
Computer Architecture | Prof. Milo Martin | Vectors & GPUs 1

Computer Architecture

Unit 10: Data-Level Parallelism:
Vectors & GPUs

Slides'developed'by'Milo'Mar0n'&'Amir'Roth'at'the'University'of'Pennsylvania''
with'sources'that'included'University'of'Wisconsin'slides'

by'Mark'Hill,'Guri'Sohi,'Jim'Smith,'and'David'Wood'

How to Compute This Fast?

•  Performing the same operations on many data items
•  Example: SAXPY

•  Instruction-level parallelism (ILP) - fine grained
•  Loop unrolling with static scheduling –or– dynamic scheduling
•  Wide-issue superscalar (non-)scaling limits benefits

•  Thread-level parallelism (TLP) - coarse grained
•  Multicore

•  Can we do some “medium grained” parallelism?

L1: ldf [X+r1]->f1 // I is in r1
 mulf f0,f1->f2 // A is in f0
 ldf [Y+r1]->f3
 addf f2,f3->f4
 stf f4->[Z+r1}
 addi r1,4->r1
 blti r1,4096,L1

for (I = 0; I < 1024; I++) {
 Z[I] = A*X[I] + Y[I];
}

2 Computer Architecture | Prof. Milo Martin | Vectors & GPUs

Data-Level Parallelism
•  Data-level parallelism (DLP)

•  Single operation repeated on multiple data elements
•  SIMD (Single-Instruction, Multiple-Data)

•  Less general than ILP: parallel insns are all same operation
•  Exploit with vectors

•  Old idea: Cray-1 supercomputer from late 1970s
•  Eight 64-entry x 64-bit floating point “vector registers”

•  4096 bits (0.5KB) in each register! 4KB for vector register file
•  Special vector instructions to perform vector operations

•  Load vector, store vector (wide memory operation)
•  Vector+Vector or Vector+Scalar

•  addition, subtraction, multiply, etc.
•  In Cray-1, each instruction specifies 64 operations!

•  ALUs were expensive, so one operation per cycle (not parallel)

Computer Architecture | Prof. Milo Martin | Vectors & GPUs 3

Computer Architecture | Prof. Milo Martin | Vectors & GPUs 4

Example Vector ISA Extensions (SIMD)
•  Extend ISA with floating point (FP) vector storage …

•  Vector register: fixed-size array of 32- or 64- bit FP elements
•  Vector length: For example: 4, 8, 16, 64, …

•  … and example operations for vector length of 4
•  Load vector: ldf.v [X+r1]->v1

ldf [X+r1+0]->v10

ldf [X+r1+1]->v11

ldf [X+r1+2]->v12

ldf [X+r1+3]->v13

•  Add two vectors: addf.vv v1,v2->v3
addf v1i,v2i->v3i (where i is 0,1,2,3)

•  Add vector to scalar: addf.vs v1,f2,v3
addf v1i,f2->v3i (where i is 0,1,2,3)

•  Today’s vectors: short (128 or 256 bits), but fully parallel

Computer Architecture | Prof. Milo Martin | Vectors & GPUs 5

Example Use of Vectors – 4-wide

•  Operations
•  Load vector: ldf.v [X+r1]->v1
•  Multiply vector to scalar: mulf.vs v1,f2->v3
•  Add two vectors: addf.vv v1,v2->v3
•  Store vector: stf.v v1->[X+r1]

•  Performance?
•  Best case: 4x speedup
•  But, vector instructions don’t always have single-cycle throughput

•  Execution width (implementation) vs vector width (ISA)

ldf [X+r1]->f1
mulf f0,f1->f2
ldf [Y+r1]->f3
addf f2,f3->f4
stf f4->[Z+r1]
addi r1,4->r1
blti r1,4096,L1

ldf.v [X+r1]->v1
mulf.vs v1,f0->v2
ldf.v [Y+r1]->v3
addf.vv v2,v3->v4
stf.v v4,[Z+r1]
addi r1,16->r1
blti r1,4096,L1

7x1024 instructions 7x256 instructions
(4x fewer instructions)

Vector Datapath & Implementatoin

•  Vector insn. are just like normal insn… only “wider”
•  Single instruction fetch (no extra N2 checks)
•  Wide register read & write (not multiple ports)
•  Wide execute: replicate floating point unit (same as superscalar)
•  Wide bypass (avoid N2 bypass problem)
•  Wide cache read & write (single cache tag check)

•  Execution width (implementation) vs vector width (ISA)
•  Example: Pentium 4 and “Core 1” executes vector ops at half width
•  “Core 2” executes them at full width

•  Because they are just instructions…
•  …superscalar execution of vector instructions
•  Multiple n-wide vector instructions per cycle

Computer Architecture | Prof. Milo Martin | Vectors & GPUs 6

Computer Architecture | Prof. Milo Martin | Vectors & GPUs 7

Intel’s SSE2/SSE3/SSE4/AVX…

•  Intel SSE2 (Streaming SIMD Extensions 2) - 2001
•  16 128bit floating point registers (xmm0–xmm15)
•  Each can be treated as 2x64b FP or 4x32b FP (“packed FP”)

•  Or 2x64b or 4x32b or 8x16b or 16x8b ints (“packed integer”)
•  Or 1x64b or 1x32b FP (just normal scalar floating point)

•  Original SSE: only 8 registers, no packed integer support

•  Other vector extensions
•  AMD 3DNow!: 64b (2x32b)
•  PowerPC AltiVEC/VMX: 128b (2x64b or 4x32b)

•  Looking forward for x86
•  Intel’s “Sandy Bridge” brings 256-bit vectors to x86
•  Intel’s “Xeon Phi” multicore will bring 512-bit vectors to x86

Computer Architecture | Prof. Milo Martin | Vectors & GPUs 8

Other Vector Instructions

•  These target specific domains: e.g., image processing, crypto
•  Vector reduction (sum all elements of a vector)
•  Geometry processing: 4x4 translation/rotation matrices
•  Saturating (non-overflowing) subword add/sub: image processing
•  Byte asymmetric operations: blending and composition in graphics
•  Byte shuffle/permute: crypto
•  Population (bit) count: crypto
•  Max/min/argmax/argmin: video codec
•  Absolute differences: video codec
•  Multiply-accumulate: digital-signal processing
•  Special instructions for AES encryption

•  More advanced (but in Intel’s Xeon Phi)
•  Scatter/gather loads: indirect store (or load) from a vector of pointers
•  Vector mask: predication (conditional execution) of specific elements

Using Vectors in Your Code

•  Write in assembly
•  Ugh

•  Use “intrinsic” functions and data types
•  For example: _mm_mul_ps() and “__m128” datatype

•  Use vector data types
•  typedef double v2df __attribute__ ((vector_size (16)));

•  Use a library someone else wrote
•  Let them do the hard work
•  Matrix and linear algebra packages

•  Let the compiler do it (automatic vectorization, with feedback)
•  GCC’s “-ftree-vectorize” option, -ftree-vectorizer-verbose=n
•  Limited impact for C/C++ code (old, hard problem)

9 Computer Architecture | Prof. Milo Martin | Vectors & GPUs

Recap: Vectors for Exploiting DLP

•  Vectors are an efficient way of capturing parallelism
•  Data-level parallelism
•  Avoid the N2 problems of superscalar
•  Avoid the difficult fetch problem of superscalar
•  Area efficient, power efficient

•  The catch?
•  Need code that is “vector-izable”
•  Need to modify program (unlike dynamic-scheduled superscalar)
•  Requires some help from the programmer

•  Looking forward: Intel “Xeon Phi” (aka Larrabee) vectors
•  More flexible (vector “masks”, scatter, gather) and wider
•  Should be easier to exploit, more bang for the buck

Computer Architecture | Prof. Milo Martin | Vectors & GPUs 10

Graphics Processing Units (GPU)

Tesla S870!

•  Killer app for parallelism: graphics (3D games)

Computer Architecture | Prof. Milo Martin | Vectors & GPUs 11

GPUs and SIMD/Vector Data Parallelism

•  How do GPUs have such high peak FLOPS & FLOPS/Joule?
•  Exploit massive data parallelism – focus on total throughput
•  Remove hardware structures that accelerate single threads
•  Specialized for graphs: e.g., data-types & dedicated texture units

•  “SIMT” execution model
•  Single instruction multiple threads
•  Similar to both “vectors” and “SIMD”
•  A key difference: better support for conditional control flow

•  Program it with CUDA or OpenCL
•  Extensions to C
•  Perform a “shader task” (a snippet of scalar computation) over

many elements
•  Internally, GPU uses scatter/gather and vector mask operations

Computer Architecture | Prof. Milo Martin | Vectors & GPUs 12

13

Slide by Kayvon Fatahalian - http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

14

Slide by Kayvon Fatahalian - http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

15

Slide by Kayvon Fatahalian - http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

16

Slide by Kayvon Fatahalian - http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

17

Slide by Kayvon Fatahalian - http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

18

Slide by Kayvon Fatahalian - http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

19

Slide by Kayvon Fatahalian - http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

20

Slide by Kayvon Fatahalian - http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

Data Parallelism Summary
•  Data Level Parallelism

•  “medium-grained” parallelism between ILP and TLP
•  Still one flow of execution (unlike TLP)
•  Compiler/programmer must explicitly expresses it (unlike ILP)

•  Hardware support: new “wide” instructions (SIMD)
•  Wide registers, perform multiple operations in parallel

•  Trends
•  Wider: 64-bit (MMX, 1996), 128-bit (SSE2, 2000),

256-bit (AVX, 2011), 512-bit (Xeon Phi, 2012?)
•  More advanced and specialized instructions

•  GPUs
•  Embrace data parallelism via “SIMT” execution model
•  Becoming more programmable all the time

•  Today’s chips exploit parallelism at all levels: ILP, DLP, TLP

Computer Architecture | Prof. Milo Martin | Vectors & GPUs 21

[spacer])

