O,
there exists Sj 2 S0 such that oi 2 Sj).
Without loss of generality, we will assume that all objects oi are contained in

more than one set. Without loss of generality, we also assume that all objects are
contained in a unique collection of sets: if two objects are contained in exactly
the same sets, we remove one of the objects and any valid set cover will cover the
removed object.
The reduction chooses the target function to be the n-term DNF formula f =

T1 _ : : :_ Tn over the variable set fx1; : : : ; xng, where Ti is the conjunction of all
variables except xi. All instances given to the learning algorithm will be labeled
according to f .
For each object oi, 1 � i � t, let ai be the assignment hai1; : : : ; aini of values to

the n boolean variables (so that xj is assigned aij) where we de�ne

aij =

�
0 if oi 2 Sj
1 otherwise.

By this construction f(ai) = 0 for all i: since every object is in at least two sets,
at least two positions of ai are zero, and therefore ai does not satisfy any term in
f . Thus, the ai will be the negative examples.
For each set Sj , 1 � j � n, let bj be the assignment hbj1; : : : ; bjni where

bjk =

�
0 if j = k
1 otherwise.

Finally let c = h1; : : : ; 1i. Note that f(bj ) = f(c) = 1 since bj satis�es exactly one
term in f and c satis�es all terms.
Notice that for each variable xj , if we choose to include xj in a monotone con-

junction then this conjunction is guaranteed to \cover" (that is, have as negative
examples) all ai such that object oi appears in set Sj . Further, including xj in a
conjunction incurs the single error bj on the positive examples. Thus, our goal is
to force the agnostic learning algorithm to cover all the negative examples (cor-
responding to covering all of the objects) while incurring the least positive error
(corresponding to a minimum cardinality cover).
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The distribution we will use is de�ned by

D(ai) =
1

2(t+ 1)
+

1

4t(t + 1)

D(bj) =
1

4n(t+ 1)

D(c) =
1

2

and D(x) = 0 for all other x. Finally, we set � = 1=8n(t+ 1), and we run the
assumed agnostic learning algorithm using examples drawn according to D and
labeled according to f . Clearly, this entire procedure takes time polynomial in the
size of the set cover instance (since the target DNF f is only of polynomial size).
Moreover, with high probability, we obtain a conjunction h having error bounded
by opt(T ) + � with respect to f and D.
Let B = fSj j xj appears in hg. We �rst show that B is a cover.
Note that the conjunction of all variables, x1 � � �xn, has error equal to 1=4(t+ 1),

since it is consistent with f on c and ai for all i. Thus opt(T ) � 1=4(t+ 1), which
implies that

opt(T ) + � � 1

4(t+ 1)
+

1

8n(t+ 1)
<

1

2(t+ 1)
:

The conjunction h must be monotone, since otherwise it would be inconsistent
with the positive example c = h1; : : : ; 1i giving an error of at least 1=2. Also, h
must be consistent with all the negative instances ai, since otherwise its error would
be at least 1=2(t+ 1) + 1=4t(t+ 1). Thus B covers all objects, since for every ai
there is a variable xj in h that forces ai to be negative, and this happens only if Sj
includes oi.
It remains to show that B is a minimum cover. Suppose there exists a smaller set

cover B0. Then we can construct a monomial h0 from B0 where xj is in h0 if and
only if Sj 2 B0. By construction h0 is monotone so it is consistent with instance
c. Because B0 is a set cover, h0 is consistent with ai for all i. For each Sj 2 B0,
h0(bj) = 0; thus h0 is not consistent with jB0j elements bj. Therefore, opt(T ) �
Pr[f 6= h0] = jB0j=4n(t+ 1). On the other hand, Pr[f 6= h] = jBj=4n(t+ 1) which
implies that

Pr[f 6= h] � opt (T ) + jBj � jB0j
4n(t+ 1)

> opt(T ) + �;

by our choice of �, contradicting the assumption that h has error bounded by
opt(T ) + �. Therefore B is indeed a minimum set cover.
Thus, even if we assume that the target distribution can be functionally decom-

posed into a distribution on X and a target function that is guaranteed to be a
small DNF formula, it is a hard problem to �nd a conjunction whose predictive
power is within a small additive factor of the best conjunction. Even more sur-
prising, Theorem 2 holds even if the learning algorithm is told the target DNF
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formula! This demonstrates an important principle: having a perfect and succinct
description of the process generating the observations may not help in �nding an
even more succinct \rule of thumb" that tolerably explains the observations. Thus
the di�culty may arise not so much from the problem of learning but from that of
optimization.

Similar results are given by Valiant (1985) and Pitt and Valiant (1988).

3.3. Agnostic learning and weak learning

We next describe a connection between agnostic PAC learning and weak PAC learn-
ing (in which the standard PAC criterion is relaxed to demand hypotheses whose
error with respect to the target is bounded only by 1=2�1=p(n) for some polynomial
p(n) of the complexity parameter (Kearns & Valiant, 1994; Schapire, 1990).)

If T̂ and T are two classes of boolean functions over a domain X parameterized
by n, we say that T̂ weakly approximates T if there is a polynomial p(n) such that
for any distribution D on Xn and any t 2 Tn there is a function t̂ 2 T̂n such that
Prx2D [t̂(x) 6= t(x)] � 1=2� 1=p(n).

Theorem 3 Let T̂ be a class of boolean functions that weakly approximates a class
T . Then T is e�ciently learnable in the standard PAC model if T̂ is e�ciently
learnable in the agnostic PAC model.

Proof: The idea is that since T̂ weakly approximates T , whenever the target func-
tion is from T , opt(T̂ ) will be signi�cantly smaller than 1=2, and the agnostic learn-
ing algorithm e�ectively functions as a weak learning algorithm for T . The result
then follows from the \boosting" techniques of Schapire (1990) or Freund (1990;
1992) for converting a weak learning algorithm into a strong learning algorithm.

Since the class of boolean conjunctions weakly approximates the class of polynomial-
size DNF formulas (see, for instance, Schapire (1990, Section 5.3)), it immediately
follows from Theorem 3 that learning conjunctions in the agnostic PAC model is
at least as hard as learning DNF formulas in the standard PAC model; this can be
interpreted as further evidence for the di�culty of the problem, based on the as-
sumption that learning DNF is hard in the standard PAC model. Note that unlike
Theorem 2 (where we must set H = T ), this result makes no restrictions on H.
In summary, we see that agnostic PAC learning is intimately related to a number

of apparently di�cult problems in the standard PAC model. This leads us to two
preliminary conclusions: that we should look for e�cient agnostic learning in other
models and with respect to other loss functions, and that we may want to consider
some restrictions on the assumption class without reverting to the standard PAC
model.
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4. Tractable agnostic learning problems

Although the results of Section 3 indicate that our prospects of �nding e�cient
agnostic PAC learning algorithms may be bleak, we demonstrate in this section
that at least in some non-trivial situations, e�cient agnostic learning is in fact
tractable. We give a learning method based on dynamic programming applicable
to our general learning framework.

4.1. Empirical loss minimization and agnostic learning

One natural technique for designing an agnostic learning algorithm is to �rst draw
a large random sample, and to then �nd the hypothesis that best �ts the observed
data. In fact, this canonical approach successfully yields an e�cient agnostic learn-
ing algorithm in a wide variety of settings, assuming that there exists an e�cient
algorithm for �nding the best hypothesis (with respect to the observed sample).
In this section, we will not make any assumptions on the distributions in A,

and will use the expression T is agnostically learnable using H to indicate that a
hypothesis in H near the best in T can be found (dropping the reference to H to
indicate that T is agnostically learnable using some class H).
Let Y be our observed range, let T and H be the touchstone and hypothesis

classes of functions mappingX into Y 0, and let L be the loss function. We say that
T is (e�ciently) empirically minimizable by H (with respect to L) if there exists
a (polynomial-time) algorithm that, given a �nite sample S 2 (X � Y )�, computes
a hypothesis h 2 H whose empirical loss on S is optimal compared to T ; that is,
ÊS [Lh] � ^optS(T ). (Here, polynomial time means polynomial in the size of the
sample S.)
For instance, if Y � R, and T is the class of constant real-valued functions on

X, then T is e�ciently empirically minimizable with respect to the quadratic loss
function since the average of the Y -values observed in S minimizes the empirical
loss. More generally, if f1; : : : ; fd is a set of d real-valued basis functions on X, then
standard regression techniques can be used to e�ciently minimize the empirical
quadratic loss over the set of all linear combinations of the basis functions (Duda
& Hart, 1973; Kearns & Schapire, 1990).
When is empirical minimization su�cient for agnostic learning? This question

has been answered in large part by Dudley (1978), Haussler (1992),, Pollard (1984),
Vapnik (1982) and others. They show that, in many situations, the hypothesis class
H is such that uniform convergence is achieved for reasonably small samples. In
such situations, a bound m(�; �) exists such that for any2 distribution A on X �Y ,
and any random sample S 2 (X � Y )� of size m � m(�; �) chosen according to A,
the probability that the average empirical loss of any h 2 H di�ers from its true
expected loss by more than � is at most �; that is,

Pr
h
9h 2 H :

���ÊS [Lh]�E[Lh]
��� > �

i
� �: (1)
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Thus, if T is (e�ciently) empirically minimizable by H, and if uniform convergence
can be achieved for H, then T is (e�ciently) agnostically learnable using H.
Here is how this is done: Given � and �, let t 2 T be such that E[Lt] � opt(T ) +

�=3. (Since there may not exist a function that achieves the optimum loss, we
instead choose any function that is approximately optimal.) Let S be a random
sample of size su�ciently large that, with probability at least 1� �,���ÊS [Lh]�E[Lh]

��� � �=3

for every h 2 H[ftg. (Note that uniform convergence is not required for the entire
touchstone class T , but only for the hypothesis class H and a single element t 2 T
that is close to optimal.) Let h 2 H be the result of applying the assumed empirical
minimization algorithm to S. Then, with probability at least 1� �,

E[Lh] � Ê[Lh] + �=3

� Ê[Lt] + �=3

� E[Lt] + 2�=3

� opt(T ) + �

as desired.
Although in this paper we focus primarily on empirical loss minimization, it is

worth noting that an alternative approach is to minimize the empirical loss on
the data plus some measure of the complexity of the hypothesis (see, for instance,
Vapnik (1982)).

4.2. Learning piecewise functions

Thus, in cases where uniform convergence is known to occur, the problem of agnostic
learning is largely reduced to that of minimizing the empirical loss on any �nite
sample. We apply this fact to the problem of agnostically learning families of
piecewise functions with domain X � R. We give a general technique based on
dynamic programming for learning such functions (given certain assumptions), and
we show, for instance, that this technique can be applied to agnostically learn step
functions and piecewise polynomials.
A similar dynamic programming technique is used by Rissanen, Speed and Yu

(1992) for �nding the \minimum description length" histogram density function;
see also Yamanishi (1992b).
We assume below that X � R. Let F be a class of functions on X. We say that a

function f is an s-piecewise function over F if there exist disjoint intervals I1; : : : ; Is
(called bins) whose union is R, and functions f1; : : : ; fs in F such that f(x) = fi(x)
for all x 2 X \ Ii. Let pws(F) denote the set of all s-piecewise functions over F .
Theorem 4 Let T be a hypothesis class on X � R that is empirically minimizable
by H with respect to L. Then pws(T ) is empirically minimizable by pws(H) in
time polynomial in s, and the size m of the given sample.
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Proof: We give a general dynamic programming technique for empirically mini-
mizing pws(T ). Let S = h(x1; y1); : : : ; (xm; ym)i be the given sample, and assume
without loss of generality that x1 � � � � � xm.
For 1 � i � m and 1 � j � s, we will be interested in computing a j-piecewise

function pij over H that, informally, is a \good" j-piecewise hypothesis for Si,
where Si = h(x1; y1); : : : ; (xi; yi)i. More precisely, the empirical loss of pij on Si
will not exceed that of any hypothesis in pwj(T ). Then clearly pms will meet the
goal of empirical minimization of pws(T ) over the entire sample S.
We use the following straightforward procedure to compute pij. For 0 � k � i,

we consider placing the last k observations in a bin by themselves (that is, we
let these k observations belong to the same bin of the piecewise function under
construction). We then use our empirical minimization algorithm for T to compute
a hypothesis hik 2 H whose empirical loss (on the last k observations of Si) does
not exceed that of any hypothesis in T . We next \recursively" compute pi�k;j�1,
a \good" (j � 1)-piece hypothesis for the remaining i � k observations. We can
combine pi�k;j�1 and hjk in the obvious manner to form a j-piece hypothesis pkij,

and we let pij = pk
�

ij for that k� giving minimum loss on Si.
To summarize more formally, the procedure computes pij as follows:

1. if j = 1 then compute pij 2 H such that Lpij (Si) � Lh(Si) for all h 2 T .
2. else for 0 � k � i do:

(A) let Tik = h(xi�k+1; yi�k+1); : : : ; (xi; yi)i
(B) compute hik 2 H such that Lhik (Tik) � Lh(Tik) for all h 2 T
(C) \recursively" compute pi�k;j�1

(D) let

pkij(x) =

�
pi�k;j�1(x) if x < xi�k+1
hik(x) otherwise

3. pij = pk�ij where k� = argmink(Lpk
ij
(Si)):

(Here, we use the notation Lh(S) to denote the total loss of h on a sample S:
Lh(S) =

P
(x;y)2S Lh(x; y).)

Although we described the computation of pij recursively, in fact, we can store
these values in a table using standard dynamic programming techniques. That
the procedure runs in polynomial time then follows from the fact that only O(ms)
piecewise functions pij are computed and stored in such a table.
To prove the correctness of the procedure, we argue by induction on j that

Lpij (Si) � Lh(Si) for h 2 pwj(T ). In the base case that j = 1, this follows
immediately from our assumption that T is empirically minimizable by H.
Otherwise, if j > 1, then let f be a function in pwj(T ) de�ned by bins I1; : : : ; Ij

and functions f1; : : : ; fj 2 T . Assume without loss of generality that the bins are
ordered in the sense that if u < v, r 2 Iu and s 2 Iv then r < s.
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Choose the largest value of k for which all the points of Tik fall in bin Ij , i.e., for
which fxi�k+1; : : : ; xig � Ij . Then Lhik (Tik) � Lfj (Tik) by our assumption that T
is empirically minimizable by H. Let f 0 be the (j � 1)-piecewise function de�ned
by bins I1; : : : ; Ij�2; Ij�1 [ Ij and functions f1; : : : ; fj�1. Then, by the inductive
hypothesis, Lpi�k;j�1 (Si�k) � Lf 0 (Si�k). Thus,

Lpij (Si) � Lpk
ij
(Si)

= Lpi�k;j�1 (Si�k) + Lhik (Tik)

� Lf 0 (Si�k) + Lfj (Tik)

= Lf (Si);

completing the induction and the proof.
Thus, in the frequent case that empirical minimization of loss is su�cient for

learning, Theorem 4 may be used to translate an algorithm for loss minimization
over T into an agnostic learning algorithm for functions that are piecewise over T .
As an application, suppose the observed range Y is bounded so that Y � [�M;M ]
for some �nite M . In such a setting, Theorem 4 implies the e�cient agnostic
learnability (with respect to the quadratic loss function) of step functions with at
most s steps (i.e., piecewise functions in which each piece fi is a constant function).
This follows from the fact that constant functions are empirically minimizable, and
the fact that uniform convergence can be achieved for such functions. By a similar
though more involved argument, Theorem 4 can be invoked to show more generally
that s-piecewise degree-d polynomials can be agnostically learned in polynomial
time, as we show below.
Before proving this theorem, however, we will �rst need to review some tools

for proving uniform convergence. Speci�cally, we will be interested in the pseudo
dimension of a class of functions F , a combinatorial property of F that largely char-
acterizes the uniform convergence over F (Dudley, 1978; Haussler, 1992; Pollard,
1984).
Let F be a class of functions f : X ! R, and let S = f(x1; y1); : : : ; (xd; yd)g be a

�nite subset of X �R. We say that F shatters S if

f0; 1gd = fhpos(f(x1) � y1); : : : ; pos(f(xd) � yd)i : f 2 Fg
where pos(x) is 1 if x is positive and 0 otherwise. Thus, F shatters S if every
\above-below" behavior on the points x1; : : : ; xd relative to y1; : : : ; yd is realized by
some function in F .
The pseudo dimension of F is the cardinality of the largest shattered �nite subset

of X �R (or is 1 if no such maximum exists).
Haussler (1992, Corollary 2) argues that, if the class LH = fLh : h 2 Hg is

uniformly bounded and has pseudo dimension d < 1, then a sample of size poly-
nomial in 1=�, 1=� and d is su�cient to guarantee uniform convergence in the sense
of Equation (1). Thus, to prove uniform convergence for a hypothesis space H,
it su�ces to upper bound the pseudo dimension of LH (and to show that LH is
uniformly bounded).
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Since we are here concerned with piecewise functions, the following theorem will
be useful for this purpose:

Theorem 5 Let X � R, and let F be a class of real-valued functions on X with
pseudo dimension d <1. Then the pseudo dimension of pws(F) is at most s(d+
1)� 1.

Proof: Let S be a subset of X �R of cardinality s(d + 1). We wish to show that
S is not shattered by pws(F).
Let the elements of S be indexed by pairs i; j where 1 � i � s and 1 � j � d+ 1.

Further, assume without loss of generality that these elements have been sorted so
that S = f(xij; yij)g1�i�s;1�j�d+1 and xij < xi0j0 if i < i0 or if i = i0 and j < j0.
(If the xij's are not all distinct, then S cannot possibly be shattered.) Thus, we
break the xij's into s blocks, each consisting of d+ 1 consecutive points.
Let Si = f(xij; yij)g1�j�d+1 be the ith such block. Since F has pseudo dimension

d, Si cannot be shattered, which means that there must exist a string �i 2 f0; 1gd+1
that is not included in the set

�i = fhpos(f(xi1) � yi1); : : : ; pos(f(xi;d+1)� yi;d+1)i : f 2 Fg:

Let � = �1�2 � � ��s be the concatenation of these strings �i. We claim that � is
not a member of

� = fhpos(f(x11)� y11); : : : ; pos(f(x1;d+1)� y1;d+1);

pos(f(x21)� y21); : : : ; pos(f(x2;d+1)� y2;d+1);

...

pos(f(xs;1)� ys;1); : : : ; pos(f(xs;d+1)� ys;d+1)i : f 2 pws(F)g:
Suppose to the contrary that f witnesses �'s membership in �. Then f is de�ned by
disjoint intervals I1; : : : ; Is whose union is R, and functions f1; : : : ; fs 2 F . Assume
without loss of generality that the intervals have been sorted so that if i < j then
every point in Ii is smaller than every point in Ij. Inductively, we show the following
invariant holds for f : For i = 1; 2; : : : ; s, the set I1 [ � � � [ Ii does not contain all
the elements x1;1; : : : ; xi;d+1. The fact that I1 does not contain all the elements
x1;1; : : : ; x1;d+1 follows from the de�nition of �1 (otherwise, f1 2 F witnesses �1 2
�1). Suppose that I1 [ � � � [ Ii contains the elements x1;1; : : : ; xi;d+1. By the
inductive assumption, I1 [ � � � [ Ii�1 contains at most the points x1;1; : : : ; xi�1;d;
therefore, the interval Ii contains at least the elements xi�1;d+1; : : : ; xi;d+1. But
then fi is a witness for �i 2 �i, which contradicts the de�nition of �i.
Thus, in particular, I1 [ � � � [ Is does not contain all the points x1;1; : : : ; xs;d+1,

a clear contradiction since I1 [ � � � [ Is = R.
Therefore, as claimed, � 62 �, and so S is not shattered, proving the theorem.

We are now ready to prove the agnostic learnability of piecewise polynomial func-
tions:
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Theorem 6 Let X � R and Y � [�M;M ]. Then there exists an algorithm for
agnostically learning the class of s-piecewise degree-d polynomials (with respect to
the quadratic loss function Q) in time polynomial in s, d, M , 1=� and 1=�. The
sample complexity of this algorithm is (9216M4=�2)(4s(1+d)2(2+d) ln(192eM2=�)+
ln(16=�)).

Proof: Let P be the class of real-valued degree-d polynomials on X, and let Ps =
pws(P). Let P be the set of polynomials in P with range in [�M;M ], and similarly
de�ne Ps. Our goal is to show that Ps is agnostically learnable.
For any function f : X ! R, let clamp(f) be that function obtained by \clamp-

ing" f in the range [�M;M ]. That is, clamp(f) = g � f where

g(y) =

8<
:
�M if y � �M
y if �M � y �M
M if M � y.

For a class of real-valued functions F , we also de�ne clamp(F) to be fclamp(f) :
f 2 Fg.
As noted above, the collection of all linear combinations of a set of basis func-

tions is empirically minimizable. Thus, choosing basis functions 1; x; : : :; xd, we see
that P is empirically minimizable by P , and therefore, applying Theorem 4, Ps is
empirically minimizable by Ps.
To show that Ps is agnostically learnable, it would su�ce then to prove a uniform-

convergence result for Ps. Unfortunately, most of the known techniques (Haussler,
1992; Pollard, 1984) for proving such a result would require that the loss function
Q be bounded. In our setting, this would be the case if and only if the functions
in the hypothesis space H were uniformly bounded, which they are not if H = Ps.
Therefore, rather than output the piecewise polynomial p in Ps with minimum

empirical loss, we instead output p0 = clamp(p). Note that the empirical loss of p0

is no greater than that of p since our observed range is a subset of [�M;M ]. Thus,
Ps is empirically minimizable by clamp(Ps).
We argue next that a polynomial-size sample su�ces to achieve uniform conver-

gence for clamp(Ps) with respect to the loss function Q. As noted above, by Haus-
sler's (1992) Corollary 2, this will be the case if Q

clamp(Ps)
is uniformly bounded

and has polynomial pseudo dimension. Clearly, every function in Q
clamp(Ps)

is

bounded between 0 and 4M2 so Q
clamp(Ps)

is uniformly bounded.

To bound the pseudo dimension of Q
clamp(Ps)

, we make the following observa-

tions:

1. Because every degree-d polynomial p has at most d � 1 \humps," clamp(p)
must be an element of Pd+1. Thus, clamp(Ps) � Ps(d+1) � Ps(d+1), and so
Q
clamp(Ps)

� pws(d+1)(QP ).

2. Every function Qh(x; y) in QP can be written as a linear combination of the
basis functions 1; x2; : : : ; x2d, y; yx; : : : ; yxd and y2. This follows from the de�-
nition of quadratic loss, and from the fact that h is a degree-d polynomial.
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3. Thus, QP is a subset of a (2d+3)-dimensional vector space of functions. There-
fore, its pseudo dimension is at most 2d+3 (Dudley, 1978) (reproved by Haussler
(1992, Theorem 4)).

4. By Theorem 5, this implies that the pseudo dimension of pws(d+1)(QP ) is at
most s(d + 1)(2d+ 4).

Therefore, the pseudo dimension of Q
clamp(Ps)

is at most s(d+ 1)(2d+ 4).

To complete the proof, we must overcome one �nal technical di�culty: We must
show that there exists a polynomial q 2 Ps whose true expected loss is within �=3
of optimal, and whose empirical loss is within �=3 of its true loss. (See Section 4.1.)
Again, this may be di�cult or impossible to prove since q may be unbounded.

However, this is not a problem if q has range [�M;M ] (i.e., if q 2 Ps) since in this
case a good empirical estimate of q's true loss can be obtained using Hoe�ding's
(1963) inequality.

Thus, because Ps � Ps is empirically minimizable by clamp(Ps), we have e�ec-
tively shown that Ps is agnostically learnable using clamp(Ps).

This is not quite what we set out to prove since our goal was to show that Ps is
agnostically learnable. However, this can now be proved using the fact that every
function in clamp(Ps) is in fact a piecewise polynomial with range in [�M;M ].

More speci�cally, as noted above, clamp(Ps) � Ps(d+1), so clamp(Ps) is ag-
nostically learnable using clamp(Ps(d+1)). Since the loss of clamp(p) is no worse
than that of p, for any function p, it follows that opt(clamp(Ps)) � opt (Ps). This
implies that Ps is agnostically learnable using clamp(Ps(d+1)).

The stated sample complexity bound follows from a combination of the above
facts with Haussler's (1992) Corollary 2.

Thus, we have shown that piecewise polynomials are agnostically learnable when
the number of pieces s is �xed. It is natural to ask whether it is truly necessary
that s be �xed. In other words, is there an e�cient algorithm that \automatically"
picks the \right" number of pieces s? Formally, this is asking whether the class
pw(P) = Ss�1 pws(P) is agnostically learnable (with respect to the quadratic loss
function). Here, we would allow the learning algorithm time polynomial in 1=�, 1=�,
and the minimumnumber of pieces s necessary to have loss at most opt(pw(P))+�.
Unfortunately, this is not feasible because we can construct situations in which

there is not enough information to determine whether the \right" number of pieces
is very large or very small. Speci�cally, let X = [0; 1] be the domain with a uniform
distribution on instances in X, let Y = f0; 1g be the observed range, and assume
that the degree of the polynomials we are using is zero (in other words, we are
trying to agnostically learn step functions). Consider the following two p-concepts:
The �rst is the constant function f � 1=2. In other words, each point x is labeled
0 or 1 with equal probability. In this case, the optimal number of pieces s is one |
the quadratic loss is minimized by a single step that is 1=2 over the entire domain.
The second kind of p-concept, denoted gt, is a deterministic function (i.e., its range
is f0; 1g) that has t equal size steps, where t is \large." The value of the function
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on each of these steps is chosen at random (although, as already mentioned, the
function itself is deterministic). In this case, the optimal number of pieces is s = t.
Intuitively, it seems clear that the learning algorithm cannot distinguish these

two cases until it observes at least two points in the same bin, an event that is
unlikely to occur until about

p
t points are observed. Further, without the ability

to distinguish these cases, the learning algorithm cannot �nd a hypothesis whose
loss comes close to optimal. This is because if the learning algorithm stops before
having seen

p
t examples, then it cannot distinguish data produced by f or gt.

Thus, its hypothesis will be far from at least one of these p-concepts, and therefore,
the learner has a reasonably high probability of outputting a p-concept that is far
from optimal if it chooses a sample signi�cantly smaller than

p
t. On the other

hand, if the learner does choose a sample of size
p
t or larger, then it risks drawing

far too many examples when t is large, but the true target p-concept is f (in which
case t = 1).
Although we omit the details, these arguments can be made rigorous using, for

instance, the randomized lower bound techniques of Blumer et al. (1989). Since t
is arbitrary, this shows that an arbitrarily large number of observations are needed
to agnostically learn piecewise polynomials with any �nite number of pieces.
Finally, we mention that the results of this section can be generalized to �nd

piecewise functions that are continuous by only considering a �nite set of endpoints
for the hypothesis function over each interval and adding the choice of endpoint as
a variable in the dynamic program.

5. Relations between loss functions for agnostic learning

Suppose that our assumption class A is the functional decomposition using some
class F of boolean functions. A common approach to learning under such conditions
is to �nd a real-valued hypothesis h instead of a boolean function; the hope is that
even given the knowledge that the target f 2 F is boolean, it may be easier to
�nd algorithms that operate in a space of functions characterized by a continuous
parameterization, and that may thus make incremental changes or pursue hill-
climbing methods that do not exist for boolean classes. Indeed, general-purpose
learning algorithms such as the well-known backpropogation algorithm for neural
networks use exactly such an approach.
However, algorithms searching for a real-valued hypothesis almost invariably at-

tempt to minimize a loss function that incorporates the actual real-valued output
h(x) (such as the quadratic loss Q), and as such do not explicitly address perfor-
mance for the most natural loss function for boolean targets, the prediction loss
Z. More precisely, if f : X ! f0; 1g is the boolean target function, does �nding
an h : X ! [0; 1] minimizing E[Qh] = E[(f � h)2] help us at all in predicting the
boolean target value f(x)?
One obvious approach is to de�ne �h(x) = 1 if h(x) � 1=2 and 0 otherwise, and

to use �h to make boolean choices from the real-valued h. This works to some
degree: it is easy to show that in general,
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E[Z�h ] = Pr[f 6= �h] � 4E[Qh]:

(The proof of the last inequality follows by noting that 4E[Qh] = E[(2f � 2h)2],
and by observing next that if f(x) 6= �h(x) (so that f(x) = 0 and h(x) � 1=2, or
f(x) = 1 and h(x) < 1=2) then (2f � 2h)2 � 1.) This bound is tight in the sense
that there exist boolean f and real-valued h for which the equality holds. Thus, in
the case that E[Qh] is small, the stated bound on the expected prediction loss is
nontrivial.
However, in our pursuit of agnostic learning we wish to allow the weakest assump-

tions on f , in which case we should not expect to be able to �nd a hypothesis h
for which E[Qh] is small. Further, for E[Qh] larger than 1=8, the bound obtained
on E[Z�h ] is not better than that achieved by random guessing. We would like to
�nd a way of using h to make predictions with a nontrivial probability of mistake
even as E[Qh] approaches 1=4 (which is the expected quadratic loss corresponding
to \random guessing" achieved by the constant function 1=2).
For any function h : X ! [0; 1], we de�ne $h(x) to be a boolean random variable

that is 1 with probability h(x) and 0 with probability 1�h(x); thus it is simply the
p-concept interpretation of h. We write E[Z$h ] to denote Pr[f(x) 6= $h(x)], where
this probability is taken over the random draw of x and the coin 
ip associated
with $h.

Theorem 7 Let f : X ! f0; 1g be any boolean function, and let h : X ! [0; 1] be
a real-valued function. Then for any distribution D on X,

E[Z$h ] = E[Qh] +E[h(1� h)] � E[Qh] + 1=4:

Proof: We have that

E[Z$h ] = E[f(1� h) + (1 � f)h]

= E[f � 2fh+ h]

and that

E[Qh] = E[(f � h)2]

= E[f2 � 2fh+ h2]:

Combining these equations, and noting that f2 = f (since f is boolean), we have

E[Z$h ] = E[Qh] +E[h(1� h)]

as claimed. The stated upper bound on this quantity follows simply from the fact
that x(1� x) � 1=4 for all real x.
Thus, provided we have achieved a nontrivial expected quadratic loss with h,

we can use $h to obtain a nontrivial expected prediction loss. More precisely, if
E[Qh] � � < 1=4, then E[Z$h ] � 1=4 + � < 1=2, and may be considerably smaller
if h is \almost boolean" in the sense that E[h(1 � h)] is small. Note that in the
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case of very small expected quadratic loss, we should still use �h for predictions;
Theorem 7 covers the agnostic setting where the expected quadratic loss may be
large but non-trivial. In either case, since the expected quadratic loss of h is a
quantity we can estimate, we can choose which predictor to use, giving us a worst-
case expected prediction loss of min(4E[Qh];E[Qh] + E[h(1� h)]).
We note that an improved technique was communicated to us by M. Warmuth.

This technique replaces $h(x) with a rule that predicts 1 with probabilityh(x)
2=(h(x)2+

(1�h(x))2), and 0 otherwise. Using an argument similar to that used in the proof of
Theorem 7, it can be shown that this rule has predictive loss E[Qh=(h

2+(1�h)2)] �
2 �E[Qh].

5.1. Application: weak agnostic learning of AC0

We can immediately apply Theorem 7 to some existing algorithms in the standard
PAC model to obtain algorithms for \weak" agnostic learning. For instance, Linial,
Mansour and Nisan (1993) describe an algorithm in the standard PAC model with
the target domain distribution restricted to be uniform over f0; 1gn. The hypothesis
space H of this algorithm is the class of functions with a Fourier expansion over the
so-called parity basis whose high-order coe�cients (that is, the coe�cients of all
basis functions whose size exceeds `) are 0. The algorithm runs in time polynomial
in n`, 1=� and 1=�. It is shown that the algorithm �nds a real-valued h such
that E[Z�h ] is less than � provided the boolean target function f is \close" to
some hypothesis in the restricted hypothesis class H (that is, the optimal expected
prediction loss must be close to zero).
However, E[Z�h ] is not guaranteed to be near the optimal in the agnostic set-

ting where f is unrestricted. Nevertheless, the algorithm of Linial, Mansour and
Nisan can be used to �nd an h that (nearly) minimizes E[Qh] even in the agnostic
setting; thus we can apply Theorem 7 to show that for any boolean target func-
tion f , min(4E[Qh];E[Qh] +E[h(1�h)]) bounds our expected prediction loss. For
instance, this means that if there exists an AC0 function3 C that weakly approx-
imates the target function f on the uniform distribution (so that f agrees with
C with probability at least 1=2 � 1=p(n) for some polynomial p) then the results
of Linial, Mansour and Nisan combined with Theorem 7 imply the existence of a
quasi-polynomial time algorithm for �nding a hypothesis that weakly approximates
f . We summarize these ideas with a corollary:

Corollary 1 There exists an algorithm with the following properties. The algo-
rithm is given s, d, �, � and access to randomly generated examples of a function
f : f0; 1gn ! f0; 1g. Let 
 be such that there exists an AC0 circuit C of size s and
depth d with the property that Pr[f 6= C] � 1=2� 
. Then, with probability at least
1��, the algorithm �nds a hypothesis function h such that Pr[f 6= h] � 1=2�
2+�
(where all probabilities are computed with respect to the uniform distribution on
f0; 1gn). The algorithm runs in time polynomial in n`, 1=�, and log(1=�), where

` =
�
20 lg(8s=�2)

�d
.
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Proof sketch: The proof uses properties of the Fourier transform, as described
in detail by Linial, Mansour and Nisan (1993). Any function f : f0; 1gn ! R can
be written in the form:

f(x) =
X

S�f1;:::;ng

f̂ (S)�S (x)

where �S(x) =
Q

i2S(�1)xi . A useful fact is Parseval's identity:

E[f2] =
X
S

f̂(S)2:

Let C be as in the statement of the corollary, and let g be de�ned by:

g(x) =

�
1=2� 
 if C(x) = 0
1=2 + 
 if C(x) = 1

Then it can be shown that E[(f � g)2] � 1=4� 
2.
Let r be the function de�ned by

r(x) =
X
jSj�`

f̂ (S)�S (x) +
X
jSj>`

ĝ(S)�S (x):

Thus, r is a sort of mixture of f and g.
By Parseval's identity, E[(f � r)2] � E[(f � g)2] � 1=4� 
2.
We can approximate the function r by running the algorithm given in Linial,

Mansour and Nisan (1993), with the choices of ` and � as given above, and with
� set to �2=4. We can do this with access to examples of the function f since the
algorithm of Linial, Mansour and Nisan approximates the low order coe�cients of
f (which are the same as for r), and sets the high order coe�cients to be zero.
Let h be the resulting hypothesis. Then, by Parseval's identity, and by de�nition

of r,

E[(h� r)2] =
X
jSj�`

(ĥ(S) � f̂ (S))2 +
X
jSj>`

(ĝ(S))2:

The �rst sum is bounded by the accuracy of our approximation of each of the coef-
�cients, and the second sum is bounded using the main lemma of Linial, Mansour
and Nisan (1993, Lemma 7). The result is that E[(h� r)]2 � �2=4.
Sincep

E[(h� f)2] �
p
E[(h� r)2] +

p
E[(r � f)2];

it follows that E[Qh] = E[(h � f)2] � 1=4 � 
2 + �. Therefore, by Theorem 7,
E[Z$h ] � 1=2� 
2 + �.
We conclude this section by mentioning that Theorem 7 can be generalized to a

model where the target function f is a discrete function assuming d possible values,
and the output of h is a normalized vector in Rd; this is intended to model settings
such as character recognition, where we attempt to �nd a real-valued hypothesis
but wish to predict which character is represented in the input with the greatest
possible accuracy.
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6. Hidden variable problems

Thus far we have been striving for algorithms that �nd a good hypothesis under
the assumption that the target function is arbitrarily complex. An insight that
has been made frequently in both the empirical and theoretical machine learning
communities, however, is that no function is arbitrarily complex over all variable
sets: if we can somehow de�ne new variables that compute signi�cant subfunctions
of the target function, then the representation of the target function may simplify
dramatically. This approach to simplifying target functions is sometimes loosely
referred to as feature discovery.

One di�culty with this approach, of course, is that the right features may be as
di�cult to discover as the target function itself; in fact, in scienti�c domains the
frontier of research often focuses just on �nding the quantities that are relevant
to a given phenomenon, and these may be uncovered only after long periods of
experimentation and theory. Thus, in this section, we focus not on the problem of
discovering features, but rather on the problem of learning when only some of the
relevant variables are known or are \visible," while others are \hidden."

We are motivated by the simultaneous realizations that target functions may have
simple representations over the appropriate variable set, but that only some of these
variables may be known at any given time. This hidden-variable model allows an
intermediate step between the strong assumptions of the standard PAC model and
full agnosticism. This model was previously investigated by Kearns and Schapire
(1990).

Let U and V be disjoint sets of variables. We say that the variables in V are
visible, and that the variables in U are hidden. In our setting, the learner observes
random examples which are classi�ed according to some deterministic boolean func-
tion f over the entire variable set U [V . However, the learner is allowed to observe
only the values of the visible variables. Thus, for a given assignment x to the visible
variables V , the label assigned to x appears to be probabilistic. Speci�cally, the
probability that x is labeled 1 is just the probability that an assignment is chosen
for the hidden variables that causes f to evaluate to 1. To the learner, it appears
that the examples are being labeled according to some p-concept pf on the visible
variables, where pf (x) is the conditional probability that f = 1 given that the vis-
ible variables are assigned x; that is, pf (x) = Pr[f = 1 j x]. We can therefore view
such hidden-variable problems as p-concept problems where the domain is the set
of assignments to the visible variables.

In this section, our goal will be to �nd the best possible predictor for the induced
p-concept pf when f is chosen from some class of functions F . In other words, we
will be interested in �nding that rule (called the Bayes optimal predictor) which
minimizes the expected prediction loss Z. We assume that the touchstone class
is large enough to include the Bayes optimal predictor for any pf . Finally, it is
necessary to assume independence between the distributions of assignments to the
hidden and visible variables; without this, it is possible to construct even trivial
target functions f for which pf is arbitrary.



298 M.J. KEARNS, R.E. SCHAPIRE AND L.M. SELLIE

As an easy �rst example, suppose the function f is chosen from the set of conjunc-
tions of literals over U[V . In particular, suppose that f is given by the conjunction
M = RS where the variables in R and S are hidden and visible, respectively. Then
it is not hard to see that pf (x) is 0 if S(x) = 0 and otherwise equals the probability
r that R = 1. Note that if r < 1=2 then the Bayes optimal is the constant function
0; otherwise, it is just the conjunction S. It has been shown (Kearns & Schapire,
1990) that we can approximate the Bayes optimal predictor by applying Valiant's
(1984) algorithm for conjunctions to approximate the conjunction S, and by then
estimating r using this approximation for S. Our goal in this section is to obtain a
similar result for the more general class of k-term DNF.

6.1. An algorithm for k-term DNF hidden variable problems

In the case of conjunctions, the Bayes optimal predictor is either the zero function or
the restriction of the conjunction. (The restriction of a DNF formula is the formula
obtained by syntactically deleting all of the hidden variables.) However, this may
not be so in general, as can be seen in the case of k-term DNF formulas. For
example, suppose that f is the formula w1x1 _w2x2 where w1 and w2 are hidden,
and x1 and x2 are visible. Suppose also that w1 and w2 are each 1 independently
with probability 0:4. Then in this case, the Bayes optimal predictor is x1x2, not
the restriction formula x1 _ x2.
More generally, let f be the k-term DNF formula R1S1 _ � � � _ RkSk, where

the Ri's and Si's are terms over U and V , respectively. Note that the behavior
of the p-concept pf is exactly determined by the values of S1; : : : ; Sk (under our
assumption that hidden and visible variables are independent). That is, if for

z 2 f0; 1gk we de�ne qf (z1; : : : ; zk) to be the probability that f = 1 given that
S1 = z1; : : : ; Sk = zk, then pf (x) = qf (S1(x); : : : ; Sk(x)). Furthermore, it can be
seen that qf is monotone in the sense that qf (z) � qf (z

0) whenever z � z0. (Here,
z � z0 if zi � z0i for all 1 � i � k.) This is because if z � z0 then

qf (z) = Pr[[i:zi=1Ri = 1] � Pr[[i:z0i=1Ri = 1] = qf (z
0):

We have already seen that the Bayes optimal predictor for pf need not be the
restriction of f . In fact, it is not hard to come up with a k-term formula f and a
distribution on the hidden variables such that pf � 1=2 if and only if more than
half of the terms Si are satis�ed. In this case, the Bayes optimal predictor, if
expressed as a DNF formula over the visible variables, will be exponentially large
(in k). Thus, although the original formula may be quite simple, the Bayes optimal
predictor for the induced p-concept may be quite complicated.
Nevertheless, there does exist an e�cient algorithm for �nding the Bayes optimal

predictor when f is a k-term DNF formula. We will show that pf can be represented
as a k-probabilistic decision list with increasing probabilities, a class of p-concepts
for which there is known to exist an e�cient algorithm for approximating the Bayes
optimal predictor (Kearns & Schapire, 1990). A similar technique is used by Blum
and Chalasani (1992).
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A k-probabilistic decision list (k-PDL) ` over variable set V is a sequence of pairs
h(d1; r1); : : : ; (ds; rs)i where each di is a conjunction of at most k literals from V
and each ri 2 [0; 1]. We also require that some di is the constant function 1 (this is a
slightly more convenient requirement than the equivalent requirement that ds = 1).
Here, `(x) is de�ned to be rj where j is the least index for which dj(x) = 1. Such
a list is said to have increasing probabilities if ri � ri+1 for i < s. See Kearns and
Schapire (1990) and Yamanishi (1992a) for further background on probabilistic
decision lists.

Kearns and Schapire (1990) show that k-PDL's with increasing probabilities can
be learned with a model of probability: they describe an algorithm for �nding an
approximation h for a given list ` such that the expected di�erence jh� `j is small.
Thus, it su�ces to show that pf is a k-PDL with increasing probabilities, since we
can then use Kearns and Schapire's algorithm to �nd the Bayes optimal predictor
(and furthermore, �nd a good model of the function pf itself).

Theorem 8 Let f be a k-term DNF formula. Then pf is equivalent to a k-PDL
with increasing probabilities.

Proof: We show �rst that qf is a k-PDL with increasing probabilities. We regard
qf as a function over the variables s1; : : : ; sk. For each possible assignment z =
hz1; : : : ; zki, let dz =

V
i:zi=0

�si, and let rz = qf (z). Let ` be a list consisting of
exactly the set of pairs (dz; rz) for all assignments z and ordered in such a fashion
that ` has increasing probabilities.

We claim that `(z) = qf (z) for all z. To see that qf (z) � `(z), note that dz(z) = 1,
and therefore, `(z) � rz = qf (z) since ` has increasing probabilities. To see that
qf (z) � `(z), observe �rst that `(z) = rz0 for some z0 for which dz0(z) = 1. By
de�nition of dz0 , this means that for each i, if z0i = 0 then zi = 0; that is, z0 � z.
So, by monotonicity of qf , this implies that qf (z) � qf (z0) = rz0 = `(z0). Thus,
qf (z) = `(z) as claimed.

By substitution then, pf (x) = `(S1(x); : : : ; Sk(x)). This is a list consisting of
pairs (dz; rz) where dz =

V
i:zi=0

�Si. It is easily seen by DeMorgan's Law that dz is
a k-DNF formula t1_� � �_ tw over the variables in V . We therefore replace the pair
(dz; rz) in ` with the sequence of pairs (t1; rz); : : : ; (tw; rz). Applying this operation
for each z, it is easily veri�ed that the resulting list is a k-PDL with increasing
probabilities that equals pf .

As noted above, the algorithm described by Kearns and Schapire (1990) can be
applied to prove the following corollary:

Corollary 2 Let f be a k-term DNF formula over the variable set U [ V . Then
there exists an e�cient algorithm for �nding the Bayes optimal predictor for the
induced p-concept pf over the assignments to V .



300 M.J. KEARNS, R.E. SCHAPIRE AND L.M. SELLIE

6.2. Why k-CNF may be harder than k-term DNF

In this section we give evidence suggesting that learning may be di�cult when
the target function f is a k-CNF formula. Speci�cally, we show that for 2-CNF,
there exist cases in which the Bayes optimal predictor is arbitrarily complicated,
requiring an exponentially large representation.

Let f = (s1 _ r1) � � � (sn _ rn) where si 2 V and ri 2 U . Let f 0 be any DNF
formula over V , each of whose terms contain exactly n=2 of the visible variables.
Note that f 0 may be exponentially large. We show that we can create a distribution
DU on the hidden variables such that f 0 is the Bayes optimal function for f .

For each term ti in f 0 we de�ne an assignment zi whose jth bit is 1 if and only
if sj does not occur in ti: Let � = 1=(4`� 2) where ` is the number of terms of f 0:
Let DU (1n) = 1=2� �, let DU (zj) = 2� for all j, and let DU (u) = 0 for all other
assignments u.

Let v be an assignment to the visible variables. If a term ti in f 0 is satis�ed by
v then f is satis�ed when the hidden variables are assigned either 1n (the all 1's
vector) or zi. Thus if f 0 is satis�ed then pf (v) � 1=2 + �. Otherwise, if f 0 is not
satis�ed by v then the only satisfying assignment to the hidden variables that has
nonzero probability is 1n, so pf (v) = 1=2� � in this case.
Thus, as claimed, the Bayes optimal predictor for pf is exactly f 0.

Since there exists a doubly exponential number of formulas f 0 (speci�cally, there

are 2(
n

n=2) = 22

(n)

such formulas), this implies that for any representation of the
Bayes optimal functions, there is some DU for which the Bayes optimal predictor
has an exponentially long representation.
However, note that most of the functions used in this construction can easily

be approximated by a constant-sized representation since when � is small pf (v)
is close to 1=2 for all assignments v. Thus, it remains open whether the result of
Section 6.1 can be extended to handle k-CNF formulas.

7. Open Problems

This paper presented the fruits of an initial investigation into the properties of
agnostic learning models. There is much work to be done in this area, and it
seems plausible that the \right" model for obtaining powerful positive results should
choose a middle ground that balances assumptions on target functions with assump-
tions on domain distributions, while still remaining applicable to problems arising
in practice. Here we have simply studied one extreme set of assumptions in order
to obtain some idea of what can and cannot be accomplished e�ciently.

The main open research direction is to explore the limits of e�cient learning
algorithms in agnostic models. Are there other problems for which there exist
e�cient learning algorithms? For instance, in Section 6, we showed how to learn
p-concepts induced by partially visible k-term DNF formulas. Can this result be
extended to handle k-CNF formulas? This problem may be harder since the Bayes
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optimal predictor can be extremely complicated. On the other hand, we have not
yet come up with a case where there does not exist a very simple function that
approximates the Bayes optimal predictor.
Rather than trying to �nd e�cient algorithms for speci�c learning problems, we

might instead explore the theoretical power of known algorithms. That is, we
might ask if anything can be proved about the capabilities of various \o�-the-
shelf" learning algorithms commonly used in practice, such as neural networks and
decision-tree algorithms.
We would also like to understand the theoretical properties of some of the models

discussed in this paper. For instance, in the fully agnostic PAC model, is there any
situation in which membership queries are useful? Intuitively, membership queries
should not give us more power since the answers to queries are more or less arbitrary
(since the target function is arbitrary). However, we have so far been unable to
derive a rigorous proof based on this intuition.
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Notes

1. To the best of our knowledge and recollection, the term \agnostic learning" was coined during
a discussion among Sally Goldman, Ron Rivest, and the �rst two authors of this paper.

2. Certain \permissibility" assumptions are required | see Haussler (1992) for details.

3. AC0 is the class of all boolean functions computed by a constant-depth boolean circuit com-
posed of unbounded fan-in and, or and not gates.
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