A Tutorial on Computational Game Theory
NIPS 2002
Michael Kearns
Computer and Information Science
University of Pennsylvania

mkearns@cis.upenn.edu

For an updated and expanded version of these slides, Visit
http://www.cis.upenn.edu/~mkearns/nipsO2tutorial



Thanks To:

Avrim Blum . .
e Luis Ortiz

e David Parkes

Dean Foster
Sham Kakade
Jon Kleinberg

e Lawrence Saul

e Rob Schapire
Daphne Koller

e Yoav Shoham

e Satinder Singh

e Moshe Tennenholtz

e Manfred Warmuth

John Langford
Michael Littman
Yishay Mansour
Andrew Ng



Road Map (1)

Examples of Strategic Conflict as Matrix Games
Basics Definitions of (Matrix) Game Theory
Notions of Equilibrium: Overview

Definition and Existence of Nash Equilibria
Computing Nash Equilibria for Matrix Games
Graphical Models for Multiplayer Game Theory

Computing Nash Equilibria in Graphical Games



Road Map (2)

e Other Equilibrium Concepts:

— Correlated Equilibria

— Correlated Equilibria and Graphical Games

— Evolutionary Stable Strategies

— Nash’s Bargaining Problem, Cooperative Equilibria

e Learning in Repeated Games

— Classical Approaches; Regret Minimizing Algorithms
e Games with State

— Connections to Reinforcement Learning

e Other Directions and Conclusions



Example: Prisoner’s Dilemma

Two suspects in a crime are interrogated in separate rooms
Each has two choices: confess or deny

With no confessions, enough evidence to convict on lesser
charge; one confession enough to establish guilt

Police offer plea bargains for confessing

Encode strategic conflict as a payoff matrix:

payoffs | confess | deny
confess | —3,—3 | 0,4
deny —4.0 —1,—1

What should happen?



Example: Hawks and Doves

Two players compete for a valuable resource

Each has a confrontational strategy (“hawk’) and a concil-
iatory strategy (‘““dove’)

Value of resource is V; cost of losing a confrontation is C
Suppose C > V (think nuclear first strike)

Encode strategic conflict as a payoff matrix:

payoffs | hawk dove
hawk (Vv-0C)/2,(v—-c)/2|V,0
dove 0,V V/2,V/2

What should happen?



A (Weak) Metaphor

Actions of the players can be viewed as (binary) variables

Under any reasonable notion of “rationality”, the payoff ma-
trix imposes constraints on the joint behavior of these two
variables

Instead of being probabilistic, these constraints are strategic

Instead of computing conditional distributions given the other
actions, players optimize their payoff

Players are selfish and play their best response



Basics of Game T heory

Set of players i = 1,...,n (assume n = 2 for now)

Each player has a set of m basic actions or pure strategies
(such as “hawk” or "dove")

Notation: a; will denote the pure strategy chosen by player ¢
Joint action: a
Payoff to player ¢ given by matrix or table M;(a)

Goal of players: maximize their own payoff



Notions of Equilibria: Overview (1)

An equilibrium among the players is a strategic standoff
No player can improve on their current strategy

But under what model of communication, coordination, and
collusion among the players?

All standard equilibrium notions are descriptive rather than
prescriptive



Notions of Equilibria: Overview (2)

No communication or bargaining:
Nash Equilibria

Communication via correlation or shared randomness:
Correlated Equilibria

Full communication and coalitions:
(Assorted) Cooperative Equilibria

Equilibrium under evolutionary dynamics:
Evolutionary Stable Strategy

We'll begin with Nash Equilibria



Mixed Strategies

Need to introduce mixed strategies

Each player ¢+ has an independent distribution p; over their
pure strategies (p; € [0, 1] in 2-action case)

Use p = (p1,...,pn) to denote the product distribution in-

—

duced over joint action a
Use a ~ p to indicate a distributed according to p
Expected return to player i: E-_-[M;(ad)]

a~'p

(What about more general distributions over a?)



Nash Equilibria
A product distribution p such that no player has a unilateral
incentive to deviate
All players know all payoff matrices

Informal: no communication, deals or collusion allowed —
everyone for themselves

Let pls : pi] denote § with p; replaced by p!

Formally: g is a Nash equilibrium (NE) if for every player i,
and every mixed strategy p}, Ez_;[M;(a@)] > Egati-p[Mi(@)]

Nash 1951: NE always exist in mixed strategies

Players can announce their strategies



Approximate Nash Equilibria

A set of mixed strategies (p1,...,pn) such that no player has

“too much” unilateral incentive to deviate

Formally: p'is an e-Nash equilibrium (NE) if for every player i,

and every 3_xmo_ strategy pf, Ez 5M;(d)] > E;
Motivation: intertia, cost of change,.

Computational advantages

a~pli:pl]

nM;(@)]—e



NE for Prisoner’s Dilemma

Recall payoff matrix:

payoffs | confess | deny
confess | —3,—-3 | 0,4
deny —4 .0 —-1,-1

One (pure) NE: (confess,confess)
Failure to cooperate despite benefits

Source of great and enduring angst in game theory



NE for Hawks and Doves

e Recall payoff matrix (V < C):

payoffs | hawk dove
hawk (V-0C)/2,v—-c)/2|V,0
dove 0,V V/2,V/)2

e [ hree NE:

— pure: (hawk,dove)

— pure: (dove,hawk)
— mixed: (Pr[hawk] = V/C,Prlhawk]| = V/C)

e Rock-Paper-Scissors: Only mixed NE




NE EXistence Intuition

Suppose that p is not a NE

For some player 7z, must be some pure strategy giving higher
return against p than p;

For each such player, shift some of the weight of p; to this
pure strategy

Leave all other p; alone
Formalize as continuous mapping p — F(p)

Brouwer Fixed Point Theorem: continuous mapping F of a
compact set into itself must possess p* such that F(p*) = p*

One-dimensional case easy, high-dimensional difficult



Some NE Facts

Existence not guaranteed in pure strategies

May be multiple NE

In multiplayer case, may be exponentially many NE
Suppose (p1,p2) and (p},p5) are two NE

Zero-sum: (p1,p5) and (p},p2) also NE, and give players
same payoffs (games have a unique value)

General sum: (p1,p5) may not be a NE; different NE may
give different payoffs

Which will be chosen?

— dynamics, additional criteria, structure of interaction?



Computing NE

e Inputs:

— Payoff matrices M;

— Note: each has m™ entries (n players, m actions each)
e Output:

— Any NE?
— All NE? (output size)

— Some particular NE?



Complexity Status of Computing a NE (1)

e Zero-sum, 2-player case (input size m2):

— Linear Programming

— Polynomial time solution
e General-sum case, 2 players (input size m2):

— Closely related to Linear Complementarity Problems
— Can be solved with the Lemke-Howson algorithm
— Exponential worst-case running time

— Probably not in P, but probably not NP-complete?



Complexity Status of Computing a NE (2)

e Maximizing sum of rewards NP-complete for 2 players

e General-sum case, multiplayer (input size m™):

— Simplical subdivision methods (Scarf’s algorithm)
— Exponential worst-case running time

— Not clear small action spaces (n = 2) help

e Missing: compact models of large player and action spaces



2-Player, Zero-Sum Case: LP Formulation

Assume 2 players, M = M1 = —M>

Let p1 = (p1,...,p") and py be mixed strategies

Minimax theorem says:

maxmin{pi Mp>} = minm

p1 p2

Solved by standard LP methods

p2

p

wxﬁﬁ Mp>}



General Sum Case: A Sampling Folk Theorem

Suppose (p1,p>) is a NE
Idea: let p; be an empirical distribution by sampling p;

If we sample enough, p; and p; will get nearly identical returns
against any opponent strategy (uniform convergence)

Thus, (51,5,) will be eNE
From Chernoff bounds, only ~ (1/€2) log(m) samples suffices

Yields (m)(1/€9)109(m) z1gorithm for approximate NE



Compact Models for Multiplayer Games

Even in 2-player games, computational barriers appear
Multiplayer games make things even worse
Maybe we need better representations

See accompanying PowerPoint presentation.



Correlated Equilibria

—

NE p is a product distribution over the joint action a
Suffices to guarantee existence of NE
Now let P be an arbitrary joint distribution over a

Informal intuition: assuming all others play “their part” of
P, 1 has no unilateral incentive to deviate from P

Let a_; denote all actions except aq;

Say that P is a Correlated Equilibrium (CE) if for any player
¢, and any actions a,a’ for i:

Y P(d_jla; = a)M;(@_;,a) > > P(d_j|la; = a)M;(a_;,a’)

q_; a_;



Advantages of CE

Conceptual: Some CE payoff vectors not achievable by NE
Everyday example: traffic signal
CE allows ‘“‘cooperation’” via shared randomization

Any mixture of NE is a CE — but there are other CE as well

Computational: note that

MUCUQN:S. =a)/P(a; = a))M;(@-i,a) > MUQA@N:S. =a)/P(a; = a"))M;(@_;,a)
is linear in variables P(d_;,a; = a) = P(a)

Thus have just a linear feasibility problem

2-player case: compute CE in polynomial time



Correlated Equilibria and Graphical Games

No matter how complex the game, NE factor

Thus, NE always have compact representations

Any mixture of NE is a CE

Thus, even simple games can have CE of arbitrary complexity
How do we represent the CE of a graphical game?

Restrict attention to CE up to expected payoff equivalence



Markov Nets and Graphical Games

o Let G be the graph of a graphical game
e Can define a Markov net MN(G):

— Form cliques of local neighborhoods in G

— For each clique C, introduce potential function ¢ > 0 on
just the settings in C

— Markov net semantics: Prla] = (1/2) [1¢ ¢(dc)

e For any CE of a game with graph G, there is a CE with
identical expected payoffs representable in MN(G)

e Link between strategic and probabilistic structure

e If G is a tree, can compute a (random) CE efficiently



Evolutionary Game T heory

A different model of multiplayer games

Assume an infinite population of players — but that meet in
random, pairwise confrontations

Assume symmetric payoff matrix M (as in Hawks and Doves)

Let P be the distribution over actions induced by the (aver-
aged) population mixed strategies p;

Then fitness of p; is expected return against P

Assume evolutionary dynamics: the higher the fitness of p;,
the more offspring player ¢ has in the next generation



Evolutionary Stable Strategies

Let P be the population mixed strategy
Let Q be an invading “mutant” population

Let M(P,Q) be the expected payoff to a random player from
P facing a random player from @

Suppose population is (1 —e)P + €@
Fitness of incumbent population: (1 —e)M(P,P) 4+ eM (P, Q)

Fitness of invading population: (1 —e)M(Q,P) + eM(Q, Q)

Say P is an ESS if for any Q # P and sufficiently small e > O,
(L —=e)M(P,P)+eM(P,Q) > (1 —-e)M(Q,P) +eM(Q,Q)

Either M(P,P) > M(Q,P) or M(P,P) = M(Q,P) and
M(P,Q) > M(Q,Q)



ESS for Hawks and Doves

e Recall payoff matrix (V < C):

payoffs | hawk dove
hawk (Vv-0C)/2,(v—-c)/2|V,0
dove 0,V V/2,V/2

e ESS: P(hawk) =V/C




Remarks on ESS

Do not always exist!

Special type of (symmetric) NE
Biological field studies

Sources of randomization

Mixed strategies vs. population averages

Market models



Richer Game Representations

e Have said quite a lot about single-shot matrix games

e VWhat about:

— Repeated games
— Games with state (chess, checkers)

— Stochastic games (multi-player MDPs)
e Can always (painfully) express in normal form

e Normal form equilibria concepts relevant



Repeated Games

Still have underlying game matrices

Now play the single-shot game repeatedly, examine cumula-
tive or average reward

Game has no internal state (though players might)

Relevant detail: how many rounds of play?



Learning in Repeated Games

e “‘Classical’ algorithms:

— Fictitious Play: best response to empirical distribution of
opponent play

— Various (stochastic) gradient approaches
e Common question: when will such dynamics converge to NE?
e Positive results fairly restrictive

e Generalizations to parametric strategy representations?



Exponential Updates and Regret Minimization
View repeated play as a sequence of trials against an arbitrary
opponent

Maintain a weight on each pure strategy

On each trial, multiply each weight by a factor exponentially
decreasing in its regret

General setting: near-minimization of regret on sequence,
but no guarantee of NE

Zero-sum case: two ‘‘copies’” will converge to NE

Regret minimization and NE vs. CE



Repeated Games and Bounded Rationality

Consider restricting the complexity of strategies in 1T rounds
of a repeated game

Example: next action computed by a finite state machine on
the history of play so far

New equilibria may arise from the restriction

Prisoner’'s Dilemma: if number of states is o(log(7")), mutual
cooperation (denial) becomes a NE



Games with State

e Standard board games: chess, checkers
e Often feature partial or hidden information (poker)

e Might involve randomization (backgammon)



Stochastic Games

Generalize MDPs to multiple players

At each state s, have payoff matrix M7 for player ¢
Immediate reward to 7 at state s under joint action @ is M?(a)
Markovian dynamics: P(s'|s,d)

Discounted sum of rewards

Every player has a policy m;(s)

Generalize optimal policy to (Nash) equilibrium (m1,...,7n)

Don't just have to worry about influence on future state, but
everyone else’'s policy

Exploration even more challenging



Stochastic Games and RL

For fixed policies of opponents, can define value functions
What happens when independent Q-learners play?

Results with different amounts and type of shared info
Generalization of E3 algorithm to stochastic games

Generalization of sparse sampling methods



Conclusions

Classical game theory a rich and varied formalism for strate-
gic reasoning, a complement to more passive reasoning

Like probability theory, provides sound foundations but lacks
emphasis on representation and computation

Computational game theory aims to provide these emphases

Many substantive connections to NIPS topics already under
way (graphical models, learning algorithms, dynamical sys-
tems, reinforcement learning)...

... but even more lie ahead.

Come find me to chat about open problems!



Contact Information

Email: mkearns@cis.upenn.edu

Web: www.cis.upenn.edu/~mkearns

This tutorial: www.cis.upenn.edu/~mkearns/nipsO2tutorial
— will morph into Penn course page

COLT/SVM 2003 special session on game theory



