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Abstract

We introduce a flexible family of fairness regularizers for
(linear and logistic) regression problems. These regular-
izers all enjoy convexity, permitting fast optimization,
and span the range from group fairness to strong indi-
vidual fairness. We study the accuracy-fairness trade-off
on any given dataset, and we measure the severity of this
trade-off via a numerical quantity we call the Price of
Fairness (PoF). The centerpiece of our results is an ex-
tensive comparative study of the PoF across six different
datasets in which fairness is a primary consideration.

1 Introduction

The widespread use of machine learning to make con-
sequential decisions about individual citizens (including
in domains such as credit, employment, education and
criminal sentencing [3, 4, 25, 27]) has been accompanied
by increased reports of instances in which the algorithms
and models employed can be unfair or discriminatory in
a variety of ways [2, 28]. As a result, research on fairness
in machine learning and statistics has seen rapid growth
in recent years [1, 5–7, 9–11, 13, 14, 17–20, 24, 26], and
several mathematical formulations have been proposed
as metrics of (un)fairness for a number of different learn-
ing frameworks. While much of the attention to date has
focused on (binary) classification, where standard fair-
ness notions include equal false positive or negative rates
across different populations, less attention has been paid
to fairness in (linear and logistic) regression, where the
target and/or predicted values are continuous, and the
same value may not occur even twice in the training.

In this work, we introduce a rich family of fairness
metrics for regression models that take the form of a
fairness regularizer and apply them to the standard loss
functions for linear and logistic regression. Since these
loss functions and our fairness regularizer are convex, the
combined objective functions obtained from our frame-
work are also convex, and thus permit efficient opti-
mization. Furthermore, our family of fairness metrics

∗The full technical version of this paper is available at
https://arxiv.org/abs/1706.02409.

covers the spectrum from the type of group fairness
that is common in classification formulations (where e.g.
false arrests in one racial group can be “compensated”
for by false arrests in another racial group) to much
stronger notions of individual fairness (where such can-
cellations are forbidden, and every injustice is charged
to the model). Our framework also permits one to either
forbid the use of a “protected” variable (such as race),
by demanding that a single model be learned across all
groups, or to build different group-dependent models.

Most importantly, by varying the weight on the fair-
ness regularizer, our framework permits us to study the
trade-off between predictive accuracy and fairness. This
is important to examine and understand in a domain-
specific manner as demanding fairness of models always
come at a cost of reduced accuracy [8, 11, 15, 32], it be-
hooves practitioners working with fairness-sensitive data
sets to understand just how mild or severe this trade-off
is in their particular arena, permitting them to make
informed modeling and policy decisions.

Our central results take the form of an extensive com-
parative empirical case study across six distinct datasets
in which fairness is a primary concern. We introduce an
intuitive quantity called the Price of Fairness (PoF),
which numerically quantifies the extent to which in-
creased fairness degrades accuracy. We compare the
PoF across all of our 6 datasets, fairness notions, and
treatments of protected variables.

Our primary contributions are: (1) The introduction
of a flexible but convex family of fairness regularizers
of varying strength that spans the spectrum from group
to individual fairness. (2) The introduction of a quan-
titative, data-dependent measure of the severity of the
accuracy-fairness tradeoff. (3) An extensive empirical
comparative study across six fairness-sensitive data sets.

While our empirical study does reveal some reason-
ably consistent findings across datasets, perhaps the
most important message is a cautionary one: the de-
tailed trade-off between accuracy and fairness, and the
comparison of different fairness notions, appears to be
quite domain-dependent and lacking prescriptive “uni-
versals”. This is perhaps consistent with the emerging
theoretical literature demonstrating the lack of a single
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“right” definition of fairness [7, 12, 21].

2 The Regression Setting

Consider the standard (linear and logit) regression set-
ting: denote the explanatory variables (or instances) by
x ∈ X = Rd and the target variables (or labels) by
y ∈ Y = [−1, 1]. Note that for both linear and logit
models, the target values are continuous. Let P denote
the joint distribution over X × Y. Suppose every in-
stance x belongs to exactly one of 2 groups, denoted by
1 and 2.1 This partition of X into groups (e.g. into
different races or genders) is encoded in a “sensitive”
feature Xd+1. Let S = {(xi, yi)}ni=1} be a training set of
n samples drawn i.i.d. from P, separated by groups into
S1 and S2. Let n1 = |S1| and n2 = |S2|. (n = n1 + n2.)

We study the trade-off between fairness and accu-
racy for the class of linear and logit regression models.
Given a pair of explanatory and target variables (x, y),
we treat y as the ground truth description of x’s merit
for the regression task at hand: two pairs (x, y), (x′, y′)
with y ≈ y′ have similar observed outcomes. We aim
to design models which treat two such instances with
similar observed outcomes similarly, a notion we refer
to as fairness with respect to the ground truth. For a
given accuracy loss ` and fairness loss (or penalty) f ,
we define the λ-weighted fairness loss of a regressor w
on P to be `P(w) + λfP(w). For a sample S, we analo-
gously define the λ-weighted fairness training loss of w
as `(w, S) + λf(w, S). For linear regression, we let ` be
mean-squared error; for logistic regression, we let ` be
the log loss. Finally, we use `2 regularization, so the
overall loss is `P(w) + λfP(w) + γ||w||2.

2.1 A Convex Family of Fairness Penalties

Our definitions of fairness all measure how similarly a
model treats two similarly labeled instances, one from
each group. In particular, all of our definitions have
a term for each “cross-group” pair of instances/labels,
weighted as a function of |yi − yj | and |w · xi −w · xj |.
For shorthand, we refer to pairs of instances/labels (one
from each group) as cross pairs, and cross pairs with sim-
ilar labels as similar cross pairs. Our definitions differ
in precisely which cross pair disparities can counteract
one another. In one extreme (individual fairness), ev-
ery cross pair disparity increases the fairness penalty of
a model. In the other (group fairness), the disparities
in different similar cross pairs can counterbalance each
other. Hence, our fairness notions for regression align
closely to individual and group fairness for classification,
both common threads in the fairness literature.

1The generalization to more than 2 groups is straightforward.

Remark 1. We assume the sensitive feature Xd+1 is
available to the learning procedure in one of two ways.
In the “single model” setting, the algorithm should build
a single linear model w for all of X (over all but the sen-
sitive features), but can measure the empirical fairness
loss of w using the sensitive feature. In the “separate
models” setting, the algorithm can build two distinct lin-
ear models w1,w2 for the two groups, thus directly ob-
serving the sensitive feature when building these models.

We define our fairness penalties for single model but
the extension to separate models is straightforward.

Individual Fairness The first fairness penalty we
propose is the following:

f1(w, S) =
1

n1n2

∑
(xi,yi)∈S1

(xj ,yj)∈S2

d(yi, yj)
(
w · xi −w · xj

)2
,

for some fixed non-negative function d (assumed to be
decreasing in |yi − yj |). Since d(yi, yj) does not depend
upon the decision variables (w), we treat these values as
constants in an optimization procedure for selecting w.
f1 corresponds to individual fairness; for every cross

pair (x, y) ∈ S1, (x′, y′) ∈ S2, a model w is penalized for
how differently it treats x and x′ (weighted by d(y, y′)).
No cancellation occurs: the penalty for overestimating
several of one group’s labels cannot be mitigated by over-
estimating several of the other group’s labels.

Group Fairness The second fairness penalty we pro-
pose is the following:

f2(w, S) =
( 1

n1n2

∑
(xi,yi)∈S1

(xj ,yj)∈S2

d(yi, yj)
(
w · xi −w · xj

))2
.

f2 corresponds to group fairness: on average, the two
groups’ instances should have similar labels (weighted by
function d). Unlike f1, f2 allows for compensation: in-
formally, if w over-values some instances of one group 1
relative to group 2 in similar cross pairs, it can compen-
sate on other similar cross-pairs by over-valuing those
instances from group 2 relative to group 1.

In both of the above formulations, for any cross pair
(xi, yi) ∈ S1 and (xj , yj) ∈ S2, any regressor w will
have penalty that increases as |w · xi −w · xj | increases,
weighted by d(yi, yj). If the cross pair is similar (yi is
close to yj and d(yi, yj) is large), a regressor which makes
very different predictions for xi and xj will incur large
loss. If the cross pair is less similar (yi is far from yj
and d(yi, yj) is smaller), there is less penalty for having
a regressor for which |w · xi −w · xj | is large.

Group and individual fairness correspond to two ex-
tremes and one could define different notions of fairness
by grouping the cross pairs in different manners.
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2.2 Discussion of Our Notions of Fairness

Difference between fairness and accuracy: All of
our fairness penalties are small for any perfect regressor:
for a similar cross pair, yi ≈ yj and also w·xi ≈ w·xj for
a perfect regressor w. Our fairness regularizers might
then be interpreted as an unusual proxy for standard
accuracy rather than as fairness notions. However, per-
fect (linear or otherwise) regressors almost never exist in
practice; and between two models with similar accuracy,
these definitions bias a learning procedure towards those
which have similar treatment of similar cross pairs.

Fairness minimizers: Any constant regressor exactly
minimizes all of our fairness regularizers. As we seen em-
pirically, this implies that as λ increases, we transition
from an unfair model with minimum accuracy loss to
a constant (and perfectly fair but trivial) model, whose
accuracy is the best any constant model can achieve.

3 Related Work

In classification, one line of work aims to achieve the
group fairness notion known as statistical parity, i.e. to
avoid disparate impact (see e.g. [1, 5, 10, 11, 13, 17–
20, 24, 26, 31]). Statistical parity can be at odds with ac-
curacy especially when the two groups are inherently dif-
ferent. Hardt et al. [14] introduced a new notion of group
fairness called equality of odds, partially to alleviate this
friction. Optimizing for accuracy subject to equality of
odds was shown to be NP-hard [29]; work following this
result presented efficient heuristics/relaxations [29, 32].

Calders et al. [6] were the first to study the statisti-
cal parity’s analog in regression (called equal means and
balanced residuals). Recently Johnson et al. [16] formal-
ized several notions of impartial estimates for regression.
Both papers consider group fairness. Our group fair-
ness notion however incorporates the similarity of pairs
(through the function d) though the specific choice of d
as a constant would recover the equal means [6].

To achieve any of these fairness notions, one needs
to decide whether or not to allow for disparate treat-
ment (allowing for different treatment or models for dif-
ferent groups)2, and where in the learning process to
enforce fairness: preprocessing (e.g. [17]); inprocessing
(e.g. [11, 20, 31]); or postprocessing (e.g. [14]). Our
approach falls into the inprocessing by encoding fair-
ness as a regularizer (an approach previously studied in
e.g. [20, 31, 32]). Our work differs from previous work in
several aspects mainly by focusing on regression rather
classification. Moreover, our fairness measures draw in-

2Any classifier that uses sensitive attributes is implicitly fitting
separate models to the 2 groups. While this might seem unfair, it
has been argued that it is actually necessary for fairness [9].

spiration from the idea that similar instances should be
treated similarly [9, 33] though we define similarity of
two instances based on their ground truth label.

4 A Comparative Case Study

In this section we describe an empirical case study in
which we apply our regularization framework to six dif-
ferent datasets in which fairness is a central concern.
These datasets include cases in which the observed la-
bels are real-valued, and cases in which they are binary-
valued. We applied linear and logistic regression with
our various fairness regularizers for the real-valued and
binary datasets, respectively. For datasets with real-
valued targets we normalized the inputs and outputs
to be zero mean and unit variance, and we set the
cross-group fairness weights as d(yi, yj) = e−(yi−yj)

2
; for

datasets with binary targets we set d(yi, yj) = 1[yi = yj ].

For each dataset S, we solved optimization problems
of the form minw `(w, S)+λf(w, S)+γ||w||2 for variable
values of λ, where `(w, S) is either MSE (linear regres-
sion) or the logistic regression loss. For each λ we picked
γ as a function of λ by cross validation. Optimization
problems are solved using the CVX solver.

The datasets themselves are summarized in Table 1,
where we specify the size and dimensionality of each,
along with the “protected” feature (race or gender) that
thus defines the subgroups across which we apply our
fairness criteria. The datasets vary considerably in the
number of observations, their dimensionality, and the
relative size of the minority subgroup.

The Adult dataset [22, 23] contains 1994 Census data,
and the goal is to predict whether the income of an in-
dividual is more than 50K per year or not.3 The Com-
munities and Crime dataset [23] includes features rel-
evant to per capita violent crime rates, and the goal
is to predict this crime rate. The COMPAS dataset4

contains data from Broward County, Florida, originally
compiled by ProPublica [2], in which the goal is to pre-
dict whether a convicted individual would commit a
violent crime in the following two years or not. The
Default dataset [23, 30] contains data from Taiwanese
credit card users, and the goal is to predict whether
an individual will default on payments. The Law
School dataset (http://www2.law.ucla.edu/sander/
Systemic/Data.htm) consists of the records of law stu-
dents who went on to take the bar exam and the goal
is to predict whether a student will pass the exam. The
Sentencing dataset contains information from a state de-
partment of corrections regarding inmates in 2010. The
goal is to predict the sentence length given by the judge.

3We only used the data in Adult.data in our experiments.
4filtered similar to that of Corbett-Davies et al. [8].
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Dataset Type n d Min n Protected

Adult logit 32561 14 10771 gender

Communities and Crime linear 1994 128 227 race

COMPAS logit 3373 19 1455 race

Default logit 30000 24 11888 gender

Law School logit 27478 36 12079 gender

Sentencing linear 5969 17 385 gender

Table 1: Summary of datasets. Type indicates whether re-
gression is logistic or linear; n is the number of data points; d
is dimensionality; Min n is the number of data points in the
smaller population; Protected indicates the protected feature.

4.1 Price of Fairness

To study the accuracy vs. fairness trade-off, we vary
the weight λ on the fairness regularizer, and for each
value of λ find the model which minimizes the associated
regularized loss. For the logistic regression, we extract
probabilities from the learned model w as Pr[yi = 1] =
1/(1 + exp(−w · xi)) and evaluate these probabilities as
predictions for the binary labels using MSE.5 In all of
the datasets, as λ increases, the models converge to the
best constant predictor, with minimum fairness penalty.

We now propose a measure for cross-dataset compar-
ison we call Price of Fairness which has the effect of
normalizing the fairness loss to the same scale. This is
because otherwise comparing the trade-offs in a quan-
titative manner would be difficult since the scale of the
fairness loss differs substantially from dataset to dataset.

For a given data set and regression type (linear or lo-
gistic), let w∗ be the optimal model absent any fairness
penalty (i.e. the empirical risk minimizer when λ = 0).
This model will suffer some fairness penalty. For each
dataset, we fix a normalization such that this fairness
penalty is rescaled to be 1, and ask for the cost (in terms
of the relative increase in mean squared error) of con-
straining our predictor to have fairness penalty α ≤ 1.
Formally, let w∗ = arg minw `P(w). For any value of
α ∈ [0, 1] we define the price of fairness (PoF) as:

PoF(α) =
minw `P(w) subject to fP(w) ≤ αfP(w∗)

`P(w∗)
.

In theory, group fairness is strictly less costly than in-
dividual fairness for any particular model (by Jensen’s
inequality), and using separate models (one for each
group) should strictly improve the fairness/accuracy
trade-off for any of our fairness notions. However, PoF
asks for the cost of relative improvements over the un-
constrained optimum. So it can be that the PoF for
one fairness penalty case is larger than for another, even
if the absolute fairness loss for both the numerator and

5Note that assessing the MSE of these probabilities, interpreted
as predictions, is a sensible choice. Since squared error is a proper
scoring rule, if the labels are indeed generated according to a logis-
tic regression model, minimizing the squared error of a predictor
using mean squared error will elicit the true model as its minimizer.

the denominator is smaller in the second case. With this
observation in mind, we move to the empirical findings.

Figure 1 displays the PoF on each of the 6 datasets,
for each fairness regularizer, and the single and separate
models. Note that we see diversity of trade-offs across
datasets. For some (e.g. COMPAS and Sentencing), in-
creasing the fairness constraint by decreasing α has only
a mild cost on accuracy. For others (e.g. Communities
and Crime, and Law School), the cost increases steadily.

Next, we observe that with this normalization, al-
though the difference between separate and single mod-
els remains small on most datasets, on two datasets,
differences emerge. In the Law School dataset, restrict-
ing to a single model leads to a significantly higher PoF
when considering the group fairness metric, compared
to allowing separate models. In contrast, on the Adult
dataset, restricting to a single model substantially re-
duces the PoF when considering individual fairness.

Finally, this normalization allows us to observe vari-
ation across fairness penalties in the rate of change in
the PoF as α is decreased. In some datasets (e.g. Com-
munities and Crime, and Sentencing), the PoF changes
in lock-step across all measures of unfairness. However,
for others (e.g. Default), the PoF increases substantially
with α when we consider group or hybrid fairness mea-
sures, but is much more stable for individual fairness.

Figure 1: The PoF across data sets, for each type of fairness
and single/separate models.
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[11] B. Fish, J. Kun, and Á. D. Lelkes. A confidence-based
approach for balancing fairness and accuracy. In SDM,
pages 144–152, 2016.

[12] S. Friedler, C. Scheidegger, and S. Venkatasubrama-
nian. On the (im)possibility of fairness. CoRR,
abs/1609.07236, 2016.

[13] S. Hajian and J. Domingo-Ferrer. A methodology for di-
rect and indirect discrimination prevention in data min-
ing. IEEE Transactions on Knowledge and Data Engi-
neering, 25(7):1445–1459, 2013.

[14] M. Hardt, E. Price, and N. Srebro. Equality of opportu-
nity in supervised learning. In NIPS, pages 3315–3323,
2016.

[15] Z. Jelveh and M. Luca. Towards diagnosing accuracy loss
in discrimination-aware classification: An application to
predictive policing. In FATML, 2015.

[16] K. Johnson, D. Foster, and R. Stine. Impartial predictive
modeling: Ensuring fairness in arbitrary models. CoRR,
abs/1608.00528, 2016.

[17] F. Kamiran and T. Calders. Data preprocessing tech-
niques for classification without discrimination. Knowl-
edge and Information Systems, 33(1):1–33, 2011.

[18] F. Kamiran, T. Calders, and M. Pechenizkiy. Discrim-
ination aware decision tree learning. In ICDM, pages
869–874, 2010.

[19] F. Kamiran, A. Karim, and X. Zhang. Decision theory
for discrimination-aware classification. In ICDM, pages
924–929, 2012.

[20] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma.
Fairness-aware classifier with prejudice remover regular-
izer. In ECML/PKDD, pages 35–50, 2012.

[21] J. Kleinberg, S. Mullainathan, and M. Raghavan. Inher-
ent trade-offs in the fair determination of risk scores. In
ITCS, 2017.

[22] R. Kohavi. Scaling up the accuracy of NB classifiers: A
decision-tree hybrid. In ICDM, pages 202–207, 1996.

[23] M. Lichman. UCI machine learning repository, 2013.
URL http://archive.ics.uci.edu/ml.

[24] B. T. Luong, S. Ruggieri, and F. Turini. k-NN as an im-
plementation of situation testing for discrimination dis-
covery and prevention. In KDD, pages 502–510, 2011.

[25] C. Miller. Can an algorithm hire better than a human?
The New York Times, 2015.

[26] D. Pedreshi, S. Ruggieri, and F. Turini. Discrimination-
aware data mining. In KDD, pages 560–568. ACM, 2008.

[27] C. Rudin. Predictive policing using machine learning to
detect patterns of crime. Wired Magazine, 2013.

[28] L. Sweeney. Discrimination in online ad delivery. Com-
munications of the ACM, 56(5):44–54, 2013.

[29] B. Woodworth, S. Gunasekar, M. Ohannessian, and
N. Srebro. Learning non-discriminatory predictors.
CoRR, abs/1702.06081, 2017.

[30] I.-C. Yeh and C.-h. Lien. The comparisons of data min-
ing techniques for the predictive accuracy of probability
of default of credit card clients. Expert Systems with
Applications, 36(2):2473–2480, 2009.

[31] M. Zafar, I. Valera, M. Gomez-Rodriguez, and K. Gum-
madi. Fairness constraints: A mechanism for fair classi-
fication. CoRR, abs/1507.05259, 2015.

[32] M. B. Zafar, I. Valera, M. Gomez-Rodriguez, and K. P.
Gummadi. Fairness beyond disparate treatment & dis-
parate impact: Learning classification without disparate
mistreatment. In WWW, pages 1171–1180, 2017.

[33] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork.
Learning fair representations. In ICML, pages 325–333,
2013.

5


