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CSE372
Digital Systems Organization and Design

 Lab

Prof. Milo Martin

Unit 5: P37X Pipelined
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Agenda for Today

• Discuss Lab 2

• Due next week

• Discuss Lab 3

• Part 1: Pipelined design

• Part 2: Pipelined, superscalar design

• The evils of clock gating

• Slides from UC-Berkeley

• Discuss video device and standards

• Slides from UNC
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Lab 2: Non-Pipelined Processor Lab

• Any comments or problems?

• Any problems getting it to work on the board?

• No?  Restricted Verilog has been successful!

• Reminder: final report due Friday
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Final Lab: A More Advanced Datapath

• Result of lab 2: fully-functional P37x processor

• CSE240 level of sophistication

• Single cycle

• We gave you the basic datapath “design”

• Goal of lab 3:

• CSE372 level of sophistication (use what you have learned)

• Pipelined processor (5 stage, fully-bypassed)

• Branch prediction (simple BTB)

• Superscalar execution (dual issue)

• Exact design is up to you

• Minimum baseline pipeline specified (part 1)

• Up to you to decide how to improve design (part 2)
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Final Lab, Part 1: Pipelined Processor

• Familiar 5-stage pipeline

• Fetch, Decode, Execute, Memory, Writeback

• Fully bypassed

• One-cycle “load use” penalty

• A dependent instruction right after the load

• Branch handling

• Resolved in “execute” stage, two-cycle penalty

• Simple branch predictor to efficiently execute branches

• Performance counters

• Cycle counter

• Instruction counter, branch stall counter, load stall counters
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Final Lab, Part 2: Improve IPC

• Part 2: use what you have learned

• Analysis and design

• We’re giving you some simple “toy” benchmarks

• Goal: improve the IPC of these benchmarks

• Keeping 5-stage pipeline, 1-cycle load-use delay

• Task: look at programs, uses ideas from CSE372 to improve them

• More opportunity for creativity

• longer rope

CSE 372 (Martin): P37X Pipelined 7

Final Lab: Tiered Designs & Grading

• Last year: honors points

• “A” level: IPC > 1 on a few benchmarks
• Dual issue superscalar

• “A-” level: significantly reduce lost IPC due to branches
• Extend branch predictor

• “B+” level: build pipeline specified in assignment
• 5-stage pipeline

• “B” level: nothing!
• You’re done after lab 2
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Important First Step: Design Document

• The pipelined datapath design is up to you
• As is how to test it

• As is how your choose to improve IPC

• Design document - Due Friday, March 30th
• Describe the datapath

• Where are the pipeline registers?

• List or table of which signals are latched in which stages

• Describe control

• Bypassing logic, any tricky bypassing cases

• Include a diagram (or diagrams) of the datapath

• Design/schematics of any new components (e.g., branch predictor)

• Include testing strategy

• How are you going to improve IPC?

• Separate superscalar design issues from single-issue design?
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Bypassing, Stalling, and Flushing

• Bypassing
• Which value to use in a given stage?

• Control logic looks at “recent past”

• Look at instruction in later stage

• Stalling
• Dependent instruction after load

• How?

• Flushing
• Speculatively execute instructions after branch

• Using the prediction

• If wrong, need to cancel two instructions

• Fetch and Decode

• Again, how?
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Simple Branch Predictor

• Predict the “next PC” for an instruction

• Predict during Fetch: PC in, next-PC prediction out

• Train at Execute: PC in, actual next-PC in, write enable in

• Simplest: Two registers

• “Tag” register

• “Next PC” register

• If the tag matches fetch PC, return value of “Next PC” register

• Else, return PC+1

• Detect misprediction via comparing PC

• If wrong, train predictor

• Write PC into tag register, write “actual next PC” into “next PC”
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Other Thoughts on Lab 3

• Good news: gain some experience with design
• More opportunities for creativity

• More than 4 weeks to complete project, groups of three

• Much harder than it looks
• Last year, students were shocked at how much harder it was

• “Thrown into the deep end”

•  All through CSE240 & CSE372 thus far, we’ve given you design

• Good designs dramatically simplify implementation effort

• Example: how much longer would Snake/Breakout have taken
without using our design?

• In retrospect, students skimped on design (& document)
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Why Gating of Clocks is Bad!

Do NOT Mess With Clock Signals!
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From UC Berkeley CS 150 - Fall 2005
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Gating of Clocks: Bad
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Non-Gating of Clocks: Good
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Video Device

• How does our video device actually work?

• Frame buffer

• RAM that holds the current image on the screen

• Hardware walks over frame buffer to generate analog signal

• In LC-3 and P37x, we puts this frame buffer right in memory

• Most systems today have dedicated frame buffers

• In some classes, they make you build the video circuit, too

• Switch to slides from UNC


