
CSE 372 (Martin): Wrapup 1

CSE372
Digital Systems Organization and Design

 Lab

Prof. Milo Martin

Unit 6: Hints on Pipelining & Wrapup

CSE 372 (Martin): Wrapup 2

Agenda

• Ramblings on design & testing

• Discuss final lab project

• Some (hopefully) helpful hints

• Extension to Monday?

• FYI: No final exam for lab course

• Discuss where CSE371/372 should go in the future

• Course evaluations

CSE 372 (Martin): Wrapup 3

Optimism

• “We’re almost done, we just have to test it.”

• From Fred Brooks’ The Mythical Man-Month, 1975:

CSE 372 (Martin): Wrapup 4

Testing and Testbenches

• “Good Enough”

• On an exam, 95% is a good score

• In “design”, 95% correct isn’t good enough

• Different mentality

• Testbenches are not just academic artifacts for grading

• Real systems use “unit tests” and randomized testing to find bugs

• Testing is integral to any development project

• For a four-week project, how much of that should be just testing?

CSE 372 (Martin): Wrapup 5

More Fred Brooks

CSE 372 (Martin): Wrapup 6

More Fred Brooks

CSE 372 (Martin): Wrapup 7

Design

• Design matters

• Getting this working isn’t just “implementation”, it requires design

• A strong design makes lots of difference

• This project is too difficult to brute force

• Can’t take the CSE371 slides too literally

• Design to explain pipelining, not an actual implementation

• Few design documents thoroughly discussed
implementation of bypassing, stalling, and flushing

CSE 372 (Martin): Wrapup 8

Bypassing and Stalling

• Fully decode instruction vs latching it each cycle
• Abstract each instruction

• For each instruction:
• Determine what register it writes

• 3-bit register ID, 1-bit “write enable” valid bit

• Determine what register it reads

• Two x (3-bit register ID, 1-bit “read enable” valid bit)

• Does it write memory? (just the “write enable”)

• Does it read memory?

• Once you have this, bypassing and stalling should be
mostly opcode and instruction independent
• No need to re-decode each step along the way

CSE 372 (Martin): Wrapup 9

Some Tricky Bypassing Cases

• LDR r2 ! [r1+10]
STR r2 " [r3+5]

• JSR LABEL
LABEL: ADD R0 ! R7, R0

• Note: be sure to “next-PC” predict all sorts of control
transfer instructions

• In fact, just predict “all” instructions, should work just fine

CSE 372 (Martin): Wrapup 10

PC
Memory

216 by 16 bit

Reg.

File

A
L
U

SEXT

SEXT

 16 16

 16

 16

 16

 16

 16

 16

 I[5:0]

 I[7:0]
 8

 6

Controller

+1

 Rd1

 Rd2

 Wr

 WE

 Out1

 In

 Out2

 I

Memory

216 by 16 bit

 16

 WE

ZEXT

 16

 I[11:0]
 12

SEXT

 16

 I[8:0]
 9

 InData

 Addr

 4

 16

4

 16

 16

 I[8:6]

 3’b111

 Zero

 16

 I[11:9]

 I[5:3]

 I[11:9]

 I[8:6]

 I[15:12]

 I[11:9]

 3

 3

 3
 Out

 16

 16
 16

 16

BR Logic

 4’b0100

 {I[12],I[2:0]}
 4

 3

 16

 16

 1

 Tricky Bypass:

R7 := PC+1

CSE 372 (Martin): Wrapup 11

Nullifying Instructions

• How to squash an instruction?

• Approach #1: mux in a NOOP encoding

• Approach #2: set an explicit “not valid” bit

• Approach #3: set all “read enables” and “write enables” to zero

• My suggestion: some combination of approach #2 and #3

• Goes along with not re-decoding the actual instruction encoding

• Note: need to track type of stall or squash for performance
counters anyway…

CSE 372 (Martin): Wrapup 12

Register File Bypass

• Our register file hands writes differently than book

• Solution: add one more local bypass

• Can be done totally internal to register file

• Why aren’t we using both negative & positive clock edges

• Can really complicate on-board functionality

• Risk avoidance

• Disallowed by some standard cell ASIC design flows

• Should work, but we can avoid any potential issues

CSE 372 (Martin): Wrapup 13

Problems on the FPGA Board

• Need to really think hard, use debugging skills
• Detective work, look for clues

• Example: car does not start
• What do you do? Fuel supply vs spark

• Try to rule out problems, make test cases to find bug
• Check synthesis report, too

• Concrete tip: avoid testing on the p37os.hex file first thing

• Try smaller programs & breakout.hex first

• Possible culprits:
• Lost events: I/O registers with side effects being read falsely

• Repeated events: Performance counters getting in the way

CSE 372 (Martin): Wrapup 14

Course Recap

• We’ve talked about digital logic design
• Verilog

• Design flows

• FPGAs and hardware devices

• We’ve talked about design
• Breaking a task into parts

• The process of design

• Hands on experience

• Learning by doing

• Recall: two years ago, no CSE372 lectures

• They were on their own

CSE 372 (Martin): Wrapup 15

CSE372 in the Future

• What should be do next year?

• Same as this year (1.0/0.5 credit split with separate lab lecture)

• Combine CSE371/CSE372 into a single class

• Remove some of the material

• Keep project

• Abandon project altogether (no, in my opinion)

• Split into two 1.0 courses in same or different semesters

• Your thoughts?

CSE 372 (Martin): Wrapup 16

Evaluations

• Give us your feedback

• We listen to it

• “Survivor”

