Agenda

Ramblings on design & testing

CSE372
Digital Systems Organization and Design « Discuss final lab project
Lab « Some (hopefully) helpful hints

¢ Extension to Monday?

e FYI: No final exam for lab course
Prof. Milo Martin

Discuss where CSE371/372 should go in the future
Unit 6: Hints on Pipelining & Wrapup

Course evaluations

CSE 372 (Martin): Wrapup 1 CSE 372 (Martin): Wrapup 2
Optimism Testing and Testbenches
e "We're almost done, we just have to test it.” e “Good Enough”
e On an exam, 95% is a good score
e From Fred Brooks' The Mythical Man-Month, 1975: * In"design”, 95% correct isn't good enough
) ¢ Different mentality

Optimism

All programmers are optimists. Perhaps this modern sorcery espe- e Testbenches are not just academic artifacts for grading

cially attracts those who believe in happy endings and fairy god- * Real systems use “unit tests” and randomized testing to find bugs

mothers. Perhaps the hundreds of nitty frustrations drive away all
but those who habitually focus on the end goal. Perhaps it is
merely that computers are young, programmers are younger, and
the young are always optimists. But however the selection process
works, the result is indisputable: “This time it will surely run,” or
“I just found the last bug.”

e Testing is integral to any development project
¢ For a four-week project, how much of that should be just testing?

CSE 372 (Martin): Wrapup 3 CSE 372 (Martin): Wrapup 4

More Fred Brooks

For some years I have been successfully using the following
rule of thumb for scheduling a software task:

4 planning

Y% coding

Y4 component test and early system test
Y system test, all components in hand.

This differs from conventional scheduling in several important
ways:

1. The fraction devoted to planning is larger than normal. Even
50, it is barely enough to produce a detailed and solid specifi-
cation, and not enough to include research or exploration of
totally new techniques.

2. The half of the schedule devoted to debugging of completed
code is much larger than normal.

3. The part that is easy to estimate, i.e., coding, is given only

one-sixth of the schedule.
CSE 372 (Martin): Wrapup 5

Design

e Design matters
e Getting this working isn't just “implementation”, it requires design
¢ A strong design makes lots of difference
» This project is too difficult to brute force

e Can't take the CSE371 slides too literally
¢ Design to explain pipelining, not an actual implementation

e Few design documents thoroughly discussed
implementation of bypassing, stalling, and flushing

CSE 372 (Martin): Wrapup 7

More Fred Brooks

In examining conventionally scheduled projects, I have found
that few allowed one-half of the projected schedule for testing,
but that most did indeed spend half of the actual schedule for that
purpose. Many of these were on schedule until and except in
system testing.?

Failure to allow enough time for system test, in particular, is
peculiarly disastrous. Since the delay comes at the end of the
schedule, no one is aware of schedule trouble until almost the
delivery date. Bad news, late and without warning, is unsettling
to customers and to managers.

CSE 372 (Martin): Wrapup 6

Bypassing and Stalling

¢ Fully decode instruction vs latching it each cycle
o Abstract each instruction

e For each instruction:
¢ Determine what register it writes
¢ 3-bit register ID, 1-bit “write enable” valid bit
¢ Determine what register it reads
¢ Two x (3-bit register ID, 1-bit “read enable” valid bit)
e Does it write memory? (just the “write enable”)
¢ Does it read memory?

¢ Once you have this, bypassing and stalling should be
mostly opcode and instruction independent
¢ No need to re-decode each step along the way

CSE 372 (Martin): Wrapup 8

Some Tricky Bypassing Cases

e LDR 2 € [r1+10]
STR r2 = [r3+5]

. JSR LABEL
LABEL: ADD RO € R7, RO

¢ Note: be sure to “next-PC” predict all sorts of control
transfer instructions

o In fact, just predict “all” instructions, should work just fine

CSE 372 (Martin): Wrapup 9

Nullifying Instructions

¢ How to squash an instruction?
e Approach #1: mux in a NOOP encoding
e Approach #2: set an explicit “not valid” bit
e Approach #3: set all “read enables” and “write enables” to zero

e My suggestion: some combination of approach #2 and #3
¢ Goes along with not re-decoding the actual instruction encoding

¢ Note: need to track type of stall or squash for performance
counters anyway...

CSE 372 (Martin): Wrapup 11

4

Tricky Bypass: M—\—PI Controller I """

R7 :=PC#+1 1]8:6] > 1
1[12],1[2:0 v p| BRLogic
1 A
4'b0100 :)
6 Memory 16 1[8:6 3 [l v
PC 216 by 16 bit Pri11:9 p|inData WE
d1is:3 3 Memory
dijin:o

216 by 16 bit

b 00

o

1[11:9
[3
s Addr Out|
+1 16 3°b111 |'\'> 16
N »{In ¢
501§ — 8
9‘ ID:KII 16‘7
16 A Q180 16
{ SEXT| 3
o 16
1[11:0] | IS5
16
S0\ Zext
16
Zero
; B w g 16
v 16 16
d 1 Vg 1
16 oo LN
16
a) g Y
i)
CSE 372 (Martin): Wrapup 10

Register File Bypass

e Our register file hands writes differently than book
e Solution: add one more local bypass
¢ Can be done totally internal to register file

e Why aren’t we using both negative & positive clock edges
¢ Can really complicate on-board functionality
¢ Risk avoidance
¢ Disallowed by some standard cell ASIC design flows
¢ Should work, but we can avoid any potential issues

CSE 372 (Martin): Wrapup 12

Problems on the FPGA Board

¢ Need to really think hard, use debugging skills
¢ Detective work, look for clues

e Example: car does not start
e What do you do? Fuel supply vs spark

e Try to rule out problems, make test cases to find bug
¢ Check synthesis report, too
¢ Concrete tip: avoid testing on the p370s.hex file first thing
¢ Try smaller programs & breakout.hex first

¢ Possible culprits:
o Lost events: I/0 registers with side effects being read falsely
¢ Repeated events: Performance counters getting in the way

CSE 372 (Martin): Wrapup 13

CSE372 in the Future

Course Recap

e What should be do next year?

Same as this year (1.0/0.5 credit split with separate lab lecture)

Combine CSE371/CSE372 into a single class
* Remove some of the material
o Keep project

Abandon project altogether (no, in my opinion)

Split into two 1.0 courses in same or different semesters

¢ Your thoughts?

CSE 372 (Martin): Wrapup 15

o We've talked about digital logic design
¢ Verilog
¢ Design flows
¢ FPGAs and hardware devices

e We've talked about design
¢ Breaking a task into parts
¢ The process of design
¢ Hands on experience
¢ Learning by doing

e Recall: two years ago, no CSE372 lectures
¢ They were on their own

CSE 372 (Martin): Wrapup

Evaluations

14

¢ Give us your feedback
e We listen to it

e “Survivor”

CSE 372 (Martin): Wrapup

16

