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Social computing benefits from mathematical 
foundations, but research has barely 
scratched the surface.

BY YILING CHEN, ARPITA GHOSH, MICHAEL KEARNS,  
TIM ROUGHGARDEN, AND JENNIFER WORTMAN VAUGHAN

SOCIAL COMPUTING ENCOMPASSES  the mechanisms 
through which people interact with computational 
systems: crowdsourcing systems, ranking and 
recommendation systems, online prediction markets, 
citizen science projects, and collaboratively edited 
wikis, to name a few. These systems share the 
common feature that humans are active participants, 
making choices that determine the input to, and 
therefore the output of, the system. The output of 
these systems can be viewed as a joint computation 
between machine and human, and can be richer than 
what either could produce alone. The term social 
computing is often used as a synonym for several 
related areas, such as “human computation” and 
subsets of “collective intelligence;” we use it in its 
broadest sense to encompass all of these things.

Social computing is blossoming 
into a rich research area of its own, 
with contributions from diverse dis-
ciplines including computer science, 
economics, and other social sciences. 
The field spans everything from sys-
tems research directed at building 
scalable platforms for new social com-
puting applications to HCI research 
directed toward user interface design, 
from studies of incentive alignment in 
online applications to behavioral ex-
periments evaluating the performance 
of specific systems, and from under-
standing online human social behav-
ior to demonstrating new possibilities 
of organized social interactions. Yet a 
broad mathematical foundation for so-
cial computing is yet to be established, 
with a plethora of under-explored op-
portunities for mathematical research 
to impact social computing.

In many fields or subfields, math-
ematical theories have provided major 
contributions toward real-world ap-
plications. These contributions often 
come in the form of mathematical 
models to address the closely-related 
problems of analysis—why do exist-
ing systems exhibit the outcomes they 
do?—and design—how can systems 
be engineered to produce better out-
comes? In computer science, math-
ematical research led to the develop-
ment of commonly used practical 
machine learning methods such as 
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 ˽ The output of a social computing system 

can be viewed as a joint computation 
between humans and machines,  
and can be richer than what either  
can produce alone.

 ˽ Mathematical research has led to 
innovations in social computing such as 
crowdsourced democracy, prediction 
markets, and fair division are all examples 
of social computing applications.

 ˽ Social computing systems cannot  
be properly modeled or analyzed  
without accounting for the behavior  
of their human components,  
which requires a dialog between 
theoretical, experimental, and  
empirical research and across 
disciplinary boundaries. I
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boosting and support vector machines, 
public-key cryptography including the 
RSA protocol, widely used data struc-
tures such as splay trees and tech-
niques like locality-sensitive hashing, 
and more. Well-known examples in 
economics include the analysis and de-
sign of matching markets that have en-

abled kidney exchanges and have led to 
significant successes in public school 
admissions and residence matching 
for doctors and hospitals, the influ-
ence of auction theory on the design 
of the FCC spectrum auctions, and the 
design and redesign of the auctions 
used in online advertising markets.

As in other fields, there is great po-
tential for mathematical work to in-
fluence and shape the future of social 
computing. There is a small literature 
using mathematical models to analyze 
and propose design recommendations 
for social computing systems includ-
ing crowdsourcing markets,7,18,24,25,30,37 

A mosaic for the Milky Way Project that was created from data analyzed by citizen scientists at Zooniverse.
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coming the leader for such processes in 
the U.S.e For example, this platform was 
recently used to decide how to spend 
$250,000 of infrastructure funds to im-
prove Long Beach (CA) Council District 
9, and how to allocate $2.4 million of 
Vallejo’s capital improvement budget. 
Looking forward, it is an interesting 
and open research challenge to under-
stand if these algorithms and systems 
yield near-optimal aggregations of so-
cietal preferences, or decisions that are 
near-optimal in terms of overall soci-
etal utility.

Automated market makers for pre-
diction markets. A prediction market 
is a financial market designed to ex-
tract and aggregate predictions from a 
crowd. In a typical prediction market, 
traders buy and sell securities with pay-
ments that are contingent on the out-
come of a future event. For example, a 
security may yield a payment of $1 if a 
Democrat wins the 2016 U.S. Presiden-
tial election and $0 otherwise. A trader 
who believes the true probability of 
a Democrat winning the election is p 
maximizes his expected utility by pur-
chasing the security if it is available at 
a price less than $p and selling the se-
curity if it is available at a price greater 
than $p. The market price of this secu-
rity is thought to reflect the traders’ col-
lective belief about the likelihood of a 
Democrat winning.

Prediction markets have been shown 
to produce forecasts at least as accurate 
as other alternatives in a wide variety of 
domains, including politics, business, 
disease surveillance, entertainment, 
and beyond, and have been widely cited 
by the press during recent elections. 
However, markets operated using tra-
ditional mechanisms like continuous 
double auctions (similar to the stock 
market) often suffer from low liquid-
ity. Without liquidity, a market faces 
a chicken-and-egg problem: potential 
traders are dissuaded from participat-
ing due to lack of counterparties, which 
contributes to an even greater reduction 
in future trading opportunities.

Low liquidity can also lead to high 
price volatility and large spreads, both 
of which cause the market price to yield 
a less meaningful prediction.

To combat this problem, Hanson23 
proposed the idea of operating mar-

e https://pbstanford.org/cambridge/approval

prediction markets,1,2,33 human com-
putation games,28,39 and user-generated 
content sites;12,15,17,29 see, for example, 
Ghosh14 for a survey of one facet of this 
work. However, we are far from having 
the systematic and principled under-
standing of the advantages, limitations, 
and potentials of social computing re-
quired to match the impact on applica-
tions that has occurred in other fields.

We note that social computing en-
joys a close relationship with another 
emerging discipline, which is compu-
tational social science.19,34,a But it is also 
distinct from that field. While human 
and social behavior, ability, and perfor-
mance are central to both, computa-
tional social science focuses primarily 
on the use of modern technology, data, 
and algorithms to understand and de-
scribe social interactions in their “natu-
ral habitats.” In contrast, social comput-
ing (as the name suggests) has a much 
more deliberate focus on engineering 
systems that are hybrids of humans 
and machines, which may often entail 
shaping collective behavior in unfamil-
iar environments. Nevertheless, we an-
ticipate a continued close relationship 
and even blurring of the two efforts. As 
an example, one should expect the vast 
theoretical and experimental literature 
on the diffusion of influence and behav-
ior in social networks to be relevant to 
any effort to design a social computing 
system that relies on such dynamics to 
recruit and engage workers.

In June 2015, we brought together 
roughly 25 expertsb in related fields at 
a CCC-sponsored Visioning Workshop 
on the Theoretical Foundations of So-
cial Computingc to discuss the promise 
and challenges of establishing mathe-
matical foundations for social comput-
ing. This document captures several of 
the key ideas discussed.

Success Stories
We begin by describing some examples 
in which mathematical research has 
led to innovations in social computing.

Crowdsourced democracy. You-
Tube competes with Hollywood as 

a There are also clear connections to, and influence 
from, older topics and models in the classical 
mathematical sociology literature.6

b Participant list and bios available at http://bit.ly/ 
1Vy9Ck7.

c http://cra.org/ccc/events/theoretical-founda-
tions-forsocial-computing/

an entertainment channel, and also 
supplements Hollywood by acting 
as a distribution mechanism. Twit-
ter has a similar relationship to news 
media, and Coursera to universities. 
But Washington has no such counter-
part; there are no online alternatives 
for making democratic decisions at 
large scale as a society. As opposed to 
building consensus and compromise, 
public discussion boards often devolve 
into flame wars when dealing with con-
tentious socio-political issues. This 
motivates the problem of designing 
systems in which crowds of hundreds, 
perhaps millions, of individuals col-
laborate together to come to consen-
sus on difficult societal issues.

Mathematical research has recent-
ly led to new systems implementing 
crowdsourced democracy.21 This work 
builds upon a body of research on so-
cial choice that examines how to best 
take the preferences of multiple agents 
(human or otherwise) and obtain from 
them a social decision or aggregate so-
cial preference, typically accomplished 
through some form of voting.d

Consider situations where a highly 
structured decision must be made. 
Some examples are making budgets, 
assigning water resources, and setting 
tax rates. Goel et al.21 made significant 
progress towards understanding the 
“right” mechanisms for such problems. 
One promising candidate is “Knapsack 
Voting.” Recall that in the knapsack 
problem, a subset of items with differ-
ent values and weights must be placed 
in a knapsack to maximize the total 
value without exceeding the knapsack’s 
capacity. This captures most budgeting 
processes—the set of chosen budget 
items must fit under a spending limit, 
while maximizing societal value. Goel et 
al.21 prove that asking users to compare 
projects in terms of “value for money” 
or asking them to choose an entire 
budget results in provably better prop-
erties than using the more traditional 
approaches of approval or rank-choice 
voting. Inspired by these mathematical 
results, Goel et al. designed a participa-
tory budgeting platform that is fast be-

d A significant research community concerns 
itself primarily with computational social 
choice:4 This area has particular promise for so-
cial computing because of the problems of scale 
that are associated with group decision-making 
online, such as in crowdsourced democracy.

http://bit.ly/1Vy9Ck7
http://bit.ly/1Vy9Ck7
http://cra.org/ccc/events/theoretical-foundations-forsocial-computing/
http://cra.org/ccc/events/theoretical-foundations-forsocial-computing/
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kets using an automated market maker 
called a market scoring rule. This mar-
ket maker is an algorithmic agent that 
is always willing to buy or sell securities 
at current market prices that depend 
on the history of trade. Hanson’s ideas 
build on the extensive literature on 
proper scoring rules,20 payment rules 
that elicit honest predictions from 
agents. Market scoring rules ensure 
the market maker has bounded risk 
and that traders are unable to engage 
in arbitrage. Because of these desirable 
properties, Hanson’s market scoring 
rules have become the prediction mar-
ket implementation of choice used by 
companies including Consensus Point, 
Inkling, and Augur, and large-scale 
academic projects including SciCast 
(http://scicast.org) and the Good Judg-
ment Project.38

Recently there has been interest in 
further tapping into the informational 
efficiency of prediction markets and 
using them to obtain accurate predic-
tions on more fine-grained events. For 
example, instead of viewing a Presiden-
tial election as having two possible out-
comes (Democrat wins or Republican 
wins), we could view it as having 250 po-
tential outcomes, with each outcome 
specifying a winner in each U.S. state. 
Traders could then trade securities on 
events (combinations of outcomes) to 
profit on their unique knowledge, such 
as whether or not the same candidate 
will win in both Ohio and Florida, or 
whether or not the Republican candi-
date will win in at least one of Ohio, 
Pennsylvania, and Virginia. Such a pre-
diction market is called a combinato-
rial prediction market. Unfortunately, 
due to the difficulty of keeping prices 
logically consistent across large out-
come spaces, running market scoring 
rules off-the-shelf is computationally 
intractable for many natural examples 
of combinatorial markets.5

In search of pricing rules that are 
tractable and preserve the logical rela-
tionships between security payoffs, Ab-
ernethy, Chen, and Vaughan1 proposed 
a general framework for the design of 
efficient automated market makers 
over very large or infinite outcome spac-
es. They took an axiomatic approach, 
defining a set of formal mathematical 
properties that correspond to economic 
properties that any reasonable market 
should satisfy (such as “no arbitrage” 

and an “information incorporation” 
property) and fully characterized the set 
of pricing mechanisms that satisfy these 
properties. Then, using techniques 
from convex analysis, they provided a 
method for designing specific market 
makers that satisfy these properties. 
The framework enables formal reason-
ing of trade-offs between different eco-
nomic features of these market makers 
as well as evaluating the computational 
efficiency of the pricing algorithms.

This framework is particularly ex-
citing because it offers a way to think 
about approximate pricing in combina-
torial markets when exact pricing is still 
intractable. Approximate pricing for 
markets is challenging because approx-
imation errors may be exploited by trad-
ers to cause the market maker to incur 
a large or even infinite loss. The frame-
work of Abernethy, Chen, and Vaughan1 
characterizes deviations from exact 
pricing that won’t add additional cost to 
the market maker. Building upon this 
understanding, Dudík et al.9 further 
developed a computationally tractable 
method to run a large-scale prediction 
market that allows participants to trade 
almost any contract they can define over 
an exponentially large outcome space. 
This method is starting to gain traction 
in industry where it has been used in the 
PredictWise election market10 and pre-
vious and upcoming iterations of the 
Microsoft Prediction Service.f

Fair division for the masses. Social 
computing systems can be used to help 
groups of people make decisions about 
their day-to-day lives. One particularly 
innovative example is Spliddit,g a web-
site that provides tools that help groups 
of people achieve fair allocations. Splid-
dit currently offers tools to allocate 
rooms and divide rent payments among 
roommates, split taxi fares among pas-
sengers, assign credit in group projects, 
divide sets of (divisible or indivisible) 
goods among recipients, or split up 
tasks among collaborators. It has been 
featured in the New York Timesh and had 
tens of thousands of users as of 2014.22

Spliddit’s website boasts “indisput-
able fairness guarantees.” Indeed, each 
of the division mechanisms employed 
on the site stems from the body of re-

f http://nyti.ms/1sL06wt
g http://www.spliddit.org/
h http://nyti.ms/1o0TUtO

Recently there 
has been interest 
in further tapping 
into the information 
efficiency of 
prediction markets 
and using them to 
obtain accurate 
predictions of more 
fine-grained events. 



106    COMMUNICATIONS OF THE ACM    |   DECEMBER 2016  |   VOL.  59  |   NO.  12

review articles

able fairness properties. As one ex-
ample, a representative of one of the 
largest school districts in California 
approached the Spliddit team about 
a problem he was tasked with solving: 
fairly allocating unused classrooms in 
public schools to the district’s charter 
schools. This led the Spliddit team, 
in collaboration with the California 
school district, to design a practical 
new approach to classroom allocation 
that guarantees envy-freeness as well 
as several other desirable properties.32

A Challenge Problem:  
The Crowdsourcing Compiler
A concrete challenge problem for fu-
ture research in social computing is 
what might be called the “Crowdsourc-
ing Compiler:”i the development of 
high-level programming languages for 
specifying large-scale, distributed tasks 
whose solution requires combining tra-
ditional computational and network-
ing resources with volunteer (or paid) 
human intelligence and contributions. 
The hypothetical compiler would trans-
late an abstract program into a more de-
tailed organizational plan for machines 
and people to jointly carry out the de-
sired task. In the same way that today’s 
Java programmer is relieved of low-
level, machine-specific decisions (such 
as which data to keep in fast registers, 
and which in main memory or disk), 
the future crowdsourcing programmer 
would specify the goals of their system, 
and leave many of the implementation 
details to the Crowdsourcing Compiler. 
Such details might include which com-
ponents of the task are best carried out 
by machine and which by human vol-
unteers; whether the human volunteers 
should be incentivized by payment, rec-
ognition, or entertainment; how their 
contributions should be combined to 
solve the overall task; and so on. While 
a fully general Crowdsourcing Compiler 
might well be unattainable, significant 
progress toward it would imply a much 
deeper scientific understanding of 
crowdsourcing than we currently have, 
which in turn should have great engi-
neering benefits. Noteworthy research 
efforts which can be viewed as steps on 
the path to the Crowdsourcing Compiler 
include Emery Berger’s AutoMan Proj-

i See http://bit.ly/20juYEX and http://bit.ly/ 
1nIyc3P.

search on (computational) fair divi-
sion36 and comes with provable math-
ematical guarantees. For example, the 
algorithm used for room assignment 
and rent splitting relies on the fact that 
there always exists an assignment of 
rooms and a corresponding set of prices 
that are envy-free: every roommate pre-
fers the room he is assigned to any other 
room given the prices. Each roommate 
submits her own value for each of the 
rooms, under the constraint that the to-
tal value of all rooms matches the total 
rent for the apartment; viewed another 
way, each roommate is essentially sub-
mitting a proposed set of prices for each 
room such that she would be equally 
happy obtaining any room at the speci-
fied price. The algorithm then maximiz-
es the minimum utility (value of room 
minus price) of any roommate subject 
to the constraint that envy-freeness is 
satisfied. The solution is also Pareto ef-
ficient, meaning there is no other allo-
cation that would increase the utility of 
any roommate without decreasing the 
utility of another.

As another example, the credit as-
signment problem is solved using an 
algorithm of de Clippel et al.8 Each col-
laborator reports the relative portion 
of credit that he believes should be as-
signed to each of the other collabora-
tors. For example, on a project with four 
collaborators, collaborator A might re-
port that collaborators B and C should 
receive equal credit while D should 
receive twice as much credit. The algo-
rithm takes these reports as input and 
produces a credit assignment that is 
impartial, meaning that an individual’s 
share of credit is independent of his 
own report, and consensual, meaning 
that if there is a division of credit that 
agrees with all collaborators’ reports 
then this division is chosen. While these 
conditions may not sound restrictive, 
de Clippel et al.8 show they are not si-
multaneously achievable with three col-
laborators. Their algorithm therefore 
requires at least four.

In addition to providing a useful set 
of tools, part of Spliddit’s mission is to 
“communicate to the public the beauty 
and value of theoretical research in 
computer science, mathematics, and 
economics, from an unusual perspec-
tive.” Indeed, the project has inspired 
some members of the public to take 
an interest in algorithms with prov-

Mathematical 
and experimental 
research are 
complementary and 
both are needed to 
develop relevant 
mathematical 
foundations for 
social computing. 
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http://bit.ly/1nIyc3P
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ect (http://emeryberger.com/research/
automan/),3 as well as both academic 
and commercial efforts to automate 
workflow in crowdsourcing and social 
computing systems (see, for example, 
http://groups.csail.mit.edu/uid/turkit/ 
and http://www.crowdflower.com/).

We note the organizational schemes 
in most of the successful crowdsourc-
ing examples to date share much in 
common. The tasks to be performed 
(for example, building an online en-
cyclopedia, labeling images for their 
content, creating a network of website 
bookmark labels, finding surveillance 
balloons) are obviously parallelizable, 
and furthermore the basic unit of hu-
man contribution required is extremely 
small (fix some punctuation, label an 
image, and so on). Furthermore, there 
is usually very little coordination re-
quired between the contributions. The 
presence of these commonalities is a 
source of optimism for the Crowdsourc-
ing Compiler—so far, there seems to 
be some shared structure to success-
ful crowdsourcing that the compiler 
might codify. But are such common-
alities present because they somehow 
delineate fundamental limitations on 
successful crowdsourcing—or simply 
because this is the “low-hanging fruit?”

Today, the Crowdsourcing Compiler 
is clearly a “blue sky” proposal meant 
more to delineate an ambitious re-
search agenda for social computation 
than to serve as a guide to short-term 
steps. But we believe that such an agen-
da would both need and drive research 
on theoretical foundations. First steps 
toward developing the mathematical 
foundations of a Crowdsourcing Com-
piler include formally addressing the 
following questions:

 ˲ For a given set of assumptions 
about the volunteer force, and given 
the nature of the task, what is the best 
scheme for organizing the volunteers 
and their contributions? For instance, 
is it a “flat” scheme where all contribu-
tors are equal and their contributions 
are combined in some kind of majority 
vote fashion? Or is it more hierarchical, 
with proven and expert contributors 
given higher weight and harder sub-
problems? Which of these (or other) 
schemes should be used under what as-
sumptions on the nature of the task and 
what assumptions on the volunteers?

 ˲ How can we design crowdsourced 

systems for solving tasks that are much 
more challenging and less “transac-
tional” than what we currently see in 
the field—for instance, complex prob-
lems where there are strong constraints 
and interdependencies between the 
contributions of different volunteers? 
Behavioral research in recent years has 
shown that groups of humans can in-
deed excel on such tasks,31 but we are 
far from understanding when and why.

Finally, we note that while the com-
parison to traditional compilers might 
be a useful guide and metaphor, a 
crowdsourcing analogue would have 
to face a variety of issues that simply 
do not arise with standard hardware 
and software. In addition to the afore-
mentioned challenges of deciding how 
to organize and incentivize human 
contributions, there may also be the 
potential for malicious or deceptive 
behavior by workers, and the need for 
error correction of crowd work (which 
is currently largely handled by redun-
dancy and voting techniques).

Challenges to Overcome
We have argued that mathematical re-
search has the potential to make great 
contributions to social computing. 
However, before this potential is fully 
realized, there are several challenges 
that must be addressed.

Blending mathematical and experi-
mental research. Mathematical and ex-
perimental research are complemen-
tary and both are needed to develop 
relevant mathematical foundations 
for social computing. The strengths of 
mathematical work include:

1. Mathematical modeling and 
analysis can be used to cleanly formu-
late and answer many questions about 
system behavior without requiring that 
we build a complete system, providing 
us with a tool to evaluate the impact 
of design decisions before commit-
ting to any particular design. For ex-
ample, such models can provide guid-
ance on how to increase participation 
(such as, comparing a leaderboard to 
badges16,27), predict whether a social 
computing system will achieve critical 
mass, and perhaps understand how 
the behavior of groups of users change 
as the system scales.

2. Mathematical guarantees are de-
sirable for properties like user privacy 
(that can be obtained, for example, us-

ing techniques from the extensive and 
growing literature on differential priva-
cy11), correctness of a system’s output, 
or the scalability of a social computing 
system.

3. Theoretical work in computer sci-
ence provides tools for designing and 
analyzing new algorithms that could 
lie at the heart of social computing ap-
plications, answering questions like 
how to aggregate noisy and unstruc-
tured estimates or information from 
crowds,25,30 how to optimally divide a 
community into subgroups, or how to 
bring people together in moments of 
spare time to achieve a common goal.

4. Mathematical models can be 
used to explore counterfactual analy-
sis, something that is notoriously dif-
ficult to do through experiments alone.

Needless to say, mathematical mod-
eling should not and cannot replace 
experimental work. A mathematical 
theory can only be truly tested through 
experiments, and discrepancies be-
tween the theory and experimental re-
sults provide guidance about how to 
revise the theory. For example, the abil-
ity of mathematical models to make 
valuable predictions about system be-
havior depends on an accurate model 
of system users, which is generally best 
developed through experimental work.

Learning from the social sciences. 
Computer scientists cannot develop 
the mathematical foundations of social 
computing in isolation. Social comput-
ing systems are fundamentally social. 
These systems cannot be properly mod-
eled or analyzed without accounting 
for the behavior of their human com-
ponents. Much of the literature thus 
far uses standard models of economic 
agents and corresponding assumptions 
about agent preferences, but a growing 
literature based on experimental work 
on online platforms suggests that hu-
man behavior in several online settings 
might deviate from these models,26,35,40 
and these deviations can have signifi-
cant consequences for how to optimally 
design social computing systems.13,26

In order for mathematical founda-
tions to provide useful practical results, 
it is necessary to base it on models that 
better reflect human behavior. This is 
most effectively achieved via a dialog be-
tween theoretical and experimental and 
empirical research, with studies of hu-
man behavior informing mathematical 

http://emeryberger.com/research/automan/
http://emeryberger.com/research/automan/
http://groups.csail.mit.edu/uid/turkit/
http://www.crowdflower.com/
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modeling choices, as well as mathemat-
ical results suggesting the most impor-
tant agent characteristics to understand 
via experimental research. It will be 
important to understand and incorpo-
rate relevant research from psychology, 
economics, sociology, and other fields. 
For example, behavioral economics and 
psychology provide insight into how hu-
mans respond to incentives.

Generalization. Most of the existing 
mathematical work on social comput-
ing focuses on a single application. 
What does the research on prediction 
market design tell us about recom-
mendation systems or citizen science? 
Models will have the most potential 
for impact if they incorporate reus-
able components, allowing results to 
generalize to many systems. (This is 
one motivation for the Crowdsourcing 
Compiler discussed earlier.)

A related issue is the lack of con-
sensus and understanding of the “core 
social computing problems,” or even 
if such a set of core problems exists. 
Mathematical theories are typically 
developed with one or more such core 
problems in mind.

Such problems should capture chal-
lenges that span a wide range of appli-
cations and be robust to small changes 
in the applications to be sure that they 
are capturing something “real.” Clear-
ly, the identification of such problems 
requires a dialog between practitioners 
building real systems and theoreticians 
to identify the most pressing problems 
requiring mathematical study.

Transparency, interpretability, and 
ethical implications. One final chal-
lenge to overcome is the potential need 
to make social computing algorithms 
and models transparent and interpre-
table to the users of social computing 
systems. Users are becoming increas-
ingly sophisticated and are aware the 
algorithms employed online impact 
both their day-to-day user experience 
and their privacy. When faced with the 
output of an algorithm, many will ques-
tion where this output came from and 
why. It is already difficult to explain to 
users why complex probabilistic al-
gorithms and models produce the re-
sults they do, and this will only become 
more difficult as algorithms integrate 
human behavior to a larger extent.

The issue of algorithmic transpar-
ency is often tied to ethical concerns 

such as discrimination and fairness. 
Examining and avoiding the unintend-
ed consequences of opaque decisions 
made by algorithms is a topic that has 
been gaining interest in the machine 
learning and big data communities.j 
Such concerns will undoubtedly need 
to be addressed in the context of social 
computing as well.
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References
1. Abernethy, J., Chen, Y. and Vaughan, J.W. Efficient market 

making via convex optimization, and a connection to 
online learning. ACM Trans. Economics and Computation 
1, 2 (2013), Article 12.

2. Abernethy, J., Frongillo, R., Li, X. and Vaughan, J.W. 
A general volume-parameterized market-making 
framework. In Proceedings of the 15th ACM Conference 
on Economics and Computation, 2014.

3. Barowy, D., Curtsinger, C., Berger, E.D. and McGregor, 
A. Automan: A platform for integrating human-based 
and digital computation. In Proceedings of the Object-
Oriented Programming, Systems, Languages, and 
Applications, 2012.

4. Brandt, F., Conitzer, V., Endriss, U., Lang, J. and Procaccia, 
J.D., Eds. Handbook of Computational Social Choice. 
Cambridge University Press. Forthcoming.

5. Chen, Y., Fortnow, L., Lambert, N., Pennock, D. and 
Wortman, J. Complexity of combinatorial market makers. 
In Proceedings of the 9th ACM Conference on Electronic 
Commerce, 2008.

6. Coleman, J. Introduction to Mathematical Sociology. Free 
Press of Glencoe, 1964.

7. Dasgupta, A. and Ghosh, A. Crowdsourced judgement 
elicitation with endogenous proficiency. In Proceedings of 
the 22nd International World Wide Web Conference, 2013.

8. de Clippel, G., Moulin, H. and Tideman, N. Impartial division 
of a dollar. J. Economic Theory 139, 1 (2008), 176–191.

9. Dudík, M., Lahaie, S. and Pennock, D.M. A tractable 
combinatorial market maker using constraint generation. 
In Proceedings of the 13th ACM Conference on Electronic 
Commerce, 2012.

10. Dudík, M., Lahaie, S. and Pennock, D.M and Rothschild, D. 
A combinatorial prediction market for the U.S. elections. 
In Proceedings of the 14th ACM Conference on Electronic 
Commerce, 2013.

11. Dwork, C. and Roth, A. The algorithmic foundations of 
differential privacy. Foundations and Trends in Theoretical 
Computer Science 9, 34 (2014), 211–407.

12. Easley, D. and Ghosh, A. Incentives, gamification, and 
game theory: An economic approach to badge design. In 
Proceedings of the 14th ACM Conference on Electronic 
Commerce, 2013.

13. Easley, D. and Ghosh, A. Behavioral mechanism design: 
Optimal crowdsourcing contracts and prospect theory. 
In Proceedings of the 16th ACM Conference on Economics 
and Computation, 2015.

14. Ghosh, A. Game theory and incentives in human 
computation. Handbook of Human Computation. P. 
Michelucci, ed. Springer, 2014.

15. Ghosh, A. and Hummel, P. A game-theoretic analysis of 
rank-order mechanisms for user-generated content. In 
Proceedings of the 12th ACM Conference on Electronic 
Commerce, 2011.

16. Ghosh, A. and Kleinberg, R. Behavioral mechanism design: 
Optimal contests for simple agents. In Proceedings of the 
15th ACM Conference on Economics and Computation, 2014.

17. Ghosh, A. and McAfee, P. Incentivizing high-quality 
user generated content. In Proceedings of the 20th 




