
CSE 372 (Martin): P37X Pipelined 1

CSE372
Digital Systems Organization and Design

 Lab

Prof. Milo Martin

Unit 5: P37X Pipelined

CSE 372 (Martin): P37X Pipelined 2

Agenda for Today

• Discuss Lab 2

• Due next week

• Discuss Lab 3

• Part 1: Pipelined design

• Part 2: Pipelined, superscalar design

• The evils of clock gating

• Slides from UC-Berkeley

• Discuss video device and standards

• Slides from UNC

CSE 372 (Martin): P37X Pipelined 3

Lab 2: Non-Pipelined Processor Lab

• Any comments or problems?

• Any problems getting it to work on the board?

• No? Restricted Verilog has been successful!

• Reminder: final report due Friday

CSE 372 (Martin): P37X Pipelined 4

Final Lab: A More Advanced Datapath

• Result of lab 2: fully-functional P37x processor

• CSE240 level of sophistication

• Single cycle

• We gave you the basic datapath “design”

• Goal of lab 3:

• CSE372 level of sophistication (use what you have learned)

• Pipelined processor (5 stage, fully-bypassed)

• Branch prediction (simple BTB)

• Superscalar execution (dual issue)

• Exact design is up to you

• Minimum baseline pipeline specified (part 1)

• Up to you to decide how to improve design (part 2)

CSE 372 (Martin): P37X Pipelined 5

Final Lab, Part 1: Pipelined Processor

• Familiar 5-stage pipeline

• Fetch, Decode, Execute, Memory, Writeback

• Fully bypassed

• One-cycle “load use” penalty

• A dependent instruction right after the load

• Branch handling

• Resolved in “execute” stage, two-cycle penalty

• Simple branch predictor to efficiently execute branches

• Performance counters

• Cycle counter

• Instruction counter, branch stall counter, load stall counters

CSE 372 (Martin): P37X Pipelined 6

Final Lab, Part 2: Improve IPC

• Part 2: use what you have learned

• Analysis and design

• We’re giving you some simple “toy” benchmarks

• Goal: improve the IPC of these benchmarks

• Keeping 5-stage pipeline, 1-cycle load-use delay

• Task: look at programs, uses ideas from CSE372 to improve them

• More opportunity for creativity

• longer rope

CSE 372 (Martin): P37X Pipelined 7

Final Lab: Tiered Designs & Grading

• Last year: honors points

• “A” level: IPC > 1 on a few benchmarks
• Dual issue superscalar

• “A-” level: significantly reduce lost IPC due to branches
• Extend branch predictor

• “B+” level: build pipeline specified in assignment
• 5-stage pipeline

• “B” level: nothing!
• You’re done after lab 2

CSE 372 (Martin): P37X Pipelined 8

Important First Step: Design Document

• The pipelined datapath design is up to you
• As is how to test it

• As is how your choose to improve IPC

• Design document - Due Friday, March 30th
• Describe the datapath

• Where are the pipeline registers?

• List or table of which signals are latched in which stages

• Describe control

• Bypassing logic, any tricky bypassing cases

• Include a diagram (or diagrams) of the datapath

• Design/schematics of any new components (e.g., branch predictor)

• Include testing strategy

• How are you going to improve IPC?

• Separate superscalar design issues from single-issue design?

CSE 372 (Martin): P37X Pipelined 9

PC
Memory

216 by 16 bit

Reg.

File

A
L
U

SEXT

SEXT

 16 16

 16

 16

 16

 16

 16

 16

 I[5:0]

 I[7:0]
 8

 6

Controller

+1

 Rd1

 Rd2

 Wr

 WE

 Out1

 In

 Out2

 I

Memory

216 by 16 bit

 16

 WE

ZEXT

 16

 I[11:0]
 12

SEXT

 16

 I[8:0]
 9

 InData

 Addr

 4

 16

4

 16

 16

 I[8:6]

 3’b111

 Zero

 16

 I[11:9]

 I[5:3]

 I[11:9]

 I[8:6]

 I[15:12]

 I[11:9]

 3

 3

 3
 Out

 16

 16
 16

 16

BR Logic

 4’b0100

 {I[12],I[2:0]}
 4

 3

 16

 16

 1

Where do the
registers go?

CSE 372 (Martin): P37X Pipelined 10

Bypassing, Stalling, and Flushing

• Bypassing
• Which value to use in a given stage?

• Control logic looks at “recent past”

• Look at instruction in later stage

• Stalling
• Dependent instruction after load

• How?

• Flushing
• Speculatively execute instructions after branch

• Using the prediction

• If wrong, need to cancel two instructions

• Fetch and Decode

• Again, how?

CSE 372 (Martin): P37X Pipelined 11

Simple Branch Predictor

• Predict the “next PC” for an instruction

• Predict during Fetch: PC in, next-PC prediction out

• Train at Execute: PC in, actual next-PC in, write enable in

• Simplest: Two registers

• “Tag” register

• “Next PC” register

• If the tag matches fetch PC, return value of “Next PC” register

• Else, return PC+1

• Detect misprediction via comparing PC

• If wrong, train predictor

• Write PC into tag register, write “actual next PC” into “next PC”

CSE 372 (Martin): P37X Pipelined 12

Other Thoughts on Lab 3

• Good news: gain some experience with design
• More opportunities for creativity

• More than 4 weeks to complete project, groups of three

• Much harder than it looks
• Last year, students were shocked at how much harder it was

• “Thrown into the deep end”

• All through CSE240 & CSE372 thus far, we’ve given you design

• Good designs dramatically simplify implementation effort

• Example: how much longer would Snake/Breakout have taken
without using our design?

• In retrospect, students skimped on design (& document)

CSE 372 (Martin): P37X Pipelined 13

Why Gating of Clocks is Bad!

Reg

Clk

LD

Reg

Clk
LD

GOOD BAD

Do NOT Mess With Clock Signals!

gatedClK

From UC Berkeley CS 150 - Fall 2005

WE

CSE 372 (Martin): P37X Pipelined 14

Why Gating of Clocks is Bad!

Do NOT Mess With Clock Signals!

Clk

LD

gatedClk

LD generated by FSM
shortly after rising edge of CLK

Runt pulse plays HAVOC with register internals!

From UC Berkeley CS 150 - Fall 2005

CSE 372 (Martin): P37X Pipelined 15

Gating of Clocks: Bad

Clk

Reset

Reg

C
ou

nt
e
r

BAD

Do NOT Mess With Clock Signals!

slowClK

From UC Berkeley CS 150 - Fall 2005 CSE 372 (Martin): P37X Pipelined 16

Non-Gating of Clocks: Good

Clk

Reset

Reg

C
ou

nt
e
r

Good!

Do NOT Mess With Clock Signals!

WE

From UC Berkeley CS 150 - Fall 2005

CSE 372 (Martin): P37X Pipelined 17

Video Device

• How does our video device actually work?

• Frame buffer

• RAM that holds the current image on the screen

• Hardware walks over frame buffer to generate analog signal

• In LC-3 and P37x, we puts this frame buffer right in memory

• Most systems today have dedicated frame buffers

• In some classes, they make you build the video circuit, too

• Switch to slides from UNC

