A Tutorial on Computational Game Theory **NIPS 2002**

Michael Kearns

Computer and Information Science University of Pennsylvania mkearns@cis.upenn.edu

http://www.cis.upenn.edu/~mkearns/nips02tutorial updated and expanded version these slides, visit

Thanks To:

- Avrim Blum
- Dean Foster
- Sham Kakade
- Jon Kleinberg
- John Langford

Daphne Koller

- Michael Littman
- Yishay Mansour
- Andrew Ng

- Luis Ortiz
- David Parkes
- Lawrence Saul
- Rob Schapire
- Yoav Shoham
- Satinder Singh
- Moshe Tennenholtz
- Manfred Warmuth

Road Map (1)

- Examples of Strategic Conflict as Matrix Games
- Basics Definitions of (Matrix) Game Theory
- Notions of Equilibrium: Overview
- Definition and Existence of Nash Equilibria
- Computing Nash Equilibria for Matrix Games
- Graphical Models for Multiplayer Game Theory
- Computing Nash Equilibria in Graphical Games

Road Map (2)

- Other Equilibrium Concepts:
- Correlated Equilibria
- Correlated Equilibria and Graphical Games
- Evolutionary Stable Strategies
- Nash's Bargaining Problem, Cooperative Equilibria
- Learning in Repeated Games
- Classical Approaches; Regret Minimizing Algorithms
- Games with State
- Connections to Reinforcement Learning
- Other Directions and Conclusions

Example: Prisoner's Dilemma

- Two suspects in a crime are interrogated in separate rooms
- Each has two choices: confess or deny
- With no confessions, enough evidence to convict on lesser charge; one confession enough to establish guilt
- Police offer plea bargains for confessing
- Encode strategic conflict as a payoff matrix:

-1, -	-4 ,0	deny
0,-4	-3, -3	confess
deny	confess	payoffs

What should happen?

Example: Hawks and Doves

- Two players compete for a valuable resource
- iatory strategy ("dove") Each has a confrontational strategy ("hawk") and a concil-
- Value of resource is V; cost of losing a confrontation is C
- Suppose C > V (think nuclear first strike)
- Encode strategic conflict as a payoff matrix:

V/2, V/2	0,V	dove
V,0	(V-C)/2,(V-C)/2	hawk
dove	hawk	payoffs

What should happen?

A (Weak) Metaphor

- Actions of the players can be viewed as (binary) variables
- Under any reasonable notion of "rationality", the payoff mavariables trix imposes constraints on the joint behavior of these two
- Instead of being probabilistic, these constraints are strategic
- Instead of computing conditional distributions given the other actions, players optimize their payoff
- Players are selfish and play their best response

Basics of Game Theory

- Set of players i = 1, ..., n (assume n = 2 for now)
- (such as "hawk" or "dove") Each player has a set of m basic actions or pure strategies
- Notation: a_i will denote the pure strategy chosen by player i
- Joint action: \vec{a}
- Payoff to player i given by matrix or table $M_i(\vec{a})$
- Goal of players: maximize their own payoff

Notions of Equilibria: Overview (1)

- An equilibrium among the players is a strategic standoff
- No player can improve on their current strategy
- But under what model of communication, coordination, and collusion among the players?
- All standard equilibrium notions are descriptive rather than prescriptive

Notions of Equilibria: Overview (2)

- No communication or bargaining:
 Nash Equilibria
- Communication via correlation or shared randomness: Correlated Equilibria
- Full communication and coalitions:
 (Assorted) Cooperative Equilibria
- Equilibrium under evolutionary dynamics: **Evolutionary Stable Strategy**
- We'll begin with Nash Equilibria

Mixed Strategies

- Need to introduce mixed strategies
- Each player i has an independent distribution p_i over their pure strategies $(p_i \in [0,1]$ in 2-action case)
- Use $\vec{p}=(p_1,\ldots,p_n)$ to denote the product distribution induced over joint action \vec{a}
- Use $ec{a} \sim ec{p}$ to indicate $ec{a}$ distributed according to $ec{p}$
- Expected return to player i: $\mathbb{E}_{\vec{a} \sim \vec{p}}[M_i(\vec{a})]$
- (What about more general distributions over \vec{a} ?)

Nash Equilibria

- A product distribution \vec{p} such that no player has a unilateral incentive to deviate
- All players know all payoff matrices
- Informal: no communication, deals or collusion allowed everyone for themselves
- Let $ec p[i:p_i']$ denote ec p with p_i replaced by p_i'
- Formally: \vec{p} is a Nash equilibrium (NE) if for every player i, and every mixed strategy p_i' , $\mathbf{E}_{\vec{a} \sim \vec{p}}[M_i(\vec{a})] \geq \mathbf{E}_{\vec{a} \sim \vec{p}[i:p_i']}[M_i(\vec{a})]$
- Nash 1951: NE always exist in mixed strategies
- Players can announce their strategies

Approximate Nash Equilibria

- A set of mixed strategies $(\vec{p}_1,\ldots,\vec{p}_n)$ such that no player has "too much" unilateral incentive to deviate
- Formally: \vec{p} is an ϵ -Nash equilibrium (NE) if for every player i, and every mixed strategy p_i' , $\mathbf{E}_{\vec{a} \sim \vec{p}}[M_i(\vec{a})] \geq \mathbf{E}_{\vec{a} \sim \vec{p}[i:p_i']}[M_i(\vec{a})] - \epsilon$
- Motivation: intertia, cost of change,...
- Computational advantages

NE for Prisoner's Dilemma

Recall payoff matrix:

deny	confess	payoffs
-4,0	-3, -3	confess
-1,-1	0,-4	deny

- One (pure) NE: (confess, confess)
- Failure to cooperate despite benefits
- Source of great and enduring angst in game theory

NE for Hawks and Doves

• Recall payoff matrix (V < C):

V/2, V/2	0,V	dove
V,0	(V-C)/2,(V-C)/2	hawk
dove	hawk	payoffs

Three NE:

- pure: (hawk,dove)

- pure: (dove,hawk)

mixed: (Pr[hawk] = V/C, Pr[hawk] = V/C)

Rock-Paper-Scissors: Only mixed NE

NE Existence Intuition

- ullet Suppose that $ec{p}$ is not a NE
- return against \vec{p} than p_i For some player i, must be some pure strategy giving higher
- For each such player, shift some of the weight of p_i to this pure strategy
- Leave all other p_j alone
- Formalize as continuous mapping $ec{p}
 ightarrow F(ec{p})$
- compact set into itself must possess \bar{p}^* such that $F(\bar{p}^*) = \bar{p}^*$ Brouwer Fixed Point Theorem: continuous mapping F of a
- One-dimensional case easy, high-dimensional difficult

Some NE Facts

- Existence not guaranteed in pure strategies
- May be multiple NE
- In multiplayer case, may be exponentially many NE
- Suppose (p_1, p_2) and (p'_1, p'_2) are two NE
- same payoffs (games have a unique value) Zero-sum: (p_1, p_2') and (p_1', p_2) also NE, and give players
- General sum: (p_1, p_2') may not be a NE; different NE may give different payoffs
- Which will be chosen?
- dynamics, additional criteria, structure of interaction?

Computing NE

• Inputs:

- Payoff matrices M_i
- Note: each has m^n entries (n players, m actions each)

Output:

- Any NE?
- All NE? (output size)
- Some particular NE?

Complexity Status of Computing a NE (1)

- Zero-sum, 2-player case (input size m^2):
- Linear Programming
- Polynomial time solution
- General-sum case, 2 players (input size m^2):
- Closely related to Linear Complementarity Problems
- Can be solved with the Lemke-Howson algorithm
- Exponential worst-case running time
- Probably not in P, but probably not NP-complete?

Complexity Status of Computing a NE (2)

- Maximizing sum of rewards NP-complete for 2 players
- General-sum case, multiplayer (input size m^n):
- Simplical subdivision methods (Scarf's algorithm)
- Exponential worst-case running time
- Not clear small action spaces (n=2) help
- Missing: compact models of large player and action spaces

2-Player, Zero-Sum Case: LP Formulation

- Assume 2 players, $M = M_1 = -M_2$
- Let $p_1 = (p_1^1, \dots, p_1^m)$ and p_2 be mixed strategies
- Minimax theorem says:

$$\max_{p_1} \min_{p_2} \{p_1 M p_2\} = \min_{p_2} \max_{p_1} \{p_1 M p_2\}$$

Solved by standard LP methods

General Sum Case: A Sampling Folk Theorem

- Suppose (p_1, p_2) is a NE
- Idea: let \hat{p}_i be an empirical distribution by sampling p_i
- If we sample enough, \widehat{p}_i and p_i will get nearly identical returns against any opponent strategy (uniform convergence)
- Thus, (\hat{p}_1,\hat{p}_2) will be $\epsilon ext{-NE}$
- From Chernoff bounds, only $\approx (1/\epsilon^2) \log(m)$ samples suffices
- Yields $(m)^{(1/\epsilon^2)\log(m)}$ algorithm for approximate NE

Compact Models for Multiplayer Games

- Even in 2-player games, computational barriers appear
- Multiplayer games make things even worse
- Maybe we need better representations
- See accompanying PowerPoint presentation.

Correlated Equilibria

- NE $ec{p}$ is a product distribution over the joint action $ec{a}$
- Suffices to guarantee existence of NE

Now let P be an arbitrary joint distribution over \vec{a}

- Informal intuition: assuming all others play "their part" of $P,\ i$ has no unilateral incentive to deviate from P
- Let $ec{a}_{-i}$ denote all actions except a_i
- Say that P is a Correlated Equilibrium (CE) if for any player i, and any actions a, a' for i:

$$\sum_{\vec{a}_{-i}} P(\vec{a}_{-i}|a_i = a) M_i(\vec{a}_{-i}, a) \ge \sum_{\vec{a}_{-i}} P(\vec{a}_{-i}|a_i = a) M_i(\vec{a}_{-i}, a')$$

Advantages of CE

- Conceptual: Some CE payoff vectors not achievable by NE
- Everyday example: traffic signal
- CE allows "cooperation" via shared randomization
- Any mixture of NE is a CE — but there are other CE as well
- Computational: note that

$$\sum_{\vec{a_i}} (P(\vec{a}_{-i}, a_i = a) / P(a_i = a)) M_i(\vec{a}_{-i}, a) \ge \sum_{\vec{a_i}} (P(\vec{a}_{-i}, a_i = a) / P(a_i = a')) M_i(\vec{a}_{-i}, a)$$
is linear in variables $P(\vec{a}_{-i}, a_i = a) = P(\vec{a})$

- Thus have just a linear feasibility problem
- 2-player case: compute CE in polynomial time

Correlated Equilibria and Graphical Games

- No matter how complex the game, NE factor
- Thus, NE always have compact representations
- Any mixture of NE is a CE
- Thus, even simple games can have CE of arbitrary complexity
- How do we represent the CE of a graphical game?
- Restrict attention to CE up to expected payoff equivalence

Markov Nets and Graphical Games

- Let G be the graph of a graphical game
- Can define a Markov net MN(G):
- Form cliques of local neighborhoods in G
- For each clique C, introduce potential function $\phi_C \geq 0$ on just the settings in C
- Markov net semantics: $\Pr[\vec{a}] = (1/Z) \prod_C \phi(\vec{a}_C)$
- For any CE of a game with graph G, there is a identical expected payoffs representable in MN(G)CE with
- Link between strategic and probabilistic structure
- If G is a tree, can compute a (random) CE efficiently

Evolutionary Game Theory

- A different model of multiplayer games
- Assume an infinite population of players but that meet in random, pairwise confrontations
- Assume symmetric payoff matrix M (as in Hawks and Doves)
- Let P be the distribution over actions induced by the (averaged) population mixed strategies p_i
- Then fitness of p_i is expected return against P
- Assume evolutionary dynamics: the higher the fitness of p_i , the more offspring player i has in the next generation

Evolutionary Stable Strategies

- Let P be the population mixed strategy
- Let Q be an invading "mutant" population
- Let M(P,Q) be the expected payoff to a random player from P facing a random player from Q
- Suppose population is $(1-\epsilon)P+\epsilon Q$
- Fitness of incumbent population: $(1 \epsilon)M(P, P) + \epsilon M(P, Q)$
- Fitness of invading population: $(1 \epsilon)M(Q, P) + \epsilon M(Q, Q)$
- Say P is an ESS if for any $Q \neq P$ and sufficiently small $\epsilon > 0$, $(1 - \epsilon)M(P, P) + \epsilon M(P, Q) > (1 - \epsilon)M(Q, P) + \epsilon M(Q, Q)$
- Either M(P,P) > M(Q,P) or M(P,P) = M(Q,P)M(P,Q) > M(Q,Q)and

ESS for Hawks and Doves

• Recall payoff matrix (V < C):

V/2, V/2	0,V	dove
V,0	(V-C)/2,(V-C)/2	hawk
dove	hawk	payoffs

ESS: P(hawk) = V/C

Remarks on ESS

- Do not always exist!
- Special type of (symmetric) NE
- Biological field studies
- Sources of randomization
- Mixed strategies vs. population averages
- Market models

Richer Game Representations

- Have said quite a lot about single-shot matrix games
- What about:
- Repeated games
- Games with state (chess, checkers)
- Stochastic games (multi-player MDPs)
- Can always (painfully) express in normal form
- Normal form equilibria concepts relevant

Repeated Games

- Still have underlying game matrices
- Now play the single-shot game repeatedly, examine cumulative or average reward
- Game has no internal state (though players might)
- Relevant detail: how many rounds of play?

Learning in Repeated Games

- "Classical" algorithms:
- Fictitious Play: best response to empirical distribution of opponent play
- Various (stochastic) gradient approaches
- Common question: when will such dynamics converge to NE?
- Positive results fairly restrictive
- Generalizations to parametric strategy representations?

Exponential Updates and Regret Minimization

- View repeated play as a sequence of trials against an arbitrary opponent
- Maintain a weight on each pure strategy
- On each trial, multiply each weight by a factor exponentially decreasing in its regret
- but no guarantee of NE General setting: near-minimization of regret on sequence,
- Zero-sum case: two "copies" will converge to NE
- Regret minimization and NE vs. CE

Repeated Games and Bounded Rationality

- Consider restricting the complexity of strategies in T rounds of a repeated game
- the history of play so far Example: next action computed by a finite state machine on
- New equilibria may arise from the restriction
- Prisoner's Dilemma: if number of states is $o(\log(T))$, mutual cooperation (denial) becomes a NE

Games with State

- Standard board games: chess, checkers
- Often feature partial or hidden information (poker)
- Might involve randomization (backgammon)

Stochastic Games

- Generalize MDPs to multiple players
- Immediate reward to i at state s under joint action \vec{a} is $M_i^s(\vec{a})$ At each state s, have payoff matrix M_i^s for player i
- Markovian dynamics: $P(s'|s,\vec{a})$
- Discounted sum of rewards
- Every player has a policy $\pi_i(s)$
- Generalize optimal policy to (Nash) equilibrium $(\pi_1, ..., \pi_n)$
- Don't just have to worry about influence on future state, but everyone else's policy
- Exploration even more challenging

Stochastic Games and RL

- For fixed policies of opponents, can define value functions
- What happens when independent Q-learners play?
- Results with different amounts and type of shared info
- Generalization of ${\cal E}^3$ algorithm to stochastic games
- Generalization of sparse sampling methods

Conclusions

- gic reasoning, a complement to more passive reasoning Classical game theory a rich and varied formalism for strate-
- Like probability theory, provides sound foundations but lacks emphasis on representation and computation
- Computational game theory aims to provide these emphases
- Many substantive connections to NIPS topics already under way (graphical models, learning algorithms, dynamical systems, reinforcement learning)...
- ... but even more lie ahead.
- Come find me to chat about open problems!

Contact Information

- Email: mkearns@cis.upenn.edu
- Web: www.cis.upenn.edu/~mkearns
- This tutorial: www.cis.upenn.edu/~mkearns/nips02tutorial
- will morph into Penn course page
- COLT/SVM 2003 special session on game theory