
R

Constraints
Guide

8.1i

Constraints Guide www.xilinx.com 8.1i

Xilinx is disclosing this Document and Intellectual Property (hereinafter “the Design”) to you for use in the development of designs to operate
on, or interface with Xilinx FPGAs. Except as stated herein, none of the Design may be copied, reproduced, distributed, republished,
downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written consent of Xilinx. Any unauthorized use of the Design may violate copyright
laws, trademark laws, the laws of privacy and publicity, and communications regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Design; nor does Xilinx convey any license under its patents,
copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or implementation of the Design.
Xilinx reserves the right to make changes, at any time, to the Design as deemed desirable in the sole discretion of Xilinx. Xilinx assumes no
obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not assume any liability for the
accuracy or correctness of any engineering or technical support or assistance provided to you in connection with the Design.

THE DESIGN IS PROVIDED “AS IS” WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND IMPLEMENTATION IS
WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN INFORMATION OR
ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER WARRANTIES, WHETHER
EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DESIGN, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES,
INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE DESIGN, EVEN IF YOU
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN CONNECTION
WITH YOUR USE OF THE DESIGN, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT EXCEED THE
AMOUNT OF FEES PAID BY YOU TO XILINX HEREUNDER FOR USE OF THE DESIGN. YOU ACKNOWLEDGE THAT THE FEES, IF
ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT MAKE AVAILABLE
THE DESIGN TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY.

The Design is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring fail-
safe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support, or
weapons systems (“High-Risk Applications”). Xilinx specifically disclaims any express or implied warranties of fitness for such High-Risk
Applications. You represent that use of the Design in such High-Risk Applications is fully at your risk.

Copyright © 1995-2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks
of Xilinx, Inc. PowerPC is a trademark of IBM, Inc. All other trademarks are the property of their respective owners.

R

http://www.xilinx.com

R

Preface

About This Guide

The Xilinx® Constraints Guide describes constraints and attributes that can be attached to
designs for Xilinx FPGA and CPLD devices. This chapter contains the following sections:

• “Guide Contents”

• “Additional Resources”

• “Conventions”

Guide Contents
This guide contains the following chapters:

• Chapter 1, “Introduction”

• Chapter 2, “Constraint Types”

• Chapter 3, “Entry Strategies for Xilinx Constraints”

• Chapter 4, “Timing Constraint Strategies”

• Chapter 5, “Third-Party Constraints”

• Chapter 6, “Xilinx Constraints”

Additional Resources
To find additional documentation, see the Xilinx website at:

http://www.xilinx.com/literature.

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

http://www.xilinx.com/support.
Constraints Guide www.xilinx.com 3
ISE 8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=xilinx+literature
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support

Preface: About This Guide
R

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands that you
enter in a syntactical statement ngdbuild design_name

Helvetica bold

Commands that you select
from a menu File → Open

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax
statement for which you must
supply values

ngdbuild design_name

References to other manuals
See the Development System
Reference Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . . Repetitive material that has
been omitted

allow block block_name
loc1 loc2 ... locn;
4 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Conventions
R

Online Document
The following conventions are used in this document:

Convention Meaning or Use Example

Blue text
Cross-reference link to a
location in the current
document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Red text Cross-reference link to a
location in another document

See Figure 2-5 in the Virtex-II
Handbook.

Blue, underlined text Hyperlink to a website (URL) Go to http://www.xilinx.com
for the latest speed files.
Constraints Guide www.xilinx.com 5
ISE 8.1i

http://www.xilinx.com

Preface: About This Guide
R

6 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Table of Contents
Preface: About This Guide
Guide Contents . 3
Additional Resources . 3
Conventions . 4

Chapter 1: Introduction
What’s New . 11
XST Constraints Removed. 12
Component Attributes Removed . 13
New Definitions . 13
Constraint Types and Supported Architectures . 13

Chapter 2: Constraint Types
Attributes and Constraints . 17
CPLD Fitter . 18
Grouping Constraints . 18
Logical Constraints. 21
Physical Constraints. 21
Mapping Directives . 22
Modular Design Constraints . 22
Placement Constraints. 22
Routing Directives . 24
Synthesis Constraints . 24
Timing Constraints . 24

Chapter 3: Entry Strategies for Xilinx Constraints
Constraints Entry Table . 30
Schematic Designs . 33
Specifying Constraints in VHDL . 34
Specifying Constraints in Verilog . 34
ABEL . 35
UCF. 35
PCF Files. 40
NCF . 41
Constraints Editor . 41
Project Navigator. 49
Floorplanner . 49
Pinout & Area Constraints Editor (PACE) . 50
Constraints Guide www.xilinx.com 7
ISE 8.1i

http://www.xilinx.com

R

FPGA Editor . 51
Constraints Priority . 53

Chapter 4: Timing Constraint Strategies
FPGA Timing Constraint Strategies . 55
Static Timing Analysis . 68
Synchronous Timing . 69
Directed Routing . 72

Chapter 5: Third-Party Constraints
Third-Party Constraints Removed . 75

Chapter 6: Xilinx Constraints
Constraint Information . 77
Alphabetized List of Xilinx Constraints. 78
AREA_GROUP . 79
ASYNC_REG . 89
BLKNM. 91
BEL . 94
BUFG (CPLD) . 96
COLLAPSE . 99
COMPGRP . 101
CONFIG . 103
CONFIG_MODE. 105
COOL_CLK . 107
DATA_GATE . 109
DCI_VALUE . 111
Directed Routing . 112
DISABLE . 114
DRIVE . 116
DROP_SPEC . 119
ENABLE . 121
FAST . 123
FEEDBACK . 125
FILE . 127
FLOAT. 129
FROM-THRU-TO . 131
FROM-TO . 133
HBLKNM . 135
HU_SET . 138
IFD_DELAY_VALUE . 141
IBUF_DELAY_VALUE . 143
INREG. 145
8 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

R

IOB . 147
IOBDELAY . 150
IOSTANDARD . 152
KEEP . 155
KEEP_HIERARCHY . 157
KEEPER . 160
LOC . 162
LOCATE . 191
LOCK_PINS . 193
MAP . 195
MAXDELAY . 197
MAXPT . 200
MAXSKEW . 202
NODELAY . 205
NOREDUCE . 207
OFFSET . 209
OPEN_DRAIN . 228
OPT_EFFORT . 230
OPTIMIZE . 232
PERIOD . 234
PIN . 243
PRIORITY . 245
PROHIBIT . 247
PULLDOWN . 251
PULLUP . 253
PWR_MODE . 255
REG . 257
RLOC . 259
RLOC_ORIGIN . 289
RLOC_RANGE . 292
SAVE NET FLAG . 295
SCHMITT_TRIGGER . 297
SIM_COLLISION_CHECK. 299
SLEW . 301
SLOW . 304
SYSTEM_JITTER . 306
TEMPERATURE . 308
TIG . 310
TIMEGRP . 314
TIMESPEC. 319
TNM. 322
TNM_NET . 331
TPSYNC . 335
Constraints Guide www.xilinx.com 9
ISE 8.1i

http://www.xilinx.com

R

TPTHRU . 339
TSidentifier . 342
U_SET . 346
USE_RLOC . 349
USELOWSKEWLINES . 351
VOLTAGE . 353
VREF . 355
WIREAND . 357
XBLKNM . 359
10 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

R

Chapter 1

Introduction

This chapter provides an overview of this Guide. It discusses the contents of the Guide for
this release, as well as a summary of material removed from the prior release of the Guide.
This chapter contains the following sections:

• “What’s New”

• “XST Constraints Removed”

• “Component Attributes Removed”

• “New Definitions”

• “Constraint Types and Supported Architectures”

What’s New
The following changes have been made to this edition (ISE™ Release 8.1i) of the
Constraints Guide.

• New “New Definitions” have been added (see below).

• Constraints for the Xilinx® Synthesis Tool (XST) have been moved from the Xilinx
Constraints Guide to the Xilinx XST User Guide. See that Guide for information on these
constraints, as well as for new constraints that may be added in the future. See “XST
Constraints Removed” in this chapter for a list of constraints moved from the Xilinx
Constraints Guide to the Xilinx XST User Guide.

• All materials relating to component attributes have been moved to the Xilinx Libraries
Guides. See those Guides for information on these constraints, as well as for new
constraints that may be added in the future. See “Component Attributes Removed” in
this chapter for a list of component attributes moved to the Xilinx Libraries Guides.

• Materials relating to third-party constraints have been removed from the Xilinx
Constraints Guide. A third party constraint is a constraint from a company other than
Xilinx that is supported within the Xilinx technology. For information about third
party constraints, see that vendor’s website.
Constraints Guide www.xilinx.com 11
ISE 8.1i

http://www.xilinx.com

Chapter 1: Introduction
R

XST Constraints Removed
Constraints for the Xilinx Synthesis Tool (XST) have been moved from the Xilinx
Constraints Guide to the Xilinx XST User Guide. See that Guide for information on these
constraints, as well as for new constraints that may be added in the future. The following
constraints have been moved from the Xilinx Constraints Guide to the Xilinx XST User
Guide.

BRAM_MAP BOX_TYPE

BUFFER_TYPE BUFGCE

CLOCK_BUFFER CLOCK_SIGNAL

DECODER_EXTRACT ENUM_ENCODING

EQUIVALENT_REGISTER_REMOVAL FSM_ENCODING

FSM_EXTRACT FSM_STYLE

FULL_CASE INCREMENTAL_SYNTHESIS

LUT_MAP MAX_FANOUT

MOVE_FIRST_STAGE MOVE_LAST_STAGE

MULT_STYLE MUX_EXTRACT

MUX_STYLE OPT_LEVEL

OPT_MODE OPTIMIZE_PRIMITIVES

PARALLEL_CASE PRIORITY_EXTRACT

RAM_EXTRACT RAM_STYLE

REGISTER_BALANCING REGISTER_DUPLICATION

REGISTER_POWERUP RESOURCE_SHARING

RESYNTHESIZE ROM_EXTRACT

ROM_STYLE SAFE_IMPLEMENTATION

SAFE_RECOVERY_STATE SHIFT_EXTRACT

SHREG_EXTRACT SIGNAL_ENCODING

SLICE_PACKING SLICE_UTILIZATION_RATIO

SLICE_UTILIZATION_RATIO_MAX TRANSLATE_OFF

TRANSLATE_ON TRISTATE2LOGIC

USE_CARRY_CHAIN USE_CLOCK_ENABLE

USE_DSP48 USE_SYNC_RESET

USE_SYNC_SET XOR_COLLAPSE
12 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Component Attributes Removed
R

Component Attributes Removed
All materials relating to component attributes have been moved to the Xilinx Libraries
Guides. See those Guides for information on these constraints, as well as for new
constraints that may be added in the future. The following component attributes have been
moved to the Xilinx Libraries Guides.

New Definitions
As used in this Guide, the following terms have the meanings given.

• INST is an element such as a flip flop, register or pad in a design.

• NET is a signal path, a route between one point (such as a flip flop, register or pad) to
another

For the meaning of the terms “attribute” and “constraint,” see “Attributes and
Constraints” in Chapter 2, “Constraint Types.”

Constraint Types and Supported Architectures
The Constraint Types and Supported Architectures table shows:

• The constraint type (timing, placement, mapping, routing, fitter)

• The Xilinx devices supported for each constraint.

Contact Xilinx Technical Support if you need information for Xilinx architectures not
shown.

The following abbreviations are used in this table:

• Virtex™/E = Virtex and Virtex-E

• Virtex-II Pro/Pro X = Virtex-II Pro and Virtex-II Pro X

• Spartan™-II/E = Spartan-II and Spartan-IIE

• Spartan-3/E = Spartan-3 and Spartan-3E

• AREG • B_INPUT • BREG

• CAPACITANCE • CLK_FEEDBACK • CLKDV_DIVIDE

• CLKFX_DIVIDE • CLKFX_MULTIPLY • CLKIN_DIVIDE_BY_2

• CLKIN_PERIOD • CLKOUT_PHASE_SHIFT • DESKEW_ADJUST

• DFS_FREQUENCY_MODE • DIFF_TERM • DLL_FREQUENCY_MODE

• DUTY_CYCLE_CORRECTION • HIGH_FREQUENCY • INIT

• INIT_A • INIT_B • INIT_XX

• INITP_XX • ONESHOT • PHASE_SHIFT

• PREG • SRVAL • SRVAL_A

• SRVAL_B • STARTUP_WAIT • WRITE_MODE

• WRITE_MODE_A • WRITE_MODE_B
Constraints Guide www.xilinx.com 13
ISE 8.1i

http://www.xilinx.com

Chapter 1: Introduction
R

Table 1-1: Constraint Types and Supported Architectures

Constraint Constraint Type Architecture

T
im

in
g

P
la

ce
m

en
t

M
ap

p
in

g

R
o

u
ti

n
g

F
it

te
r

V
ir

te
x\

E

V
ir

te
x-

II

V
ir

te
x-

II
P

ro
/P

ro
 X

V
ir

te
x-

4

S
p

ar
ta

n
-I

I\E

S
p

ar
ta

n
-3

\E

X
C

95
00

\X
L

\X
V

C
o

o
lR

u
n

n
er

 X
P

L
A

3

C
o

o
lR

u
n

n
er

-I
I

AREA_GROUP √ √ √ √ √ √ √ √ √

ASYNC_REG √ √ √ √ √ √

BEL √ √ √ √ √

BLKNM √

BUFG (CPLD) √ √ √ √

COLLAPSE √ √ √ √

COMPGRP √ √ √ √ √ √ √

CONFIG √ √ √ √ √ √ √ √ √ √

CONFIG_MODE √ √ √ √ √ √ √

COOL_CLK √ √

DATA_GATE √ √

DCI_VALUE √ √ √ √ √ ∗

Note: DCI_VALUE applies to Spartan-3 only. DCI_VALUE does not apply to Spartan-3E.

Directed Routing √ √ √ √ √

DISABLE √ √ √ √ √ √ √

DRIVE √

DROP_SPEC √ √ √ √ √ √ √ √ √ √

ENABLE √ √ √ √ √ √ √

FAST √ √ √ √ √ √ √ √ √ √

FEEDBACK √ √ √ √ √ √ √

FILE √ √ √ √ √ √ √ √ √

FLOAT √ √ √

FROM-THRU-TO √ √ √ √ √ √ √

FROM-TO √ √ √ √ √ √ √ √ √ √

HBLKNM √

HU_SET √

INREG √ √ √

IOB √ √ √ √ √ √ √
14 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Constraint Types and Supported Architectures
R

IOBDELAY √ √ √ √ √ √

IOSTANDARD √

KEEP √ √ √ √ √ √ √ √ √ √

KEEPER √ √ √ √ √ √ √ √

LOC √

LOCATE √ √ √ √ √ √ √

LOCK_PINS √ √ √ √ √ √ √

MAP √ √ √ √ √ √ √

MAXDELAY √ √ √ √ √ √ √

MAXPT √ √ √ √

MAXSKEW √ √ √ √ √ √ √

NODELAY √ √ √ √ √ √ √

NOREDUCE √ √ √ √

OFFSET √ √ √ √ √ √ √ √ √ √

OPEN_DRAIN √ √

OPT_EFFORT √ √ √ √ √ √ √ √

OPTIMIZE √ √ √ √ √ √ √

PERIOD √ √ √ √ √ √ √ √ √ √

PIN √ √ √ √ √ √ √

PRIORITY √ √ √ √ √ √ √ √ √ √

PROHIBIT √ √ √ √ √ √ √ √ √ √

PULLDOWN √ √ √ √ √ √ √ √ √ √

PULLUP √ √ √ √ √ √ √ √ √

PWR_MODE √ √

REG √ √ √ √

RLOC √ √

RLOC_ORIGIN √ √ √ √ √ √ √ √

RLOC_RANGE √ √ √ √ √ √ √ √

SAVE NET FLAG √ √ √ √ √ √ √

Constraint Constraint Type Architecture

T
im

in
g

P
la

ce
m

en
t

M
ap

p
in

g

R
o

u
ti

n
g

F
it

te
r

V
ir

te
x\

E

V
ir

te
x-

II

V
ir

te
x-

II
P

ro
/P

ro
 X

V
ir

te
x-

4

S
p

ar
ta

n
-I

I\E

S
p

ar
ta

n
-3

\E

X
C

95
00

\X
L

\X
V

C
o

o
lR

u
n

n
er

 X
P

L
A

3

C
o

o
lR

u
n

n
er

-I
I

Constraints Guide www.xilinx.com 15
ISE 8.1i

http://www.xilinx.com

Chapter 1: Introduction
R

SCHMITT_TRIGGER √ √

SIM_COLLISION_CHECK √ √ √ √

SLEW √ √ √ √ √ √ √ √ √ √ √

SLOW √ √ √ √

SYSTEM_JITTER √ √

TEMPERATURE √ √ √ √ √ √ √

TIG √ √ √ √ √ √ √

TIMEGRP √ √ √ √ √ √ √ √ √ √

TIMESPEC √ √ √ √ √ √ √ √ √ √

TNM √ √ √ √ √ √ √ √ √ √

TNM_NET √ √ √ √ √ √ √

TPSYNC √ √ √ √ √ √ √

TPTHRU √ √ √ √ √ √ √

TSidentifier √ √ √ √ √ √ √ √ √ √

U_SET √

USE_RLOC √ √ √ √ √ √ √ √

USELOWSKEWLINES √ √ √ √

VOLTAGE √ √ √ √ √ √ √

VREF √ √

WIREAND √ √

XBLKNM √

Constraint Constraint Type Architecture

T
im

in
g

P
la

ce
m

en
t

M
ap

p
in

g

R
o

u
ti

n
g

F
it

te
r

V
ir

te
x\

E

V
ir

te
x-

II

V
ir

te
x-

II
P

ro
/P

ro
 X

V
ir

te
x-

4

S
p

ar
ta

n
-I

I\E

S
p

ar
ta

n
-3

\E

X
C

95
00

\X
L

\X
V

C
o

o
lR

u
n

n
er

 X
P

L
A

3

C
o

o
lR

u
n

n
er

-I
I

16 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

R

Chapter 2

Constraint Types

This chapter discusses the various types of constraints documented within this Guide. This
chapter contains the following sections:

• “Attributes and Constraints”

• “CPLD Fitter”

• “Grouping Constraints”

• “Logical Constraints”

• “Physical Constraints”

• “Mapping Directives”

• “Modular Design Constraints”

• “Placement Constraints”

• “Routing Directives”

• “Synthesis Constraints”

• “Timing Constraints”

Attributes and Constraints
The terms attribute and constraint have been used interchangeably by some in the
engineering community, while others ascribe different meanings to these terms. In
addition, language constructs use the terms attribute and directive in similar yet different
senses. For the purpose of clarification, the Xilinx® documentation refers to the terms
attributes and constraints as defined below.

Attributes
An attribute is a property associated with a device architecture primitive component that
generally affects an instantiated component’s functionality or implementation. Attributes
are passed as follows:

• In VHLDL, by means of generic maps

• In Verilog, by means of defparams or inline parameter passing while instantiating the
primitive component

Examples of attributes are:

• The INIT property on a LUT4 component

• The CLKFX_DIVIDE property on a DCM

All attributes are described in the appropriate Xilinx Libraries Guide as a part of the
primitive component description.
Constraints Guide www.xilinx.com 17
ISE 8.1i

http://www.xilinx.com

Chapter 2: Constraint Types
R

Synthesis Constraints
Synthesis constraints direct the synthesis tool optimization technique for a particular
design or piece of HDL code. They are either embedded within the VHDL or Verilog code,
or within a separate synthesis constraints file. Examples of synthesis constraints are:

• USE_DSP48 (XST)

• RAM_STYLE (XST)

Synthesis constraints are documented as follows:

• XST constraints are documented in the Xlinx XST User Guide.

• Synthesis constraints for other synthesis tools are documented in the vendor’s
documentation for the tool. For more information on synthesis constraints for your
synthesis tool, see the vendor documentation.

Implementation Constraints
Implementation constraints are instructions given to the FPGA implementation tools to
direct the mapping, placement, timing or other guidelines for the implementation tools to
follow while processing an FPGA design. Implementation constraints are generally placed
in the UCF file, but may exist in the HDL code, or in a synthesis constraints file. Examples
of implementation constraints are:

• LOC (placement) constraints

• PERIOD (timing) constraints

Implementation constraints are documented in the Xilinx Constraints Guide.

CPLD Fitter
The following constraints apply to CPLD devices:

Grouping Constraints
In a TS TIMESPEC attribute, specify the set of paths to be analyzed by grouping start and
end points in one of the following ways.

BUFG (CPLD) COLLAPSE COOL_CLK

DATA_GATE FAST INREG

IOSTANDARD KEEP KEEPER

LOC MAXPT NOREDUCE

OFFSET OPEN_DRAIN PERIOD

PROHIBIT PULLUP PWR_MODE

REG SCHMITT_TRIGGER SLOW

TIMEGRP TIMESPEC TNM

TSidentifier VREF WIREAND
18 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Grouping Constraints
R

• Refer to a predefined group by specifying one of the corresponding keywords: FFS,
PADS, LATCHES, RAMS, DSPS, BRAMS_PORTA, or BRAMS_PORTB.

• Create your own groups within a predefined group by tagging symbols with “TNM”
(pronounced tee-name) and “TNM_NET” constraints.

• Create groups that are combinations of existing groups using “TIMEGRP” symbols.

• Create groups by pattern matching on net names. For more information, see “Creating
Groups by Pattern Matching” in the “TIMEGRP” constraint.

Using Predefined Groups
Using predefined groups, you can refer to a group of flip-flops, input latches, pads, or
RAMs by using the corresponding keywords. See the following table.

From-To statements enable you to define timing specifications for paths between
predefined groups. The following examples are TS attributes that are entered in the UCF.
This method enables you to easily define default timing specifications for the design, as
illustrated by the following examples.

Predefined Group Examples
UCF syntax:

TIMESPEC “TS01”=FROM FFS TO FFS 30;

TIMESPEC “TS02”=FROM LATCHES TO LATCHES 25;

TIMESPEC “TS03”=FROM PADS TO RAMS 70;

TIMESPEC “TS04”=FROM FFS TO PADS 55;

TIMESPEC “TS01” = FROM BRAMS_PORTA TO BRAMS_PORTB(gork*);

Table 2-1: Predefined Groups

Keyword Description

CPUS PPC405 in Virtex™-II Pro and Virtex-II Pro

FFS • All CLB and IOB edge-triggered flip-flops
• Shift Register LUTs in Virtex and derived
• Dual-data-rate registers in Virtex-II and derived (includes both

flip-flops in the DDR)

HSIOS GT and GT10 in Virtex-II Pro and Virtex-II Pro X

LATCHES All CLB and IOB level-sensitive latches

MULTS Multipliers, both sync and async, in Virtex-II and derived

PADS All I/O pads (typically inferred from top level HDL ports)

RAMS • All CLB LUT RAMs, both single- and dual-port (includes both
ports of dual-port)

• All block RAMs, both single-and dual-port (includes both ports
of dual-port)

BRAMS_PORTA Port A of all dual-port block RAMs

BRAMS_PORTB Port B of all dual-port block RAMs
Constraints Guide www.xilinx.com 19
ISE 8.1i

http://www.xilinx.com

Chapter 2: Constraint Types
R

Note: For BRAMS_PORTA and BRAM_PORTB, the specification TS01 controls paths that begin at
any A port and end at a B port, which drives a signal matching the pattern gork*.

BRAMS_PORTA and BRAMS_PORTB Examples
Following are additional examples of BRAMS_PORTA and BRAMS_PORTB.

NET "X" TNM_NET = BRAMS_PORTA groupA;

The TNM group groupA contains all A ports that are driven by net X. If net X is traced
forward into any B port inputs, any single-port block RAM elements, or any Select RAM
elements, these do not become members of groupA.

NET "X" TNM_NET = BRAMS_PORTB(dob*) groupB;

The TNM group groupB contains each B port driven by net X, if at least one output on that
B port drives a signal matching the pattern dob*.

INST "Y" TNM = BRAMS_PORTB groupC;

The TNM group groupC contains all B ports found under instance Y. If instance Y is itself
a dual-port block RAM primitive, then groupC contains the B port of that instance.

INST "Y" TNM = BRAMS_PORTA(doa*) groupD;

The TNM group groupD contains each A port found under instance Y, if at least one output
on that A port drives a signal matching the pattern doa*.

TIMEGRP “groupE” = BRAMS_PORTA;

The user group groupE contains the A ports of all dual-port block RAM elements in the
design. This is equivalent to BRAMS_PORTA(*).

TIMEGRP “groupF” = BRAMS_PORTB(mem/dob*);

The user group groupF contains all B ports in the design, which drives a signal matching
the pattern mem/dob*.

A predefined group can also carry a name qualifier. The qualifier can appear any place the
predefined group is used. This name qualifier restricts the number of elements referred to.
The syntax is:

predefined group (name_qualifier [name_qualifier])

name_qualifier is the full hierarchical name of the net that is sourced by the primitive being
identified.

The name qualifier can include the following wildcard characters:

• An asterisk (*) to show any number of characters

• A question mark (?) to show a single character

Wildcard characters allow you to:

• Specifiy more than one net

• Shorten and simplify the full hierarchical name

For example, specifying the group FFS(MACRO_A/Q?) selects only the flip-flops driving
the Q0, Q1, Q2 and Q3 nets.
20 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Logical Constraints
R

The following constraints are grouping constraints:

Logical Constraints
Logical constraints are constraints that are attached to elements in the design prior to
mapping or fitting. Applying logical constraints helps you to adapt your design’s
performance to expected worst-case conditions. Later, when you choose a specific Xilinx
architecture, and place and route or fit your design, the logical constraints are converted
into physical constraints.

You can attach logical constraints using attributes in the input design, which are written
into the Netlist Constraints File (NCF)or NGC netlist, or with a User Constraints File
(UCF).

Three categories of logical constraints are:

• “Placement Constraints”

• “Relative Location (RLOC) Constraints”

• “Timing Constraints”

For FPGA devices, relative location constraints (RLOCs) group logic elements into discrete
sets. They allow you to define the location of any element within the set relative to other
elements in the set, regardless of eventual placement in the overall design. For more
information, see “Relative Location (RLOC) Constraints” in this chapter.

Timing constraints allow you to specify the maximum allowable delay or skew on any
given set of paths or nets in your design.

Physical Constraints
Constraints can also be attached to the elements in the physical design, that is, the design
after mapping has been performed. These constraints are referred to as physical
constraints. They are defined in the Physical Constraints File (PCF), which is created
during mapping.

Xilinx recommends that you place any user-generated constraint in the UCF file, not in an
NCF or PCF file.

Note: The information in this section applies to FPGA device families only.

When a design is mapped, the logical constraints found in the netlist and the UCF file are
translated into physical constraints, that is, constraints that apply to a specific architecture.
These constraints are found in a mapper-generated file called the Physical Constraints File
(PCF).

The PCF file contains two sections:

• The schematic section, which contains the physical constraints based on the logical
constraints found in the netlist and the UCF file

• The user section, which can be used to add any physical constraints

COMPGRP PIN TIMEGRP

TNM TNM_NET TPSYNC

TPTHRU
Constraints Guide www.xilinx.com 21
ISE 8.1i

http://www.xilinx.com

Chapter 2: Constraint Types
R

Mapping Directives
Mapping directives instruct the mapper to perform specific operations. The following
constraints are mapping directives:

Modular Design Constraints
Constraints are used to direct the tools for much of the modular design flow. Though these
constraints are intended to be generated by the relevant components of the ISE™ software
suite (for example, Floorplanner and Constraints Editor), knowledge of these constraints is
useful to understand the details of the modular design behavior.

A node in the logical hierarchy that has had some constraints applied to it for constraining
its location initially defines a module. Constraints can also be applied to locate the
boundary or pseudo components for this module, adding more locations to the specified
area for other component types and to specify certain module-relative timing constraints.

The following constraints are modular design constraints:

For more information, see “Modular Design” in the Xilinx Development System Reference
Guide.

Placement Constraints
This section describes the placement constraints for each type of logic element in FPGA
designs, such as:

• Flip-flops

• ROMs and RAMs

• BUFTs

AREA_GROUP BEL BLKNM

DCI_VALUE DRIVE FAST

HBLKNM HU_SET IOB

IOBDELAY IOSTANDARD KEEP

KEEPER MAP NODELAY

OPTIMIZE PULLDOWN PULLUP

RLOC RLOC_ORIGIN RLOC_RANGE

SAVE NET FLAG SLEW U_SET

USE_RLOC XBLKNM

INST/AREA_GROUP
(UCF)

COMPGRP/COMP (PCF) AREA_GROUP/RANGE
(UCF)

COMPGRP/LOCATE
(PCF)

PIN/LOC (UCF) COMP/LOCATE (PCF)

NET/TPSYNC (UCF) COMPGRP/LOCATE
(PCF)

PROHIBIT (PCF)
22 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Placement Constraints
R

• CLBs

• IOBs

• I/Os

• Edge decoders

• Global buffers

Individual logic gates, such as AND or OR gates, are mapped into CLB function generators
before the constraints are read, and therefore cannot be constrained.

The following constraints control mapping and placement of symbols in a netlist:

• BLKNM

• CONFIG (When used with PROHIBIT)

• HBLKNM

• XBLKNM

• LOC

• PROHIBIT

• RLOC

• RLOC_ORIGIN

• RLOC_RANGE

Most constraints can be specified either in the HDL or in the UCF file.

In a constraints file, each placement constraint acts upon one or more symbols. Every
symbol in a design carries a unique name, which is defined in the input file. Use this name
in a constraint statement to identify the symbol.

The UCF and NCF files are case sensitive. Identifier names (names of objects in the design,
such as net names) must exactly match the case of the name as it exists in the source design
netlist. However, any Xilinx constraint keyword (for example, LOC, PROHIBIT, RLOC,
BLKNM) can be entered in either all upper-case or all lower-case letters. Mixed case is not
allowed.

Relative Location (RLOC) Constraints
The RLOC constraint groups logic elements into discrete sets. You can define the location
of any element within the set relative to other elements in the set, regardless of eventual
placement in the overall design. For example, if RLOC constraints are applied to a group of
eight flip-flops organized in a column, the mapper maintains the columnar order and
moves the entire group of flip-flops as a single unit. In contrast, absolute location (LOC)
constraints constrain design elements to specific locations on the FPGA die with no
relation to other design elements.
Constraints Guide www.xilinx.com 23
ISE 8.1i

http://www.xilinx.com

Chapter 2: Constraint Types
R

Placement Constraints
The following constraints are placement constraints:

Routing Directives
Routing directives instruct PAR to perform specific operations. The following constraints
are routing directives:

• AREA_GROUP

• CONFIG_MODE

• LOCK_PINS

• OPT_EFFORT

• USELOWSKEWLINES

Synthesis Constraints
Synthesis constraints instruct the synthesis tool to perform specific operations. The
following constraints are synthesis constraints:

Timing Constraints
Xilinx software enables you to specify precise timing constraints for your Xilinx designs.
You can specify the timing constraints for any nets or paths in your design, or you can
specify them globally. One way of specifying path requirements is to first identify a set of
paths by identifying a group of start and end points. The start and end points can be flip-
flops, I/O pads, latches, or RAMs. You can then control the worst-case timing on the set of
paths by specifying a single delay requirement for all paths in the set.

The primary way to specify timing constraints is to enter them in your design (HDL and
schematic). However, you can also specify timing constraints in constraints files (UCF,
NCF, PCF, XCF). For more information about each constraint, see the later chapters in this
guide.

Once you define timing specifications and map the design, PAR places and routes your
design based on these requirements.

AREA_GROUP BEL CONFIG a

a. when used with PROHIBIT

LOC LOCATE OPT_EFFORT

PROHIBIT RLOC RLOC_ORIGIN

RLOC_RANGE USE_RLOC

FROM-TO IOB KEEP

MAP OFFSET PERIOD

TIG TNM TNM_NET
24 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Timing Constraints
R

To analyze the results of your timing specifications, use the command line tool, TRACE
(TRCE) or the ISE tool Timing Analyzer.

XST Timing Constraints
XST supports an XCF (XST Constraints File) syntax to define synthesis and timing
constraints. The constraint syntax in use prior to the ISE 7.1i release is no longer supported.

Timing constraints supported by XST can be applied via either:

• The -glob_opt command line switch

• The constraints file

Command Line Switch

Using the -glob_opt command line switch is the same as selecting Process Properties >
Synthesis Options > Global Optimization Goal. Using this method allows you to apply global
timing constraints to the entire design. You cannot specify a value for these constraint; XST
will optimize them for the best performance.These constraints are overridden by
constraints specified in the constraints file.

Constraints File

Using the constraint file method, you can use the native UCF timing constraint syntax.
Using the XCF syntax, XST supports constraints such as TNM_NET, TIMEGRP, PERIOD,
TIG, FROM-TO, including wildcards and hierarchical names.

Note: Timing constraints are written to the NGC file only when the Write Timing Constraints
property is checked in the Process Properties dialog box in Project Navigator, or the -
write_timing_constraints option is specified when using the command line. By default, they are
not written to the NGC file.

Independent of the way timing constraints are specified, the Clock Signal option affects
timing constraint processing. In the case where a clock signal goes through which input
pin is the real clock pin. The CLOCK_SIGNAL constraint allows you to define the clock
pin.

For more information, see the Xilinx XST Users Guide.

UCF Timing Constraint Support
Caution! If you specify timing constraints in the XCF file, Xilinx strongly suggests that you to
use the '/' character as a hierarchy separator instead of '_'.

The following timing constraints are supported in the XST Constraints File (XCF).

From-To

FROM-TO defines a timing constraint between two groups. A group can be user-defined
or predefined (FFS, PADS, RAMS). For more information, see the “FROM-TO” constraint.
Following is an example of XCF Syntax:

TIMESPEC “TSname”=FROM “group1” TO “group2” value;

Offset

OFFSET is a basic timing constraint. It specifies the timing relationship between an
external clock and its associated data-in or data-out pin. OFFSET is used only for
Constraints Guide www.xilinx.com 25
ISE 8.1i

http://www.xilinx.com

Chapter 2: Constraint Types
R

pad-related signals, and cannot be used to extend the arrival time specification method to
the internal signals in a design.

OFFSET allows you to:

• Calculate whether a setup time is being violated at a flip-flop whose data and clock
inputs are derived from external nets.

• Specify the delay of an external output net derived from the Q output of an internal
flip-flop being clocked from an external device pin.

For more information, see the “OFFSET” constraint.

XCF Syntax:

OFFSET = {IN|OUT} “offset_time” [units] {BEFORE|AFTER} “clk_name”
[TIMEGRP “group_name”];

TIG

The “TIG” constraint causes all paths going through a specific net to be ignored for timing
analyses and optimization purposes. This constraint can be applied to the name of the
signal affected.

XCF Syntax:

NET “netname” TIG;

TIMEGRP

“TIMEGRP” is a basic grouping constraint. In addition to naming groups using the TNM
identifier, you can also define groups in terms of other groups. You can create a group that
is a combination of existing groups by defining a TIMEGRP constraint.

You can place TIMEGRP constraints in a constraints file (XCF or NCF). You can use
TIMEGRP attributes to create groups using the following methods.

• Combining multiple groups into one

• Defining flip-flop subgroups by clock sense

XCF Syntax:

TIMEGRP “newgroup”=”existing_grp1” “existing_grp2”
[“existing_grp3” . . .];

TNM

“TNM” is a basic grouping constraint. Use TNM (Timing Name) to identify the elements
that make up a group, which you can then use in a timing specification. TNM tags specific
FFS, RAMs, LATCHES, PADS, BRAMS_PORTA, BRAMS_PORTB, CPUS, HSIOS, and
MULTS as members of a group to simplify the application of timing specifications to the
group.

The RISING and FALLING keywords may also be used with TNMs.

XCF Syntax:

{NET | PIN} “net_or_pin_name” TNM=[predefined_group:] identifier;
26 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Timing Constraints
R

TNM Net

“TNM_NET” is essentially equivalent to TNM on a net except for input pad nets. Special
rules apply when using TNM_NET with the “PERIOD” constraint for DLL/DCMs in the
following devices:

• Virtex

• Virtex-E

• Virtex-II

• Virtex-II Pro

• Virtex-II Pro X

For more information, see “PERIOD Specifications on CLKDLLs and DCMs” in the
“TNM_NET” constraint.

A TNM_NET is a property that you normally use in conjunction with an HDL design to tag
a specific net. All downstream synchronous elements and pads tagged with the TNM_NET
identifier are considered a group. For more information, see the“TNM”constraint.

XCF Syntax:

NET “netname” TNM_NET=[predefined_group:] identifier;

Timing Model
The timing model used by XST for timing analysis takes into account both logic delays and
net delays. These delays are highly dependent on the speed grade that can be specified to
XST. These delays are also dependent on the selected technology (for example, Virtex and
Virtex-E devices). Logic delays data are identical to the delays reported by Trce (Timing
analyzer after Place and Route). The Net delay model is estimated based on the fanout
load.

Priority
Constraints are processed in the following order:

• Specific constraints on signals

• Specific constraints on top module

• Global constraints on top module

For example, constraints on two different domains or two different signals have the same
priority (that is, PERIOD clk1 can be applied with PERIOD clk2).
Constraints Guide www.xilinx.com 27
ISE 8.1i

http://www.xilinx.com

Chapter 2: Constraint Types
R

Timing and Grouping Constraints
The following are timing constraints and associated grouping constraints:

ASYNC_REG DISABLE DROP_SPEC

ENABLE FROM-THRU-TO FROM-TO

MAXSKEW OFFSET PERIOD

PRIORITY SYSTEM_JITTER TEMPERATURE

TIG TIMEGRP TIMESPEC

TNM TNM_NET TPSYNC

TPTHRU TSidentifier VOLTAGE
28 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

R

Chapter 3

Entry Strategies for Xilinx Constraints

This chapter discusses entry strategies for Xilinx® constraints. This chapter contains the
following sections:

• “Constraints Entry Table”

• “Schematic Designs”

• “Specifying Constraints in VHDL”

• “Specifying Constraints in Verilog”

• “ABEL”

• “UCF”

• “PCF Files”

• “NCF”

• “Constraints Editor”

• “Project Navigator”

• “Floorplanner”

• “Pinout & Area Constraints Editor (PACE)”

• “FPGA Editor”

• “Constraints Priority”
Constraints Guide www.xilinx.com 29
ISE 8.1i

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

Constraints Entry Table
The following table lists the constraints and their associated entry strategies. See the
individual constraint for syntax examples.

Table 3-1: Constraints Entry Table

Constraint

S
ch

em
at

ic

V
H

D
L

V
er

ilo
g

A
B

E
L

N
C

F

U
C

F

C
o

n
st

ra
in

ts
 E

d
it

o
r

P
C

F

X
C

F

F
lo

o
rp

la
n

n
er

PA
C

E

F
P

G
A

 E
d

it
o

r

P
ro

je
ct

 N
av

ig
at

o
r

Constraints A

AREA_GROUP √ √ √ √ √

ASYNC_REG √ √ √ √ √

Constraints B

BEL √ √ √ √ √

BLKNM √ √ √ √ √ √

BUFG (CPLD) √ √ √ √ √ √ √

Constraints C

COLLAPSE √ √ √ √ √

COMPGRP √

CONFIG √ √ √

CONFIG_MODE √

COOL_CLK √ √ √ √ √ √

Constraints D

DATA_GATE √ √ √ √ √ √

DCI_VALUE √ √

Directed Routing √ √ √

DISABLE √ √ √

DRIVE √ √ √ √ √ √ √

DROP_SPEC √ √ √

Constraints E

ENABLE √ √ √

Constraints F

FAST √ √ √ √ √ √ √ √

FEEDBACK √ √ √
30 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Constraints Entry Table
R

FILE √

FLOAT √ √ √ √ √ √ √

FROM-THRU-TO √ √ √ √

FROM-TO √ √ √ √

Constraints H

HBLKNM √ √ √ √ √

HU_SET √ √ √ √ √ √

Constraints I

INREG √ √ √

IOB √ √ √ √ √ √ √ √

IOBDELAY √ √ √ √ √ √

IOSTANDARD √ √ √ √ √ √ √ √

Constraints K

KEEP √ √ √ √ √ √ √

KEEPER √ √ √ √ √ √ √ √

Constraints L

LOC √ √ √ √ ∗ √ √ √ √ √ √

Note: * Pin assignments are specified in ABEL PIN declarations without using the LOC keyword.

LOCATE √ √

LOCK_PINS √ √ √

Constraints M

MAP √ √ √

MAXDELAY

MAXPT √ √ √ √ √

MAXSKEW √ √ √ √ √ √ √

Constraints

NODELAY √ √ √ √ √ √

NOREDUCE √ √ √ √ ∗ √ √ √

Table 3-1: Constraints Entry Table

Constraint

S
ch

em
at

ic

V
H

D
L

V
er

ilo
g

A
B

E
L

N
C

F

U
C

F

C
o

n
st

ra
in

ts
 E

d
it

o
r

P
C

F

X
C

F

F
lo

o
rp

la
n

n
er

PA
C

E

F
P

G
A

 E
d

it
o

r

P
ro

je
ct

 N
av

ig
at

o
r

Constraints Guide www.xilinx.com 31
ISE 8.1i

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

Note: * Specified using ABEL-specific keyword RETAIN.

Constraints O

OFFSET √ √ √ √ √ √

OPEN_DRAIN √ √ √ √ √ √ √

OPT_EFFORT √ √ √ √

OPTIMIZE √ √ √ √ √

Constraints P

PERIOD √ √ √ √ √ √ √ √ √

PIN √

PRIORITY √ √ √

PROHIBIT √ √ √ √ √ √ √ √

PULLDOWN √ √ √ √ √ √ √

PULLUP √ √ √ √ √ √ √ √

PWR_MODE √ √ √ √ √ √ √

Constraints R

REG √ √ √ √ √ √ √

RLOC √ √ √ √ √ √ √

RLOC_ORIGIN √ √ √ √ √ √ √

RLOC_RANGE √ √ √ √ √ √ √

Constraints S

SAVE NET FLAG √ √ √ √ √ √

SCHMITT_TRIGGER √ √ √ √ √ √ √

SLEW √ √ √ √ √ √ √

SLOW √ √ √ √ √ √ √ √

SYSTEM_JITTER √ √ √ √ √ √

Constraints T

TEMPERATURE √ √ √ √

TIG √ √ √ √ √ √ √ √

Table 3-1: Constraints Entry Table

Constraint

S
ch

em
at

ic

V
H

D
L

V
er

ilo
g

A
B

E
L

N
C

F

U
C

F

C
o

n
st

ra
in

ts
 E

d
it

o
r

P
C

F

X
C

F

F
lo

o
rp

la
n

n
er

PA
C

E

F
P

G
A

 E
d

it
o

r

P
ro

je
ct

 N
av

ig
at

o
r

32 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Schematic Designs
R

Schematic Designs
To add Xilinx constraints as attributes within a symbol or schematic drawing, follow these
rules:

• If a constraint applies to a net, add it as an attribute to the net.

• If a constraint applies to an instance, add it as an attribute to the instance.

• You cannot add global constraints such as PART and PROHIBIT.

• You cannot add any timing specifications that would be attached to a TIMESPEC or
TIMEGRP.

• Enter attribute names and values in either all upper case or all lower case. Mixed
upper and lower case is not allowed.

For more information about creating, modifying, and displaying attributes, see the
Schematic and Symbol Editors help.

TIMEGRP √ √ √ √

TIMESPEC √ √ √

TNM √ √ √ √ √

TNM_NET √ √ √ √

TPSYNC √ √ √

TPTHRU √ √ √ √

TSidentifier √ √ √ √ √

Constraints U

U_SET √ √ √ √ √ √

USE_RLOC √ √ √ √ √ √

USELOWSKEWLINES √ √ √ √ √ √ √ √

Constraints V

VOLTAGE √ √ √ √

VREF √ √ √

Constraints W

WIREAND √ √ √ √ √

Constraints X

XBLKNM √ √ √ √ √ √

Table 3-1: Constraints Entry Table

Constraint

S
ch

em
at

ic

V
H

D
L

V
er

ilo
g

A
B

E
L

N
C

F

U
C

F

C
o

n
st

ra
in

ts
 E

d
it

o
r

P
C

F

X
C

F

F
lo

o
rp

la
n

n
er

PA
C

E

F
P

G
A

 E
d

it
o

r

P
ro

je
ct

 N
av

ig
at

o
r

Constraints Guide www.xilinx.com 33
ISE 8.1i

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

In the this Guide, the syntax for any constraint that can be entered in a schematic is
described in the individual section for the constraint. For an example of correct schematic
syntax, see “Schematic” in the “BEL” constraint.

Specifying Constraints in VHDL
In VHDL code, constraints can be specified with VHDL attributes. Before it can be used, a
constraint must be declared with the following syntax:

attribute attribute_name : string;

Example:

attribute RLOC : string;

An attribute can be declared in an entity or architecture.

• If the attribute is declared in the entity, it is visible both in the entity and the
architecture body.

• If the attribute is declared in the architecture, it cannot be used in the entity
declaration.

Once the attribute is declared, you can specify a VHDL attribute as follows:

attribute attribute_name of
{component_name|label_name|entity_name|signal_name
|variable_name|type_name}: {component|label|entity|signal
|variable|type} is attribute_value;

Accepted attribute_values depend on the attribute type.

Examples:

attribute RLOC of u123 : label is "R11C1.S0";

attribute bufg of my_clock: signal is “clk”;

For Xilinx, the most common objects are signal, entity, and label. A label describes an
instance of a component.

VHDL is case insensitive.

In some cases, existing Xilinx constraints cannot be used in attributes, since they are also
VHDL keywords. To avoid this naming conflict, use a constraint alias. Each Xilinx
constraint has its own alias. The alias is the original constraint name prepended with the
prefix "XIL_". For example, the "RANGE" constraint cannot be used in an attribute directly.
Use "XIL_RANGE" instead.

Specifying Constraints in Verilog
You can specify constraints as follows in Verilog code:

 // synthesis attribute attribute_name [of]
{module_name|instance_name|signal_name}[is] attribute_value;

The module_name, instance_name, signal_name, and attribute_value are case sensitive.

 Examples:

// synthesis attribute RLOC of u123 is R11C1.S0;

// synthesis attribute HU_SET u1 MY_SET;

// synthesis attribute bufg of my_clock is “clk”;
34 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

ABEL
R

ABEL
Xilinx supports the use of ABEL for CPLD devices.

Following is an example of the basic syntax.

XILINX PROPERTY 'bufg=clk my_clock';

UCF
The UCF file is an ASCII file specifying constraints on the logical design. You can create
this file and enter your constraints with any text editor. You can also use the Constraints
Editor to create constraints within a UCF file. For more information, see “Constraints
Editor” in this chapter.

These constraints affect how the logical design is implemented in the target device. You
can use the file to override constraints specified during design entry.

UCF Flow
The following figure illustrates the UCF flow.

The UCF file is an input to NGDBuild (see the preceding figure). The constraints in the
UCF file become part of the information in the NGD file produced by NGDBuild. For
FPGA devices, some of these constraints are used when the design is mapped by MAP and
some of the constraints are written into the PCF (Physical Constraints File) produced by
MAP.

The constraints in the PCF file are used by each of the physical design tools (for example,
PAR and the timing analysis tools), which are run after the design is mapped.

Manual Entry of Timing Constraints
You can manually enter timing specifications as constraints in a UCF file. When you run
NGDBuild on the design, the timing constraints are added to the design database as part of
the NGD file. To avoid manually entering timing constraints in a UCF file, use the Xilinx
Constraints Editor.

Figure 3-1: UCF File Flow

X7423

NGDBuild

NGD
Generic Database

(Containing Constraints)

NGO
Logical Design

EDF
EDIF File

UCF
User Constraints

File
Constraints Guide www.xilinx.com 35
ISE 8.1i

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

UCF and NCF File Syntax
Logical constraints are found in:

• The Netlist Constraint File (NCF), an ASCII file generated by synthesis programs

• The User Constraint File (UCF), an ASCII file generated by the user

Xilinx recommends that you place user-generated constraints in the UCF file — not in an
NCF or PCF file.

General Rules

Following are some general rules for the UCF and NCF files.

• The UCF and NCF files are case sensitive. Identifier names (names of objects in the
design, such as net names) must exactly match the case of the name as it exists in the
source design netlist. However, any Xilinx constraint keyword (for example, LOC,
PERIOD, HIGH, LOW) may be entered in all upper-case, all lower-case, or mixed
case.

• Each statement is terminated by a semicolon (;).

• No continuation characters are necessary if a statement exceeds one line, since a
semicolon marks the end of the statement.

• Xilinx recommends that you group similar blocks, or components, as a single timing
constraint, and not as separate timing constraints.

• To add comments to the UCF and NCF file, begin each comment line with a pound (#)
sign, as in the following example.

file TEST.UCF
net constraints for TEST design
NET “$SIG_0 “ MAXDELAY = 10;
NET “$SIG_1 “ MAXDELAY = 12 ns;

C and C++ style comments (/* */ and respectively) are also supported.

• Statements need not be placed in any particular order in the UCF and NCF file.

• Enclose NET and INST names in double quotes (recommended but not mandatory).

• Enclose inverted signal names that contain a tilde (for example, ~OUTSIG1) in double
quotes (mandatory).

• You can enter multiple constraints for a given instance. For more information, see
“Entering Multiple Constraints” in this chapter.

Conflict in Constraints

The constraints in the UCF and NCF files and the constraints in the schematic or synthesis
file are applied equally. It does not matter whether a constraint is entered in the schematic
or synthesis file, or in the UCF and NCF files. If the constraints overlap, UCF overrides
NCF and schematic constraints. NCF overrides schematic constraints.

If by mistake two or more elements are locked onto a single location, the mapper detects
the conflict, issues an error message, and stops processing so that you can correct the
mistake.
36 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

UCF
R

Syntax

The UCF file supports a basic syntax that can be expressed as:

{NET|INST|PIN} “full_name” constraint;

or as

SET set_name set_constraint;

where

• full_name is a full hierarchically qualified name of the object being referred to. When
the name refers to a pin, the instance name of the element is also required.

• constraint is a constraint in the same form as it would be used if it were attached as an
attribute on a schematic object. For example, LOC=P38 and FAST.

• set_name is the name of an RLOC set. For more information, see “RLOC Description”
in the “RLOC” constraint

• set_constraint is an RLOC_ORIGIN or RLOC_RANGE constraint

Specifying Attributes for TIMEGRP and TIMESPEC

To specify attributes for TIMEGRP, the keyword TIMEGRP precedes the attribute
definitions in the constraints files.

TIMEGRP “input_pads”=pads EXCEPT output_pads;

Using Reserved Words

In all of the constraints files (NCF, UCF, and PCF), instance or variable names that match
internal reserved words may be rejected unless the names are enclosed in double quotes. It
is good practice to enclose all names in double quotes.

For example, the following entry would not be accepted because the word “net” is a
reserved word.

NET net OFFSET=IN 20 BEFORE CLOCK;

Following is the recommended way to enter the constraint.

NET “net” OFFSET=IN 20 BEFORE CLOCK;

or

NET “$SIG_0” OFFSET=IN 20 BEFORE CLOCK;

Enclose inverted signal names that contain a tilde (for example, ~OUTSIG1) in double
quotes (mandatory) as follows:

NET “~OUTSIG1” OFFSET=IN 20 BEFORE CLOCK;

Wildcards

You can use the wildcard characters, asterisk (*) and question mark (?) , in constraint
statements as follows:

• The asterisk (*) represents any string of zero or more characters

• The question mark (?) indicates a single character

In net names, the wildcard characters enable you to select a group of symbols whose
output net names match a specific string or pattern. For example, the constraint shown
Constraints Guide www.xilinx.com 37
ISE 8.1i

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

below increases the output speed of pads to which nets are connected with names that
meet the following patterns:

• They begin with any series of characters (represented by an asterisk [*]).

• The initial characters are followed by "AT."

• The net names end with one single character (represented by a question mark [?].

NET “*AT?” FAST;

In an instance name, a wildcard character by itself represents every symbol of the
appropriate type. For example, the following constraint initializes an entire set of ROMs to
a particular hexadecimal value, 5555.

INST “$1I3*/ROM2” INIT=5555;

If the wildcard character is used as part of a longer instance name, the wildcard represents
one or more characters at that position.

In a location, you can use a wildcard character for either the row number or the column
number. For example, the following constraint specifies placement of any instance under
the hierarchy of loads_of_logic in any CLB in column 8.

INST “/loads_of_logic/*” LOC=CLB_r*c8;

Wildcard characters can be used in dot extensions.

CLB_R1C3.*

Wildcard characters cannot be used for both the row number and the column number in a
single constraint, since such a constraint is meaningless.

Traversing Hierarchies

Top-level block names (design names) are ignored when searching for instance name
matches. You can use the asterisk wildcard character (*) to traverse the hierarchy of a
design within a UCF and NCF file. The following syntax applies (where level1 is an
example hierarchy level name).

* Traverses all levels of the hierarchy

level1/* Traverses all blocks in level1 and below

level1/*/ Traverses all blocks in the level1 hierarchy level but no further
38 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

UCF
R

Consider the following design hierarchy.

Figure 3-2: UCF Design Hierarchy

With the example design hierarchy, the following specifications illustrate the scope of the
wildcard.

INST * => <everything>
INST /* => <everything>
INST /*/ => <$A1,$B1,$C1>
INST $A1/* => <$A21,$A22,$A3,$A4>
INST $A1/*/ => <$A21,$A22>
INST $A1/*/* => <$A3,$A4>
INST $A1/*/*/ => <$A3>
INST $A1/*/*/* => <$A4>
INST $A1/*/*/*/ => <$A4>
INST /*/*22/ => <$A22,$B22,$C22>
INST /*/*22 => <$A22,$A3,$A4,$B22,$B3,$C3>

Entering Multiple Constraints

You can cascade multiple constraints for a given instance in the UCF file:

INST instanceName constraintName = constraintValue | constraintName =
constraintValue;

For example:

INST myInst LOC = P53 | IOSTANDARD = LVPECL33 | SLEW = FAST;

File Name

By default, NGDBuild reads the constraints file that carries the same name as the input
design with a .ucf extension. However, you can specify a different constraints file name
with the -uc option when running NGDBuild. NGDBuild automatically reads in the NCF
file if it has the same base name as the input EDIF file and is in the same directory as the
EDIF file.

The implementation tools (for example, NGDBuild, MAP, and PAR) require file name
extensions in all lowercase (for example, .ucf) in command lines.

$A21 $A22

$A3

$A4

$A1

$B21 $B22

$B3

$B1

$C21 $C22

$C3

$C1

X8571
Constraints Guide www.xilinx.com 39
ISE 8.1i

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

Instances and Blocks

The statements in the constraints file concern instances and blocks, which are defined as
follows.

• An instance is a symbol on the schematic.

• An instance name is the symbol name as it appears in the EDIF netlist.

• A block is a CLB, an IOB, or a TBUF.

• Specify the block name with the BLKNM, HBLKNM, or XBLKNM attributes. By
default, the software assigns a block name on the basis of a signal name associated
with the block.

PCF Files
The NGD file produced when a design netlist is read into the Xilinx Development System
may contain a number of logical constraints. These constraints originate in any of these
sources.

• An attribute assigned within a schematic or HDL file

• A constraint entered in a UCF (User Constraints File)

• A constraint appearing in an NCF (Netlist Constraints File) produced by a CAE
vendor toolset

Logical constraints in the NGD file are read by MAP. MAP uses some of the constraints to
map the design and converts logical constraints to physical constraints. MAP then writes
these physical constraints into a Physical Constraints File (PCF).

The PCF file is an ASCII file containing two separate sections:

• A section for those physical constraints created by the mapper

• A section for physical constraints entered by the user

The mapper section is rewritten every time you run the mapper.

Mapper-generated physical constraints appear first in the file, followed by user physical
constraints. In the event of conflicts between mapper-generated and user constraints, user
constraints are read last, and override mapper-generated constraints.

The mapper-generated section of the file is preceded by a SCHEMATIC START notation on
a separate line. The end of this section is indicated by SCHEMATIC END, also on a separate
line. Enter user-generated constraints, such as timing constraints, after SCHEMATIC END.

You can write user constraints directly into the file or you can write them indirectly (or
undo them) from within the FPGA Editor. For more information on constraints in the
FPGA Editor, see the FPGA Editor help.

Note: Whenever possible, you should add design constraints to the HDL, schematic, or UCF,
instead of PCF. This simplifies design archiving and improves design role checking.

The PCF file is an optional input to PAR, FPGA Editor, TRACE, NetGen, and BitGen.

The file may contain any number of constraints, and any number of comments, in any
order. A comment consists of either a pound sign (#) or double slashes (//) ,followed by any
number of other characters up to a new line. Each comment line must begin with # or //.
40 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

NCF
R

The structure of the PCF file is as follows.

schematic start;
translated schematic and UCF and NCF constraints in PCF format
schematic end;
user-entered physical constraints

Caution! Put all user-entered physical constraints after the “schematic end” statement. Any
constraints preceding this section or within this section may be overwritten or ignored.

Do not edit the schematic constraints. They are overwritten every time the mapper
generates a new PCF file.

Global constraints need not be attached to any object, but should be entered in a
constraints file.

Indicate the end of each constraint statement with a semi-colon.

In all of the constraints files (NCF, UCF, and PCF), instance or variable names that match
internal reserved words will be rejected unless the names are enclosed in double quotes. It
is good practice to enclose all names in double quotes. For example, the following entry
would not be accepted because the word net is a reserved word.

NET net FAST;

Following is the recommended way to enter the constraint.

NET “net” FAST;

NCF
The syntax rules for NCF files are the same as those for the UCF file. For more information,
see “UCF and NCF File Syntax” in this chapter.

Constraints Editor
The Constraints Editor is a tool for entering timing constraints and pin location constraints.
The user interface simplifies constraint entry by guiding you through constraint creation
without your needing to understand UCF file syntax.

Used in the implementation phase of the design after the translation step (NGDBuild), the
Constraints Editor allows you to create and manipulate constraints without any direct
editing of the UCF. After the constraints are created or modified with the Constraints
Editor, NGDBuild must be run again, using the new UCF and design source netlist files as
input and generating a new NGD file as output.

Input/Output Files
The Constraints Editor requires:

• A User Constraints File (UCF)

• A Xilinx Constraints File (XCF)

• A Native Generic Database (NGD) file

The Constraints Editor uses the NGD to provide names of logical elements for grouping.
As output, it uses the UCF.
Constraints Guide www.xilinx.com 41
ISE 8.1i

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

After you open the Constraints Editor, you must first open a UCF file. If the UCF and NGD
root names are not the same, you must select the appropriate NGD file to open. For more
information, see the Constraints Editor help.

Upon successful completion, the Constraints Editor writes out a UCF. NGDBuild
(translation) uses the UCF, along with design source netlists, to produce an NGD file. The
NGD file is read by the MAP program. MAP generates a physical design database in the
form of an NCD (Native Circuit Description) file and also generates a PCF (Physical
Constraints File). The implementation tools use these files to ultimately produce a
bitstream.

Not all Xilinx constraints are accessible through Constraints Editor. Constraints supported
in Constraints Editor and the associated UCF syntax are described in “UCF Syntax.”

Starting the Constraints Editor
The Constraints Editor runs on PCs and workstations. You can start Constraints Editor:

• From Project Navigator

• As a standalone

• From the command line

From Project Navigator

Within Project Navigator, launch the Constraints Editor from the Processes window.

1. Select a design file in the Sources window.

2. Double-click Create Timing Constraints in the Processes window, which is located
within User Constraints underneath Design Utilities.

As a Standalone

If you installed the Constraints Editor as a standalone tool on your PC, either:

• Click the Constraints Editor icon on the Windows desktop, or

• Select Start → Programs → Xilinx ISE 8.1i→ Accessories → Constraints Editor

From the Command Line

Below are several ways to start the Constraints Editor from the command line.

With No Data Loaded

To start the Constraints Editor from the command line with no data loaded, type:

constraints_editor

With the NGD File Loaded

To start the Constraints Editor from the command line with the NGD file loaded, type:

constraints_editor ngdfile_name

where

• ngdfile_name is the name of the NGD file

It is not necessary to use the .ngd extension.
42 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Constraints Editor
R

If a UCF file with the same base name as the NGD file exists, it will be loaded also.
Otherwise, you will be prompted for a UCF file.

With the NGD File and the UCF File Loaded

To start the Constraints Editor from the command line with the NGD file and the UCF file
loaded, type:

constraints_editor ngdfile_name -uc ucf_file_name

where

• ngdfile_name is the name of the NGD file

• ucf_file_name is the name of the UCF file

It is not necessary to use the .ucf extension.

As a Background Process

To run Constraints Editor as a background process on a workstation, enter:

constraints_editor &

UCF Syntax
This section describes the UCF syntax for constraints that are supported by the Constraints
Editor. For more information, see the Constraints Editor help. This section contains the
following:

• “Group Elements Associated by Nets (TNM_Net)”

• “Group Elements by Instance Name (TNM)”

• “Group Elements by Element Output Net Name Schematic Users (TIMEGRP)”

• “Timing THRU Points (TPTHRU)”

• “Pad to Setup”

• “Clock to Pad”

• “Slow/Fast Path Exceptions (FROM TO)”

• “Multicycle Paths (FROM/THRU/TO)”

• “False Paths (FROM TO TIG)”

• “False Paths by Net (Net TIG)”

• “Period”

• “Location”

• “FAST/SLOW”

• “PULLUP/PULLDOWN”

• “DRIVE”

• “IOSTANDARD”

• “VOLTAGE”

• “TEMPERATURE”
Constraints Guide www.xilinx.com 43
ISE 8.1i

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

Group Elements Associated by Nets (TNM_Net)

Definition

A TNM_NET (timing name for nets) is an attribute that can be used to identify the
elements that make up a group which can then be used in a timing specification.
Essentially TNM_NET is equivalent to TNM on a net except for pad nets.

UCF Syntax

NET “netname” TNM_Net=identifier;

where

• netname is the name of a net

• identifier is a value that consists of any combination of letters, numbers, or
underscores

Group Elements by Instance Name (TNM)

Definition

Identifies the instances that make up a group which can then be used in a timing
specification. A TNM (pronounced tee-name) is a flag that you place directly on your
schematic to tag a specific net, element pin, primitive or macro. All symbols tagged with
the TNM identifier are considered a group.

UCF Syntax

INST “instance_name” TNM=identifier;

where

• instance_name can be FFs, All Pads, Input Pads, Output Pads, Bi-directional Pads, 3-
stated Output Pads, RAMs, or Latches

• identifier is a value that consists of any combination of letters, numbers, or
underscores

Keep identifier short for convenience and clarity.

Group Elements by Element Output Net Name Schematic Users (TIMEGRP)

Definition

Specifies a new group with instances of FFs, PADs, RAMs, LATCHES, or User Groups by
output net name.

UCF Syntax

TIMEGRP identifier=element (output_netname);

where

• identifier is the name for the new time group

• element can be FFS, All Pads, Input Pads, Output Pads, Bi-directional Pads, 3-stated
Output Pads, RAMs, LATCHES, or User Groups

• output_netname is the name of the net attached to the element
44 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Constraints Editor
R

Timing THRU Points (TPTHRU)

Definition

Identifies an intermediate point on a path.

UCF Syntax

INST “instance_name” TPTHRU=identifier;

NET “netname” TPTHRU=identifier;

where

• identifier is a unique name

Pad to Setup

Definition

Specifies the timing relationship between an external clock and data at the pins of a device.
Operates on pads or predefined groups of pads.

UCF Syntax

OFFSET=IN time unit BEFORE pad_clock_netname [TIMEGRP
“reg_group_name”];

[NET “pad_netname”] OFFSET=IN time unit BEFORE pad_clock_netname
[TIMEGRP “reg_group_name”];

[TIMEGRP “padgroup_name”] OFFSET=IN time unit BEFORE pad_clock_netname
[TIMEGRP “reg_group_name”];

where

• padgroup_name is the name of a group of pads predefined by the user

• reg_group_name is the name of a group of registers predefined by the user

• pad_clock_netname is the name of the clock at the port

For more information on Pad to Setup, see “Global Tab” in the Constraints Editor help.

Clock to Pad

Definition

Specifies the timing relationship between an external clock and data at the pins of a device.
Operates on pads or predefined groups of pads.

UCF Syntax

OFFSET=OUT time unit AFTER pad_clock_netname [TIMEGRP
“reg_group_name”];

NET “pad_netname” OFFSET=OUT time unit AFTER pad_clock_netname [TIMEGRP
“reg_group_name”];

TIMEGRP “padgroup_name” OFFSET=OUT time unit AFTER pad_clock_netname
[TIMEGRP “reg_group_name”];
Constraints Guide www.xilinx.com 45
ISE 8.1i

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

where

• padgroup_name is the name of a group of pads predefined by the user

• reg_group_name is the name of a group of registers predefined by the user

• pad_clock_netname is the name of the clock at the port

For more information on Clock to Pad, see “Global Tab” in the Constraints Editor help.

Slow/Fast Path Exceptions (FROM TO)

Definition

Establishes an explicit maximum acceptable time delay between groups of elements.

UCF Syntax

TIMESPEC “TSid”=FROM “source_group” TO “destination_group” time [unit];

where

• source_group and destination_group are FFS, RAMS, PADS, LATCHES, or user-created
groups

Multicycle Paths (FROM/THRU/TO)

Definition

Establishes a maximum acceptable time delay between groups of elements relative to
another timing specification.

UCF Syntax

TIMESPEC “TSid”=FROM “source_group” THRU “timing_point” TO
“destination_group” time [unit];

where

• source_group and destination_group are FFS, RAMS, PADS, LATCHES, or user-created
groups

• timing_point is an intermediate point as specified by the TPTHRU constraint on the
Advanced tab window

False Paths (FROM TO TIG)

Definition

Marks paths between a source group and a destination group that are to be ignored for
timing purposes.

UCF Syntax

TIMESPEC “TSid”=FROM “source_group” TO “destination_group” TIG;

TIMESPEC “TSid”=FROM “source_group” THRU “timing_point(s)” TO
“destination_group” TIG;
46 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Constraints Editor
R

where

• source_group and destination_group are FFS, RAMS, PADS, LATCHES, or user-created
groups

• timing_point is an intermediate point as specified by the TPTHRU Points constraint on
the Advanced tab window

False Paths by Net (Net TIG)

Definition

Marks nets that are to be ignored for timing purposes.

UCF Syntax

NET “netname” TIG;

NET “netname” TIG=“TSid1” ... “TSidn”;

Period

Definition

Defines a clock period.

UCF Syntax

TIMESPEC “TSid”=PERIOD {timegroup_name time | TSid
[+/- phase [units]} [HIGH | LOW high_or_low_time unit];

where

• id is a unique identifier. The identifier can consist of letters, numbers, or the
underscore character (_).

• unit is picoseconds, nanoseconds, microseconds, or milliseconds

• HIGH | LOW indicates the state of the first pulse of the clock

• phase is the amount of time that the clock edges are offset when describing the time
requirement as a function of another clock

• units are in ms, us, ns, and ps

Location

Definition

Locks a user-defined port to a device pin.

UCF Syntax

NET “pad_netname” LOC=location;

where

• location is a device pin identification, for example, P10

Prohibit I/O Locations

Definition

Disallows the use of an I/O site by PAR (Place and Route) and FPGA Editor.
Constraints Guide www.xilinx.com 47
ISE 8.1i

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

UCF Syntax

CONFIG PROHIBIT=location1, [location2,... locationn];

where

• location is a pin location identification

FAST/SLOW

Definition

Assigns a slew rate to a selected port.

UCF Syntax

Net “port_netname” {FAST|SLOW};

where

• port_netname is the name of the port

PULLUP/PULLDOWN

Definition

Signifies a pull level (PULLUP, PULLDOWN, or KEEPER) for a selected output port.
KEEPER is used for Virtex™ devices only. When a 3-state buffer goes to high impedance,
KEEPER keeps the input level of the buffer on the pad net.

UCF Syntax

NET “port_netname” {PULLUP| PULLDOWN |KEEPER};

where

• port_netname is the name of the net attached to the port

DRIVE

Definition

This constraint assigns a signal strength to a selected port.

UCF Syntax

NET “port_netname” DRIVE=value;

where

• port_netname is the name of the net attached to the port

• value is drive strength (in mA). Values vary for different devices

IOSTANDARD

Note: This entry applies to Virtex devices only.

Definition

Assigns an input/output standard to a selected net attached to the port.
48 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Project Navigator
R

UCF Syntax

NET “port_netname” IOSTANDARD=standard_name;

where

• port_netname is the name of the net attached to the port

• standard_name is the name of the I/O standard (for example, LVTTL and LVCMOS)

VOLTAGE

Definition

Specifies operating voltage and provides a means of prorating delay characteristics based
on the specified voltage.

UCF Syntax

VOLTAGE=value[units];

where

• value is an integer or real number specifying the voltage in volts and units is an
optional parameter specifying the unit of measure

TEMPERATURE

Definition

Allows the specification of the operating temperature which provides a means of prorating
device delay characteristics based on the specified junction temperature. Prorating is a
linear scaling operation on existing speed file delays and is applied globally to all delays.

UCF Syntax

TEMPERATURE=value [units];

where

• value is an integer or real number specifying the temperature in Celsius as the default.
F and K are also accepted.

Project Navigator
This section explains how to set implementation constraints in Project Navigator. For
FPGA devices, the implementation process properties specify how a design is translated,
mapped, placed, and routed. You can set multiple properties to control the implementation
processes for the design. For CPLD devices, they control how a design is translated and fit.
For more information, see the Project Navigator help for the Process Properties dialog box.

Floorplanner
The following sections explain how to set area and IOB constraints using the Floorplanner.

Using Area Constraints
Area constraints are a way of restricting where PAR can place a particular piece of logic. By
reducing PAR's search area for placing logic, PAR's performance may be improved.
Constraints Guide www.xilinx.com 49
ISE 8.1i

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

To create an area constraint in Floorplanner.

1. Select a hierarchical group in the Design Hierarchy window.

2. Select Floorplan → Assign Area Constraint.

3. Use the mouse to drag a rectangular box where you want to locate the area constraint.

The area constraint includes all the tiles inside the drag box.

Area constraints may overlap each other. Select Floorplan → Bring Area To Front or
Floorplan → Push Area To Back to move a selected area constraint in front of or behind
another.

Creating UCF Constraints from IOB Placement
You can also add constraints to the UCF file through the Floorplanner and iteratively
implement your design to achieve optimal placement.

To begin with, you need only the NGD file generated in a previous flow. In the
Floorplanner, you manually make IOB assignments which are automatically written into
the UCF file. The Floorplanner edits the UCF file by adding the newly created placement
constraints. The placement constraints you create in the Floorplanner take precedence over
existing constraints in the UCF.

Next, go through the steps of implementing your design by running NGDBuild, MAP, and
PAR.

Pinout & Area Constraints Editor (PACE)
You can set constraints in the Pinout & Area Constraints Editor (PACE). Within PACE, the
Pin Assignments Editor is mainly used to assign location constraints to IOs. It is also used
to assign IO properties such as IO Standards. To access PACE from the Processes window
in Project Navigator, double-click Assign Package Pins or Create Area Constraints under
User Constraints. For more information, see “Editing Pins” in the PACE help.

LOC Constraints
This section refers to LOC constraints for IOs (including Bank and Edge constraints) and
global logic.

IOs

NET “name” LOC = "A23";

NET “name” LOC = "BANK0";

NET “name” LOC = "TL"; //half-edge constraint

NET “name” LOC = "T"; //edge constraint

Global Logic

INST “gt_name” LOC = GT_X0Y0;

INST “bram_name” LOC = RAMB16_X0Y0; (or RAMB4_C0R0)

INST “dcm_name” LOC = DCM_X0Y0;

INST “ppc_name” LOC = PPC405_X0Y0;

INST “mult_name” LOC = MULT18X18_X0Y0;
50 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

FPGA Editor
R

IOSTANDARD Constraints
NET “name” IOSTANDARD = "LVTTL";

PROHIBIT Constraints
CONFIG PROHIBIT = A23;

CONFIG PROHIBIT = SLICE_X1Y6;

CONFIG PROHIBIT = TBUF_X0Y0; (RAMs, MULTs, GTs, DCMs also)

AREA Constraints Editor
The AREA Constraints Editor is mainly used to assign areas to hierarchical blocks of logic.
The following UCF examples show AREA_GROUP constraints that can be set in the AREA
Constraints Editor.

INST “name” AREA_GROUP = group_name;

AREA_GROUP “group_name” RANGE=SLICE_X1Y1:SLICE_X5Y5;

AREA_GROUP “group_name” RANGE = SLICE_X6Y6:SLICE_X10Y10,
SLICE_X1Y1:SLICE_X4Y4;

AREA_GROUP “group_name” COMPRESSION = 0;

AREA_GROUP “group_name” ROUTE_AREA = FIXED;

Note: SLICE_ equals CLB_ for Virtex™, Virtex-E, Spartan™-II, and Spartan-IIE devices.

FPGA Editor
You can add certain constraints t,o or delete certain constraints from, the PCF file in the
FPGA Editor. In the FPGA Editor, net, site, and component constraints are supported as
property fields in the individual nets and components. Properties are set with the Setattr
command, and are read with the Getattr command.

All Boolean constraints (block, locate, lock, offset, and prohibit) have values of On or Off;
offset direction has a value of either In or Out; and offset order has a value of either Before
or After. All other constraints have a numeric value. They can also be set to Off to delete the
constraint. All values are case-insensitive (for example, “On” and “on” are both accepted).

When you create a constraint in the FPGA Editor, the constraint is written to the PCF file
whenever you save your design. When you use the FPGA Editor to delete a constraint and
then save your design file, the line on which the constraint appears in the PCF file remains
in the file but it is automatically commented out.

Some of the constraints supported in the FPGA Editor are listed in the following table.

Table 3-2: Constraints Supported in FPGA Editor

Constraint Accessed Through

block paths Component Properties and Path Properties property sheet

define path Viewed with Path Properties property sheet

location range Component Properties Constraints page

locate macro Macro Properties Constraints page

lock placement Component Properties Constraints page
Constraints Guide www.xilinx.com 51
ISE 8.1i

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

Locked Nets and Components
If a net is locked, you cannot unroute any portion of the net, including the entire net, a net
segment, a pin, or a wire. To unroute the net, you must first unlock it. You can add pins or
routing to a locked net.

A net is displayed as locked in the FPGA Editor if the Lock Net [net_name] constraint is
enabled in the PCF file. You can use the Net Properties property sheet to remove the lock
constraint.

When a component is locked, one of the following constraints is set in the PCF file.

lock comp [comp_name]
locate comp [comp_name]
lock macro [macro_name]
lock placement

If a component is locked, you cannot unplace it, but you can unroute it. To unplace the
component, you must first unlock it.

Interaction Between Constraints
Schematic constraints are placed at the beginning of the PCF file by MAP. The start and end
of this section is indicated with SCHEMATIC START and SCHEMATIC END, respectively.
Because of a “last-read” order, all constraints that you enter in this file should come after
SCHEMATIC END.

lock routing of this
net

Net Properties Constraints page

lock routing Net Properties Constraints page

maxdelay allnets Main Properties Constraints page

maxdelay allpaths Main Properties Constraints page

maxdelay net Net Properties Constraints page

maxdelay path Path Properties property sheet

maxskew Main Properties Constraints page

maxskew net Net Properties Constraints page

offset comp Component Properties Offset page

penalize tilde Main Properties Constraints page

period Main Properties Constraints page

period net Net Properties Constraints page

prioritize net Net Properties Constraints page

prohibit site Site Properties property sheet

Table 3-2: Constraints Supported in FPGA Editor

Constraint Accessed Through
52 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Constraints Priority
R

You are not prohibited from entering a user constraint before the schematic constraints
section, but if you do, a conflicting constraint in the schematic-based section may override
your entry.

Every time a design is remapped, the schematic section of the PCF file is overwritten by the
mapper. The user constraints section is left intact, but certain constraints may be invalid
because of the new mapping.

Constraints Priority
In some cases, two timing specifications cover the same path. For cases where the two
timing specifications on the path are mutually exclusive, the following constraint rules
apply.

File Priorities

Priority depends on the file in which the constraint appears. A constraint in a file accessed
later in the design flow replaces a constraint in a file accessed earlier in the design flow
(Last One Wins) if the constraint name is the same in both files. If the two constraints have
different names, the last one in the PCF file has priority.

Priority is as follows. The first listed is the highest priority, the last listed is the lowest.

• Constraints in a Physical Constraints File (PCF)

• Constraints in a User Constraints File (UCF)

• Constraints in a Netlist Constraints File (NCF)

• Attributes in a schematic

Timing Specification Priorities

If two timing specifications cover the same path, the priority is as follows. The first listed is
the highest priority, the last listed is the lowest.

• Timing Ignore (TIG)

• FROM THRU TO

• FROM TO

• Specific OFFSET

• Group OFFSET

• Global OFFSET

• PERIOD

FROM THRU TO and FROM TO Statement Priorities

FROM THRU TO and FROM TO statements have a priority order that depends on the type
of source and destination groups included in a statement. The priority is as follows (first
listed is the highest priority, last listed is the lowest).

• Both the source group and the destination group are user-defined groups

• Either the source group or the destination group is a predefined group

• Both the source group and the destination group are predefined groups

OFFSET constraints take precedence over more global constraints.
Constraints Guide www.xilinx.com 53
ISE 8.1i

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

OFFSET Priorities

If two specific OFFSET constraints at the same level of precedence interact, an OFFSET
with a register qualifier takes precedence over an OFFSET without a qualifier; if otherwise
equivalent, the latter in the constraint file takes precedence.

Net Delay and Net Skew Priorities

Net delay and net skew specifications are analyzed independently of path delay analysis
and do not interfere with one another.

Constraints Priority Exceptions

There are circumstances in which constraints priority may not operate as expected. These
cases include supersets, subsets, and intersecting sets of constraints. See the following
diagram.

• In Case A, the TIG superset conflicts with the PERIOD set.

• In Case B, the intersection of the PERIOD and TIG sets creates an ambiguous
circumstance. In this instance, constraints may sometimes be considered as part of
TIG, and at other times part of PERIOD.

• In Case C, the TIG subset works normally within the PERIOD superset.

Figure 3-3: Interaction Between Constraints Sets

X9513

Case A Case B Case C

TIGPERIOD

PERIODTIG PERIOD

TIG

Constraints Sets
54 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

R

Chapter 4

Timing Constraint Strategies

This chapter contains a detailed discussion of timing constraint strategies. This chapter
contains the following sections:

• “FPGA Timing Constraint Strategies”

• “Static Timing Analysis”

• “Synchronous Timing”

• “Directed Routing”

FPGA Timing Constraint Strategies
This section provides general guidelines that explain how to constrain the timing on
designs when using the implementation tools for FPGA devices.

For more information about timing constraints and strategies:

1. Go to the Xilinx® home page.

2. Click Support.

3. Click Tech Tips.

4. Click Timing & Constraints.

Basic Implementation Tools Constraining Methodology
Creating global constraints for a design is the easiest way to provide coverage of the
constrainable connections in a design, and to guide the tools to meet timing requirements
for all paths. The global constraints constrain the whole design. If there are multi-cycle or
static paths, you can constrain them using more specific constraints. A multi-cycle path is
a path between two registers with a timing requirement that is a multiple of the clock
period for the registers. A static path does not include clocked elements, for example, pad-
to-pad paths.

Xilinx recommends that you specify the exact value required for a path, as opposed to
over-tightening a specification. Specifying tighter constraints than required is not
recommended. Tighter constraints can lengthen PAR runtimes and cause degradation in
the quality of results.

The Constraints Editor is based on the methodology discussed in this chapter. The group
names and TSids in the examples show how the Constraints Editor populates the grids and
creates new groups and constraints. The Constraints Editor provides additional help. The
clocks and IOs are supplied, so you need not know the exact spelling of the names. You
only need to define the timing, and not the syntax, of the constraints. For more specific
grouping, element names are provided, and exceptions to the global constraints can be
made using those groups.
Constraints Guide www.xilinx.com 55
ISE 8.1i

http://www.xilinx.com/
http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

The first tab of the Constraints Editor shows all the global paths that need to be covered. If
this tab is completed, all synchronous paths will be covered.

All examples in this chapter show the UCF syntax.

Global Timing Assignments
Global timing assignments are overall constraints that cover all constrainable paths in a
design. These assignments include:

• Clock definitions

• Input and output timing requirements

• Combinatorial path requirements

Following are some recommendations for assigning definitions.

Assigning Definitions for Clocks Driven by Pads

Define each clock in the design. Defining each clock covers all synchronous paths within
each clock domain and paths that cross between related clock domains. Use a TNM_NET
on each clock net (on the net attached to the pad, usually the port name in HDL,) and then
use the TIMESPEC PERIOD syntax with the TNM_NET group created. Using the
TIMESPEC version of the PERIOD definition allows for greater path control later on when
constraining paths between clock domains.

For more information if you are using a Virtex™ DLL/DCM, see “Assigning Definitions
for DLL/DCM Clocks” in this chapter.

Related Clocks Example

The following example design has two clocks. TNM_NETs identify the synchronous
elements of each clock domain. TIMESPEC PERIOD gives the flexibility to describe inter
clock domain path requirements. The clock “clock2_in” has twice the period of
“clock1_in,” which is shown in the following UCF example with the clock2_in PERIOD
definition using a function of the “TS_clock1_in” specification (“TS_clock1_in” * 2).

NET “clock1_in” TNM_NET = “clock1_in”;

TIMESPEC “TS_clock1_in” = PERIOD “clock1_in” 20 ns HIGH 10;

NET “clock2_in” TNM_NET = “clock2_in”;

TIMESPEC “TS_clock2_in” = PERIOD “clock2_in” “TS_clock1_in” * 2;

The Constraints Editor uses the clock pad net name for the group name and the TSid as
show in the previous example. This feature is important if you want to override a
constraint that was entered in the source.

PHASE Related Clocks Example

The following example shows how to specify two clocks related by a phase difference. The
clock "clock" has a period of 10ns. The clock "clock_90" is also 10 ns, but is shifted 90
degrees out of phase, or is lagging "clock's" rising edge by 2.5 ns.
56 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

FPGA Timing Constraint Strategies
R

Use the keyword PHASE to identify this relationship. The timing tools use this information
in OFFSET and cross-clock domain paths. See the following example.

NET "clock" TNM_NET = "clock";

TIMESPEC "TS_clock" = PERIOD "clock" 10 ns HIGH 50%;

NET "clock_90" TNM_NET = "clock_90";

TIMESPEC "TS_clock_90" = PERIOD "clock_90" "TS_clock" * 1 PHASE + 2.5ns;

Assigning Definitions for DLL/DCM Clocks

TRANSLATION (NGDBuild) propagates TNM_NET tags through DLLs and DCMs.
NGDBuild creates new TNM_NETs for each of the DLL and DCM output taps and
associated PERIOD statements. The code takes into account the phase relationship factor
of the outputs for the DLL, and also performs the appropriate multiplication or division of
the PERIOD value.

The code also takes into account any of the PHASE taps adjustments. This means that for
OFFSETs and cross-clock domain paths, the timing tools now know the relationship for
PHASE shifts also.

DCM PERIOD Propagation Example

In this example, you only need to define the input clock to the DCM. The tools will
generate all of the correct PERIODs for the output taps. Assume that the input clock (net
"clock_in" with PERIOD 30 ns) DCM in this example uses the CLK0 (net "clock0") and
CLK2X180 (net "clock2x180") output taps. When you define the input clock, the system
performs all of the transformations.

For input clock “clock_in”:

NET "clock_in" TNM_NET = "clock_in";

TIMESPEC "TS_clock_in" = PERIOD "clock_in" 30 ns HIGH 50%;

Generated clock definitions:

NET "clock0" TNM_NET = "clock0";

TIMESPEC "TS_clock0" = PERIOD "TS_clock_in" * 1;

NET "clock2x180" TNM_NET = "clock2x180";

TIMESPEC "TS_clock2x180" = PERIOD "TS_clock_in" / 2 PHASE + 7.50 ns;

Assigning Definitions for Derived and Gated Clocks

For clocks that are created in the FPGA, such as the output of a register or a gated clock (the
output of combinatorial logic), the net name from the output of the register or gate should
be the name used for the TNM_NET group name and TSid. For more information, see
“OFFSETs with Derived or Gated Clocks” in this chapter.

Assigning Input and Output Requirements

Constrain input and output timing requirements using the OFFSET constraints. Pad to
Setup requirements use OFFSET IN BEFORE and for Clock to Out requirements use
OFFSET OUT AFTER.
Constraints Guide www.xilinx.com 57
ISE 8.1i

http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

You can specify OFFSETs in three levels of coverage.

• The first, global OFFSET applies to all inputs or outputs for a specific clock

• The second, a group OFFSET form, identifies a group of inputs or outputs clocked by
a common clock that have the same timing requirements

• The third, a specific OFFSET form, specifies the timing by each input or output

OFFSET constraints of a more specific scope override a more general scope.

A group OFFSET overrides a global OFFSET specified for the same IOs. A specific OFFSET
overrides both global and group OFFSETs if used. This priority rule allows you to start
with global OFFSETs, then create group or specific OFFSETs for IOs with special timing
requirements.

For memory usage and runtime considerations, use global and group OFFSETs and avoid
specific OFFSETs whenever possible. Using wildcards in the specific OFFSET form creates
multiple specific OFFSET constraints, not a group OFFSET.

Example:

NET bob* OFFSET = IN 5 AFTER clock;

Global Inputs Requirements

Use OFFSET IN BEFORE to define Pad to Setup timing requirements. OFFSET IN BEFORE
is an external clock-to-data relationship specification and takes into account the clock
delay, clock edge and DLL/DCM introduced clock phase when analyzing the setup
requirements (data delay + setup - clock delay-clock arrival).). Clock arrival takes into
account any clock phase generated by the DLL/DCM or clock edge. This strategy
constrains all of the inputs clocked by the same clock to identical requirements.

Following is a global OFFSET IN BEFORE example:

OFFSET = IN value units BEFORE clock_pad_net;

OFFSET = IN 10 ns BEFORE “clock_in”;

where

• value is the time allowed for the data to propagate from the pad to meet a setup
requirement to the clock. This value is in relationship to the clocks initial edge at the
pin of the chip. (The PERIOD constraint defines the clock initial edge.)

• units is ms, us, ns (default) or ps

• clock_pad_net is the name of the clock using the net name attached to the pad (This or
the port name for HDL designs)

Global Outputs Requirements

Use OFFSET OUT AFTER to define Clock to Pad timing requirements. OFFSET OUT
AFTER is an external clock-to-data specification and takes into account the clock delay,
clock edge and DLL/DCM introduced clock phase when analyzing the setup requirements
(clock delay + clock to out + data delay +clock arrival). Clock arrival takes into account any
clock phase generated by the DLL/DCM or clock edge. This strategy constrains all of the
outputs clocked by the same clock to the same requirement.
58 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

FPGA Timing Constraint Strategies
R

The following is a global OFFSET OUT AFTER example:

OFFSET = OUT value units AFTER clock_pad_net;

OFFSET = OUT 10 ns AFTER "clock_in";

where

• value is the time allowed for the data to propagate from the synchronous element
(clock to out, TCKO) to the pad. This value is in relationship to the clocks initial edge at
the pin of the chip. (The PERIOD constraint defines the clock initial edge.)

• units is ms, us, ns (default) or ps

• clock_pad_net is the name of the clock using the net name attached to the pad or the
port name for HDL designs

Assigning Global Pad to Pad Requirements

Use a FROM PADS TO PADS constraint to globally constrain all combinatorial pin-to-pin
paths. If you do not have any combinatorial pin-to-pin paths, ignore this constraint.

Following a global pad to pad example:

TIMESPEC “TSid” = FROM “PADS” TO “PADS” value units;

TIMESPEC “TS_P2P” = FROM “PADS” TO “PADS” 10 ns;

where

• id is a user-specified unique identifier for the constraint

• value is the time allowed for the data to propagate from an input pad to an output pad

• units is ms, us, ns (default) or ps

Specific Timing Assignments
If there are paths that are static in nature, you can use TIG to eliminate the paths from
timing consideration in Place and Route (PAR) and TRCE. If there are paths that require
faster or slower specifications than the global requirements, you can create fast or slow
exceptions for those paths. If multi-cycle paths exist, identify and constrain them.

The tigs paths still show the longest delay for that constraint in the verbose timing report.
Net tigs can be turned off in the Timing Analyzer to see the actual timing on these nets.

You can specify false paths (paths to ignore) in two different ways: by nets and elements or
by timing paths. Identifying false paths allows PAR to concentrate on more critical paths
when placing components and when using routing resources. There might be less runtime
because PAR does not need to meet a specific timing requirement. Creating a large number
of path tigs can increase memory usage and possibly increase runtime due to the extra
paths models that are created.

These paths are ignored by both PAR and timing analysis and do not show up in the timing
report. Also these paths are not included in the Connection Coverage statistic. For more
information, see “Ignored Paths (TIG)” in this chapter.
Constraints Guide www.xilinx.com 59
ISE 8.1i

http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

False Paths by Net

You can define false paths for all paths that pass through a particular net using the
following UCF syntax:

NET “net_name” TIG;

You can also define false paths for a specified set of paths that pass through a particular net
using the following UCF syntax:

NET “net_name” TIG = TSid_list;

where

• net_name is the name of the net that the paths are passing through

• TSid_list is a comma-delimited list of TIMESPEC identifiers to which the TIG applies

False Paths by Instance

You can define false paths for all paths that pass through a particular instance using the
following UCF syntax:

INST “inst_name” TIG;

You can also define false paths for a specified set of paths that pass through a particular
instance using the following UCF syntax:

INST “inst_name” TIG = TSid_list;

where

• inst_name is the name of the instance that the paths are passing through

• TSid_list is a comma-delimited list of TIMESPEC identifiers to which the TIG should
apply

False Paths by Pin

You can define false paths for all paths that pass through a particular instance pin using the
following UCF syntax:

PIN “instance.pin_name” TIG;

You can also define false paths for a specified set of paths that pass through a particular
instance pin using the following UCF syntax:

PIN “instance.pin_name” TIG = TSid_list;

where

• instance.pin_name is the name of the instance and the pin identifier separated by a
period that the paths are passing through

• TSid_list is a comma-delimited list of TIMESPEC identifiers to which the TIG should
apply

False Paths by Timing Path

You can create groups, use the FROM TO, FROM THRU TO, or open FROM or TO
constraints, and then specify TIG as the path value. For more information on syntax usage,
see “False Paths by Path”in this chapter. These paths show up in a timing analysis report,
but the timing is not considered. These paths are also included in the connection coverage
statistics.
60 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

FPGA Timing Constraint Strategies
R

FROM TO TIG

Following is a FROM TO TIG example:

TIMESPEC “TSid” = FROM “from_grp” TO “to_grp” TIG;

where

• id is a user-specified unique identifier for the constraint

• from_grp and to_grp are TIMEGRPs

FROM THRU TO TIG

Following is a FROM THRU TO TIG example:

TIMESPEC “TSid” = FROM “from_grp” THRU “thru_pt” TO “to_grp” TIG;

where

• id is a user-specified unique identifier for the constraint

• from_grp and to_grp are TIMEGRPs

• thru_pt is a net, instance or pin

For more information on defining TPTHRU points, see “TPTHRU” in this chapter.

Asynchronous Set/Reset Paths

The tools do not automatically analyze asynchronous set/reset paths. Automatic analysis
is controlled by the path tracing controls. For more information, see the “DISABLE” and
“ENABLE” constraints.

Multi-Cycle and Fast or Slow Timing Assignments
These path assignments include multi-cycle paths and fast or slow exceptions. First create
timing groups to define start point and end points for the paths. These groups are used in
the FROM TO timing constraints to override the PERIOD constraints for these specific
paths. The following sections describe different exception types.

Cross-Clock Domain Constraining

The timing tools no longer include domain paths in the destination register clock domain
if the clocks are not defined as related. Related clock domains are defined in the system as
a function of other clock TIMESPECs. The TRANSLATE (NGDBuild) phase automatically
relates clocks from the outputs of a DLL/DCM. If the paths between two "related" clocks
are false, or if they equire a different time requirement than calculated, create a FROM:TO
constraint with a TIG or the correct value.

If the clocks are unrelated but have valid paths between them, create FROM TO constraints
to constrain them. To constrain paths between two clocks and use the groups created by
each clock domain, create a FROM TO for each direction that paths pass between the two
clock domains, then specify the time requirement according to the path requirement. For
information about how the groups were created, see “Related Clocks Example” in this
chapter.

Following is a cross-clock domain TIMESPEC example:

TIMESPEC “TS_clock1_in_2_clock2_in” = FROM “clock1_in” TO “clock2_in”
10 ns;
Constraints Guide www.xilinx.com 61
ISE 8.1i

http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

User Group Creation

You can create groups to identify path end points. There are three basic methods allowed
for creating groups. You can create groups by:

• Connectivity

• Hierarchy

• Elements

The types of elements that can be grouped are:

• FFS

• PADS

• RAMS

• BRAMS_PORTA

• BRAMS_PORTB

• CPUS

• MULTS

• HSIOS

• LATCHES

These are considered reserved keywords that define the types of synchronous elements in
FPGA devices and pads.

There are four different basic ways to create user groups.

Identifying Groups by Connectivity

Identifying groups by connectivity allows you to group elements by specifying nets that
eventually drive synchronous elements and pads. This method is a good way to identify
multi-cycle paths elements that are controlled by a clock enable. This method uses
TNM_NET on a net.

The TNM_NET syntax for identifying groups by connectivity is:

NET “net_name” TNM_NET = qualifier “tnm_name”;

where

• net_name is the name of a net propagated by the tools to the element ends

• tnm_name is the user-assigned name for the group created by the TNM_NET. Multiple
nets can be assigned the same tnm_name.

• An optional qualifier of FFS, PADS, RAMS, BRAMS_PORTA, BRAMS_PORTB, CPUS,
MULTS, HSIOS or LATCHES may be used when the net_name contains wildcards

Identifying Groups by Hierarchy

Identifying groups by hierarchy allows you to group by traversing the hierarchy of a
module and tagging all predefined elements with the TNM. This method uses a TNM on a
block. The TNM syntax for identifying groups by hierarchy is:

INST “inst_name” TNM = qualifier “tnm_name”;

where

• inst_name is the hierarchical name of a macro or module to be traversed by the tools to
identify underlying elements for the group labeled by the tnm_name label
62 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

FPGA Timing Constraint Strategies
R

• An optional qualifier of FFS, PADS, RAMS, BRAMS_PORTA, BRAMS_PORTB, CPUS,
MULTS, HSIOS or LATCHES may be used

Identifying Specific Elements by Instance Name

Identifying elements directly allows you to group by tagging predefined elements with a
TNM. Multiple instances can be given the same tnm_name.

The TNM syntax for identifying groups by instance is:

INST “inst_name” TNM = qualifier “tnm_name”;

where

• inst_name is the predefined instance name for the group labeled by the tnm_name label

• An optional qualifier of FFS, PADS, RAMS, BRAMS_PORTA, BRAMS_PORTB, CPUS,
MULTS, HSIOS or LATCHES may be used when the inst_name contains wildcards

Identifying Elements for Groups using Element Output Net Names

This method is mainly used by schematic users who generally name nets, not instances.
Identifying elements individually is used for singling out elements or identifying elements
by output net name. This method uses TIMEGRP and allows the use of wildcards (*, ?) for
filtering elements. This method is best used for schematics where the instance names are
rarely known but the output nets generally are.

The TIMEGRP syntax for identifying groups by element output net name is:

TIMEGRP “tgrp_name” = qualifier (output_net_name);

where

• tgrp_name is the name assigned by you to the group

• qualifier is a (FFS, PADS, RAMS, BRAMS_PORTA, BRAMS_PORTB, CPUS, MULTS,
HSIOS, LATCHES) keyword

• output_net_name is the output net name for each element that you would like to group.
You can use wildcards with output_net_name

Specific OFFSET Constraints Using PAD and or Register Groups

You can use grouping with OFFSET. Grouping includes both register groups and pad
groups. Grouping allows you to group pads to set the same path delay requirements and
group registers for identifying paths that have different requirements from or to single
pads. You can group and constrain the single pads and registers all at once. This is useful
if a clock is used on the rising and falling edge for inputs or outputs. These two groups will
require different constraints.

Group OFFSET IN Example

TIMEGRP “pad_group” OFFSET = IN time units BEFORE “clock_pad_net”
TIMEGRP “register_group”;

where

• pad_group is the user- created group of input pads

• time is the time allowed for the data to propagate from the pad to meet a setup
requirement to the clock. This value is in relationship to the clocks initial edge at the
pin of the chip. (The PERIOD constraint defines the clock initial edge.)

• units is ms, us, ns (default) or ps
Constraints Guide www.xilinx.com 63
ISE 8.1i

http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

• clock_pad_net is the name of the clock using the net name attached to the pad

• register_group is the user-created group of synchronous elements

Group OFFSET OUT Example

TIMEGRP “pad_group” OFFSET = OUT time units AFTER “clock_pad_net”
TIMEGRP “register_group”;

where

• pad_group is the user- created group of output pads

• time is the time allowed for the data to propagate from the pad to meet a setup
requirement to the clock. This value is in relationship to the clocks initial edge at the
pin of the chip. (The PERIOD constraint defines the clock initial edge.)

• units is ms, us, ns (default) or ps

• clock_pad_net is the name of the clock using the net name attached to the pad

• register_group is the user-created group of synchronous elements

FROM TO Syntax

This group includes FROM, TO, and FROM TO. FROM specifies the source group, and TO
specifies the destination group. Using just a FROM assumes all destinations are TO points
and using just a TO assumes all sources are FROM points.

The FROM TO syntax is used in the following path assignments,and is defined as follows
in the UCF:

TIMESPEC “TSid” = FROM “from_grp” TO “to_grp” value units;

where

• id is a user-specified unique identifier for the constraint

• from_grp and to_grp are TIMEGRPs

• value is a specific time, a (*,?) function of another TSid (that is, TS_01 *2), or TIG. The
allowable operations are: “*” (multiply) and “/” (divide).

• units is ms, us, ns (default) or ps

Open FROM to TO Example

TIMESPEC “TSid” = FROM “from_grp” value units;

where

• id is a user specified unique identifier for the constraint

• from_grp is TIMEGRP

• value is the time requirement

• units is ms, us, ns (default) or ps

FROM THRU TO Syntax

To further narrow down paths, use TPTHRU and FROM THRU TO. You can also specify
multiple THRUs. For more information, see “TPTHRU” in this chapter. FROM or TO are
optional.

Multi-Cycle Paths Assignments

You can specify multi-cycle path assignments by identifying the start point and end point
groups and then applying a FROM TO constraint for that path. For elements controlled by
64 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

FPGA Timing Constraint Strategies
R

clock enables, use a TNM_NET on the clock enable to identify all of the elements. You can
specify timing requirements as a function of the clock. Be aware of your specified units on
the originating TSid. If in "MHz", "*" used as multiplication will make the new clock
specification faster, if in "ns", "*" will make new clock specification slower.

TIMESPEC “TSid” = FROM “from_grp” TO “to_grp” TS_01*2;

Slow or Fast Exception Paths

To specify slow or fast path assignments:

1. Identify the start point and end point groups.

2. Apply a FROM TO constraint with a specific value for that path.

TIMESPEC “TSid” = FROM “from_grp” TO “to_grp” value units;

False Paths by Path

Create groups, specify the FROM TO constraint, and then use TIG as the path value.

TIMESPEC “TSid” = FROM “from_grp” TO “to_grp” TIG;

Special Case Path Constraining
Special case path constraining allows you to further refine path specifications, or define
asynchronous points as a path endpoint. TPTHRU allows the further refinement of a
FROM TO path. With TPSYNC, you can specify an asynchronous point as a path start or
end point.

TPTHRU

TPTHRU narrows the paths constrained by a FROM TO constraint. It specifies nets or
instances that the paths must pass through. You can specify multiple TPTHRU points for a
set of paths.

TPTHRU Syntax

There are three forms of the TPTHRU syntax:

• One form identifies THRU points that pass through nets.

• One form identifies THRU points through instances.

• One form identifies THRU points of specific instance pins.

Be careful when placing TPTHRU points as they can get subsumed into components and
may not resolve uniquely. The use of the KEEP attribute on the net may be needed to
preserve the TPTHRU tag.

NET Form (UCF)

NET “net_name” TPTHRU = “thru_name”;

where

• net_name is the name of the net the paths pass through

• thru_name is the user name for the THRU point
Constraints Guide www.xilinx.com 65
ISE 8.1i

http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

INSTANCE Form (UCF)

INST “inst_name” TPTHRU = “thru_name”;

where

• inst_name is the name of the instance the paths pass through

• thru_name is the user name for the THRU point

Pin Form (UCF)

PIN “instance.pin_name” TPTHRU = “thru_name”;

where

• instance.pin_name is the name of the specific instance pin the paths pass through

• thru_name is the user name for the THRU point

FROM THRU TO Syntax (UCF)

TIMESPEC “TSid” = FROM “from_grp” THRU “thru_point” TO “to_grp” value
units;

where

• id is a user specified unique identifier for the constraint

• from_grp and to_grp are TIMEGRPs

• thru_point is specified by the TPTHRU tag

• value is a number or a (*,/) function of another TSid (that is, TS_01 *2) or a TIG

• units is (ms, us, ns (default) or ps)

You can specify multiple sequential THRU points for any FROM TO specification.

TPSYNC

TPSYNC identifies asynchronous points in the design as endpoints for paths. You may
want to use TPSYNC when specifying timing to a non-synchronous point in a path, such as
a TBUF or to black box macro pins. You can identify non-synchronous elements or pins as
a group, and then use either FROM or TO points.

TPSYNC Syntax

INST “inst_name” TPSYNC = “tpsync_name”;

PIN “inst_name.pin_name” TPSYNC = “tpsync_name”;

where

• tpsync_name represents the user label for the group that is created by the TPSYNC
statement

• pin_name must match the name used in the HDL code or from the library

Output Slew Rate Constraint

You can use a slew rate of FAST in architectures that support this feature. Outputs are
defined as SLOW by default. You can speed up timing by using the FAST property, but this
may cause ringing or noise problems.
66 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

FPGA Timing Constraint Strategies
R

Following is the slew rate syntax:

INST “pad_inst_name” FAST;

NET “pad_net_name” FAST;

where

• pad_inst_name is the name of the pad instance

• pad_net_name is the name of the pad net. (The port name in HDL code.)

Path Coverage Statistics
A connection is a driver/load pin combination, which is connected by a signal. There are
situations where connections are not valid, or do not show up in the coverage statistic.

Ignored Paths (TIG)

The most common reason for connection coverage not reaching 100% is that elements in
the design have NET TIGs. If the timing tool encounters a TIG’d element when tracing a
path, the trace will stop there, possibly leaving connections on the "other side" of the
element uncovered. On the other hand, a FROM TO TIG on a path will have all of its
connections accounted for in the coverage statistic, since those paths are enumerated in the
timing report.

STARTUP Paths

There are other reasons for less than 100% coverage. One is that the total number of
connections in a design includes some which cannot be covered by constraints. An
example is the connections on the STARTUP component.

Static Paths

A static pin can drive a LUT which combines with no other signals and then drives other
logic. This can happen at the start of a carry chain where a FORCE mode is used from a
logic 1 or 0.

In addition, if terms for carry logic are connected to a CLB, but are not used within the
CLB, these connections will never be traced. These are just obscure cases that are not
handled.

Path Tracing Controls

Certain categories of paths are turned off using path tracing controls. Paths that are turned
off due to path tracing controls will not be covered. For more information, see the
“ENABLE” constraint.

OFFSETs with Derived or Gated Clocks
If the clock that clocks a synchronous element does not come through an input pad -- for
example, it is derived from another clock -- then OFFSET will fail to return any paths. Use
FROM TOs for these paths, taking into account the clock delay.

Following is an example for pad to setup:

If the global clock delay is 1 ns, and the Pad to Setup requirement is 30 ns, then identify the
PADs and registers that are clocked by a derived or gated clock, and group them
accordingly.
Constraints Guide www.xilinx.com 67
ISE 8.1i

http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

Then create a timing constraint similar to the following:

TIMESPEC “TS_P2S_halfclock” = FROM “halfclock_pads” TO “halfclock_ffs”
31 ns;

Static Timing Analysis
You can perform timing analysis at several stages in the implementation flow to show your
design delays. You create or generate the following:

• A post-map timing report to evaluate the effects of logic delays on timing constraints

• A post-place-and-route timing report that incorporates both block and routing delays
as a final analysis of the design’s timing constraints

The Interactive Timing Analyzer tool produces detailed timing constraint, clock, and path
analysis for post-map or post-place-and-route implementations.

Static Timing Analysis after Map
Post-map timing reports can be very useful in evaluating timing performance. Although
route delays are not accounted for, the logic delays can provide valuable information about
the design.

If logic delays account for a significant portion (> 50%) of the total allowable delay of a
path, the path may not be able to meet your timing requirements when routing delays are
added.

Routing Delays

Routing delays typically account for 45% to 65% of the total path delays. By identifying
problem paths, you can mitigate potential problems before investing time in place and
route. You can:

• Redesign the logic paths to use fewer levels of logic

• Tag the paths for specialized routing resources

• Move to a faster device

• Allocate more time for the path

Logic-Only Delays

If logic-only delays account for much less (<35%) than the total allowable delay for a path
or timing constraint, the place-and-route software can use very low placement effort levels.
In these cases, reducing effort levels allows you to decrease runtimes while still meeting
performance requirements.

Static Timing Analysis after Place and Route
Post-PAR timing reports incorporate all delays to provide a comprehensive timing
summary. If a placed and routed design has met all of your timing constraints, you can
proceed by creating configuration data and downloading a device.
68 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Synchronous Timing
R

If you identify problems in the timing reports, you can:

• Increase the placer effort level

• Use re-entrant routing

• Use multi-pass place and route

You can also:

• Redesign the logic paths to use fewer levels of logic

• Tag the paths for specialized routing resources

• Move to a faster device

• Allocate more time for the paths

Detailed Timing Analysis
To perform detailed timing analysis:

1. Open Project Navigator.

2. Select your project in the Sources window.

3. Double click Timing Analyzer under Launch Tools in the Processes window.

This allows you to:

• Specify specific paths for analysis

• Discover paths not affected by timing constraints

• Analyze the timing performance of the implementation based on another speed grade

For more information, see the Timing Analyzer help.

Synchronous Timing
Xilinx supports system synchronous and source synchronous timing. This section
describes both types of timing.

This section also describes the following keywords:

• INPUT_JITTER

• SYSTEM_JITTER

• VALUE

System Synchronous Timing
In system synchronous timing, one clock source controls the data transmission and
reception of all devices. See the following figure.

Table 4-1: Keyword Usage with Synchronous Timing

Keyword
 Can be used with system

synchronous timing
Can be used with source

synchronous timing

INPUT_JITTER Yes Yes

SYSTEM_JITTER Yes Yes

VALUE No Yes
Constraints Guide www.xilinx.com 69
ISE 8.1i

http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

Source Synchronous Timing
The section describes how to use SYSTEM_JITTER, INPUT_JITTER, and VALUE for source
synchronous timing.

In the following example of source synchronous timing, one clock source controls the data
transmission of devices. The derived clocks control data reception. See the following
figure.

Figure 4-2: Example of Source Synchronous Timing

In the preceding example, CLK1 and CLK2 are derived clocks that control data reception of
Device 2 and Device 3. The primary clock controls the data transmission for all three
devices.

You can use source synchronous timing constraints for Double Data Rate (DDR) or Single
Data Rate (SDR) inputs or outputs. The following figure shows an example of a timing

Figure 4-1: System Synchronous Timing
X9940

Clock

DATA

DATA
Device 1

DATA

DATA
Device 2 Device 3

X9941

Clock

CLK1

DATA
Device 1

TX

CLK2

DATA
Device 2
RX - TX

Device 3
RX
70 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Synchronous Timing
R

diagram for Dual Data Rate inputs for two flip-flops, one with an active High input and
one with an active Low input.

Figure 4-3: Example of Timing Diagram for Dual Data Rate Inputs

The following steps show an example of how to use the PERIOD, OFFSET, and
SYSTEM_JITTER constraints for source synchronous timing for the example circuit.

1. Create Period

NET CLK TNM_NET = CLK_GRP;

TIMESPEC "TS_CLK" = PERIOD ”CLK_GRP" 10 ns INPUT_JITTER 1;

2. Create Groups

INST DATA_IN[*] TNM = DATA_IN;

TIMEGRP FF_RISING = RISING CLK_GRP ;

TIMEGRP FF_FALLING = FALLING CLK_GRP;

3. Create OFFSET constraint

TIMEGRP DATA_IN OFFSET IN = 1 VALID 3 BEFORE CLK TIMEGRP FF_RISING;

TIMEGRP DATA_IN OFFSET IN = 4 VALID 3 BEFORE CLK TIMEGRP FF_FALLING;

4. Create SYSTEM_JITTER constraint.

SYSTEM_JITTER=0.456 ns;

X9942

Data Valid
= 3 ns

Data Offset
= 1 ns

Data Uncertainty

Input Jitter 1 ns

DATA

Period = 10 ns

QD

CLK

QD
Constraints Guide www.xilinx.com 71
ISE 8.1i

http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

Directed Routing
Directed Routing is a means of supporting repeatable, locked routing functionality similar
to "exact guide" for a limited number of critical signals in a design via UCF constraints.
Directed Routing is also used on signals with a limited fanout between comps in close
proximity to one another, thereby avoiding the use of long-line resources.

Avoiding long-line resources in Directed Routing constraints is important for two reasons:

• Using such an "expensive" routing resource for a low fanout net is generally a bad
practice.

• Using long-line resources reduces routing flexibility as the design changes and grows
in the design process.

You set the value of the constraint in the FPGA Editor for Directed Routing.

What is Directed Routing?
Directed Routing is:

• A mechanism of locking the routing in order to maintain timing of nets in a design

• A potential work around for routing limitations

• A means of controlling route delays to a tighter tolerance than is possible via timing
constraints

How Does Directed Routing Work?
A constraint describing the exact routing resources used to route between source COMP
pins and load COMP pins for the selected NET is created.

COMP placement constraints are required to maintain the relative positioning between all
COMPs attached to the NET. For SLICE COMPs, BEL constraints are also required.

When Should Directed Routing Be Used?
Use Directed Routing when:

• Timing must be maintained (less than 200 ps variation) between implementations on a
few nets

• Both the source and destination comps can be an (R)LOC and BEL constrained to
maintain relative placement

• Skew must be controlled between nets

• Creating a high-speed macro to limit timing variation between instances of the
MACRO

• Creating a high-speed macro to use in other devices of the same device family

When Should Directed Routing Not Be Used?
Do not use Directed Routing when:

• Creating a MACRO that uses global resources, and which will be relocated in the
device or other devices in the same device family

• Routing for hundreds of nets between COMPs must be maintained. Directed Routing
is NOT a replacement for Guide
72 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Directed Routing
R

Related Constraints
• “BEL”

• “LOC”

• “RLOC”

• “RLOC_ORIGIN”

• “U_SET”
Constraints Guide www.xilinx.com 73
ISE 8.1i

http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

74 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

R

Chapter 5

Third-Party Constraints

Third-Party Constraints Removed
A third party constraint is a constraint from a company other than Xilinx that is supported
within the Xilinx technology. Materials relating to third-party constraints have been
removed from the Xilinx Constraints Guide. For information about third party constraints,
see that vendor’s website. For information about XST constraints, see the Xilinx XST User
Guide.
Constraints Guide www.xilinx.com 75
ISE 8.1i

http://www.xilinx.com

Chapter 5: Third-Party Constraints
R

76 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

R

Chapter 6

Xilinx Constraints

This chapter describes the individual constraints. This chapter contains the following
sections:

• “Constraint Information”

• “Alphabetized List of Xilinx Constraints”

Constraint Information
This chapter gives the following information for each constraint:

• Architecture Support

A device table shows whether the constraint may be used with that device.

• Applicable Elements

The elements to which the constraint may be applied.

• Description

A brief description of the constraint, including its usage and behavior.

• Propagation Rules

How the constraint is propagated.

• Syntax Examples

Syntax examples for using the constraint with particular tools or methods. Not every
tool or method is listed for every constraint. If a tool or method is not listed, the
constraint may not be used with it. Following are the available tools and methods.

• Additional Information

Additional information is provided for certain constraints.

Schematic VHDL

Verilog ABEL

NCF UCF

XCF Constraints Editor

PCF Floorplanner

PACE FPGA Editor

Project Navigator
Constraints Guide www.xilinx.com 77
ISE 8.1i

http://www.xilinx.com

Chapter 6: Xilinx Constraints
R

Alphabetized List of Xilinx Constraints
This chapter contains information on the following constraints:

• AREA_GROUP • ASYNC_REG • BEL
• BLKNM • BUFG (CPLD) • COLLAPSE
• COMPGRP • CONFIG • CONFIG_MODE
• COOL_CLK • DATA_GATE • DCI_VALUE
• Directed Routing • DISABLE • DRIVE
• DROP_SPEC • ENABLE • FAST
• FEEDBACK • FILE • FLOAT
• FROM-THRU-TO • FROM-TO • HBLKNM
• HU_SET • INREG • IOB
• IOBDELAY • IOSTANDARD • KEEP
• KEEPER • LOC • LOCATE
• LOCK_PINS • MAP • MAXDELAY
• MAXPT • MAXSKEW • NODELAY
• NOREDUCE • OFFSET • OPEN_DRAIN
• OPT_EFFORT • OPTIMIZE • PERIOD
• PIN • PRIORITY • PROHIBIT
• PULLDOWN • PULLUP • PWR_MODE
• REG • RLOC • RLOC_ORIGIN
• RLOC_RANGE • SAVE NET FLAG • SCHMITT_TRIGGER
• SLEW • SLOW • SYSTEM_JITTER
• TEMPERATURE • TIG • TIMEGRP
• TIMESPEC • TNM • TNM_NET
• TPSYNC • TPTHRU • TSidentifier
• U_SET • USE_RLOC • USELOWSKEWLINES
• VOLTAGE • VREF • WIREAND
• XBLKNM
78 www.xilinx.com Constraints Guide
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

AREA_GROUP

AREA_GROUP Architecture Support
The following table shows whether the constraint may be used with that device.

AREA_GROUP Applicable Elements
• Logic blocks

• Timing groups

For more information, see “Defining From Timing Groups” in this chapter.

AREA_GROUP Description
AREA_GROUP is a design implementation constraint that enables partitioning of the
design into physical regions for mapping, packing, placement, and routing. It can be used
in modular and incremental design flows, or can be used during a full compilation of the
design to improve design performance.

AREA_GROUP is attached to logical blocks in the design, and the string value of the
constraint identifies a named group of logical blocks that are to be packed together by
mapper and placed in the ranges if specified by PAR. If AREA_GROUP is attached to a
hierarchical block, all sub-blocks in the block are assigned to the group.

Once defined, an AREA GROUP can have a variety of additional constraints associated
with it to control its implementation. For more information, see “AREA_GROUP Syntax”
in this chapter.

Virtex™ Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan™-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500™, XC9500XL,
XC9500XV

No

CoolRunner™ XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com AREA_GROUP 79
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

AREA_GROUP Propagation Rules
The following rules apply to AREA_GROUP.

• When attached to a design element, AREA_GROUP is propagated to all applicable
elements in the hierarchy below the component.

• It is illegal to attach AREA_GROUP to a net, signal, or pin.

AREA_GROUP Syntax
The basic UCF syntax for defining an area group is:

INST “X” AREA_GROUP=groupname;

The syntax to be used in attaching constraints to an area group are:

AREA_GROUP “groupname” RANGE=range;

or

AREA_GROUP “groupname ” COMPRESSION=percent;

or

AREA_GROUP “groupname ”IMPLEMENT={FORCE|AUTO};

or

AREA_GROUP “groupname ” GROUP={OPEN|CLOSED};

or

AREA_GROUP “groupname” PLACE={OPEN|CLOSED};

or

AREA_GROUP “groupname” MODE={RECONFIG};

where

• groupname is the name assigned to an implementation partition to uniquely define the
group

Each of these additional area group constraints is described below.

RANGE

RANGE is used to define the range of device resources that are available to place logic
contained in the area group, in the same manner ranges are defined for the LOC constraint.
For more information on how to use RANGE with modular designs, see
“AREA_GROUP/RANGE” in this chapter.

For partial reconfiguration flows, RANGE also restricts the area of routing resources used
to implement the area group.

For Spartan-II, Spartan -IIE, Virtex, and Virtex-E devices, range syntax is as follows:

RANGE=CLB_Rm1Cn1:CLB_rm2Cn2

RANGE=TBUF_Rm1Cn1:TBUF_rm2Cn2

RANGE=RAMB4_Rm1Cn1:RAMB4_rm2Cn2
Constraints Guide www.xilinx.com AREA_GROUP 80
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

For Spartan-3, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, and Virtex-4 devices,
range syntax is as follows:

RANGE=SLICE_Xm1Yn1:SLICE_xm2Yn2

RANGE=TBUF_Xm1Yn1:TBUF_Xm2Yn2

RANGE=MULT18X18_Xm1Yn1:MULT18X18_Xm2Yn2

RANGE=RAMB16_Xm1Yn1:RAMB16_Xm2Yn2

Note: TBUF is not supported by Spartan-3, Spartan-3E, and Virtex-4 devices.

Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, Spartan-II, Spartan-IIE,
Spartan-3, Spartan-3E devices and CLBS/SLICEs are supported. If an area group contains
both TBUFs (not applicable for Spartan-3) and one for CLBs/SLICEs, two separate
AREA_GROUP RANGEs can be specified: one for TBUFs and one for CLBs/SLICEs.

You can use the wildcard character for either the row number or column number. For
Spartan-3, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, and Virtex-4 devices you can
use the wildcard character for either the X coordinate or the Y coordinate.

COMPRESSION

COMPRESSION defines the compression factor for the area groups. The percent values
can be from 0 to 100. If the AREA_GROUP does not have a RANGE, only 0 (no
compression) and 1 (maximum compression) are meaningful. The mapper computes the
number of CLBs in the AREA_GROUP from the range and attempts to compress the logic
into the percentage specified. Compression does not apply to TBUFs, BRAMs, nor
multipliers.

The compression factor is similar to the -c option in MAP, except that it operates on the area
group instead of the whole design. Area group compression interacts with the -c map
option as follows:

• Area groups with a compression factor are not affected by the -c option. (Logic that is
not part of an AREA_GROUP is not merged with grouped logic if the AREA_GROUP
has its own compression factor.)

• AREA_GROUPs without a compression factor are affected by the -c option. The
mapper may attempt to combine ungrouped logic with logic that is part of an area
group without a compression factor.

• At no time is the logic from two separate AREA_GROUPs combined.

• The -c map option does not force compression among slices in the same area group.

The Map Report (MRP) includes a section that summarizes area group processing.

If a symbol that is part of an AREA_GROUP contains a LOC constraint, the mapper
removes the symbol from the area group and processes the LOC constraint.

Logic that does not belong to any AREA_GROUP can be pulled into the region of logic
belonging to an area group, as well as being packed or merged with such logic to form
SLICES.

IMPLEMENT

For IMPLEMENT, the string value must be one of the following.

FORCE

Forces the AREA_GROUP logic to be re-implemented.
Constraints Guide www.xilinx.com AREA_GROUP 81
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

AUTO

Determines if the AREA_GROUP logic has changed and, if so, the logic is reimplemented.
The default is AUTO.

GROUP

GROUP controls the packing of logic into physical components (that is, slices) as follows.

CLOSED

Do not allow logic outside the AREA_GROUP to be combined with logic inside the
AREA_GROUP.

OPEN

Allow logic outside the AREA_GROUP to be combined with logic inside the AREA_GROUP.

Defaults

The default values for various flows are:

• Default flow: GROUP=OPEN

• Modular flow: GROUP=CLOSED

• Partial reconfiguration flow: GROUP=CLOSED

• Incremental flow: GROUP=CLOSED

GROUP=OPEN is illegal in all modular and partial reconfiguration flows and will result in
an error.

PLACE

PLACE controls the allocation of resources in the area group’s RANGE, as follows.

CLOSED

Do not allow comps that are not members of the AREA_GROUP to be placed within the
RANGE defined for the AREA_GROUP.

OPEN

Allow comps that are not members of the AREA_GROUP to be placed within the RANGE
defined for the AREA_GROUP.

Defaults

The default values for various flows are:

• Default flow: PLACE=OPEN

• Modular flow: PLACE=OPEN

• Partial reconfiguration flow: PLACE=CLOSED

• Incremental flow: PLACE=OPEN

For more information on how to use PLACE with modular designs, see
“AREA_GROUP/PLACE” in this chapter.
Constraints Guide www.xilinx.com AREA_GROUP 82
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

MODE

MODE is used to define a reconfigurable area group, as in the following example:

MODE=RECONFIG

For more information on how to use MODE with partially reconfigurable designs, sse
“AREA_GROUP/MODE Constraint” in this chapter.

AREA_GROUP Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach AREA_GROUP=groupname to a valid instance.

• Attach RANGE =range to a CONFIG symbol.

• Attach COMPRESSION=percent to a CONFIG symbol.

• Attach IMPLEMENT={FORCE|AUTO} to a CONFIG symbol.

• Attach GROUP={OPEN|CLOSED} to a CONFIG symbol.

• Attach PLACE={OPEN|CLOSED} to a CONFIG symbol.

• Attach to a CONFIG symbol. For a value of TRUE, PLACE, and GROUP must both be
CLOSED.

• Attribute Names: AREA_GROUP, RANGE range, COMPRESSION percent,
IMPLEMENT={FORCE|AUTO}, GROUP={OPEN|CLOSED},
PLACE={OPEN|CLOSED}, and MODE={RECONFIG}.

• Attribute Values: groupname, range, percent, IMPLEMENT={FORCE|AUTO},
GROUP={OPEN|CLOSED}, PLACE={OPEN|CLOSED}, MODE={RECONFIG}

UCF and NCF

For architectures with slice-based XY designations (Spartan-3, Spartan-3E, Virtex-II,
Virtex-II Pro, Virtex-II Pro X, and Virtex-4 devices only)

The following example assigns all the logical blocks in state_machine_X to the area group
"group1" and places CLB logic in the physical area between CLB 1,1 and CLB 10,10. It
places TBUFs in the physical area between TBUF 1,0 and TBUF 10,10. Unrelated logic
within "group1" will not be compressed. Because compression is defined, ungrouped logic
will not be combined with logic in "group1."

INST “state_machine_X” AREA_GROUP=group1;

AREA_GROUP “group1” COMPRESSION=0;

AREA_GROUP “group1” RANGE=CLB_R1C1:CLB_R10C10;

AREA_GROUP “group1” RANGE=TBUF_X6Y0:TBUF_X10Y22; (Not applicable for
Spartan-3)

Note: Spartan-3 does not have any TBUF resources.

The following example assigns all the logical blocks in state_machine_X to the area group,
"group1," and places logic in the physical area bounded by SLICE_X3Y1 in the lower left
corner and SLICE_X33Y33 in the upper left corner. It places TBUFs in the physical area
bounded by TBUF_X6Y0 and TBUF_X10Y22. Unrelated logic within "group1" will not be
Constraints Guide www.xilinx.com AREA_GROUP 83
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

compressed. Because compression is defined, ungrouped logic will not be combined with
logic in "group1."

INST “state_machine_X” AREA_GROUP=group1;

AREA_GROUP “group1” COMPRESSION=0;

AREA_GROUP “group1” RANGE=SLICE_X3Y1:SLICE_X33Y33;

AREA_GROUP “group1” RANGE=TBUF_X6Y0:TBUF_X10Y22;

The following example assigns I$1, I$2, I$3, and I$4 to the area group "group2." Because
there is no compression, ungrouped logic may be combined within this area group.

INST “I$1” AREA_GROUP=group2;

INST “I$2” AREA_GROUP=group2;

INST “I$3” AREA_GROUP=group2;

INST “I$4” AREA_GROUP=group2;

Floorplanner

See the following topics in the Floorplanner help:

• “Using a Floorplanner UCF File in Project Navigator”

• “Assigning Area Constraints for Modular Design”

• “Creating and Editing Area Constraints”

PACE

The Pin AREA Constraints Editor is mainly used to identify and assign areas to
hierarchical blocks of logic. You can access PACE from the Processes window in the Project
Navigator. Double-click Create Area Constraints.

For more information, see the PACE help, especially “Editing Area Constraints.”

Modular Design Use
The following sections explain how to use AREA_GROUP in modular designs.

INST/AREA_GROUP

The INST/AREA_GROUP UCF constraint has the following syntax:

INST "X" AREA_GROUP="name";

A unique AREA_GROUP value must be attached to each module in the design. This group
will be translated into some number of COMPGRP constraints in the PCF file. A unique
COMPGRP constraint will be defined with SLICEs, TBUFs and BRAMs depending upon
whether or not any INSTs of these types are found underneath the logical node X. Each
COMPGRP will contain all of the components containing the referenced logic. The format
of these constraints is:

COMPGRP "name.slice" COMP "c1" COMP "c2" ... ;

Where components c1, c2 ... are all components of type SLICE that contains logic
underneath the logical node X.

Certain operations can then be performed on this group of logic. Within the modular
design flow, the INST/AREA_GROUP constraint is used to define a module.
Constraints Guide www.xilinx.com AREA_GROUP 84
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

AREA_GROUP/RANGE

The AREA_GROUP/RANGE UCF constraint can have 2 syntaxes:

AREA_GROUP/RANGE UCF Constraint Syntax One

AREA_GROUP "name" RANGE="start:end";

The preceding syntax specifies that all logic of the AREA_GROUP name should be located
in the region of the target chip with a lower left corner of start and an upper right corner of
end.

The start and end parameters are specified relative to the target architecture type:

• Spartan-3, Virtex-II Virtex-II Pro, Virtex-II Pro X, and Virtex-4 devices use X*Y*

• Virtex devices uses R*C* syntax

and the component type :

• SLICE

• TBUF

• RAM16

This AREA_GROUP/RANGE constraint will be translated into a COMPGRP/LOCATE
constraint in the PCF file. This PCF file has the following syntax:

COMPGRP "name" LOCATE = SITE "start:end";

Within the modular design flow the AREA_GROUP/RANGE constraint is used to place
all logic of a module into the given area. No logic from the top-level design context or any
other module will be permitted to be placed within the defined area.

The following site type names are legal with the associated value:

• CLB logic_range

Specifies a range of sites in the target chip for logic. The format is:

♦ CLB_R*C*:CLB_R*C* for Virtex, Virtex-E, Spartan-II, Spartan-IIE devices

♦ SLICE_X*Y*:SLICE_X*Y* for Spartan-3, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-
II Pro X, and Virtex-4 devices

The asterisk (*) indicates any valid index number.

• BRAM bram_range

Specifies a range of sites in target chip for block rams. The format is:

♦ RAMB4_R*C*:RAMB4_R*C* for Virtex, Virtex-E, Spartan-II, and Spartan-IIE
devices

♦ RAMB16_X*Y*:RAMB16_X*Y* for Spartan-3, Spartan-3E, Virtex-II, Virtex-II Pro,
Virtex-II Pro X, and Virtex-4 devices

The index numbers supplied do not directly correlate to the those indices used for
logic or TBUFs.

• TBUF tbuf_range

Specifies a range of sites in the target chip for TBUFs. The format is:

♦ TBUF_R*C*:TBUF_R*C* for Virtex, Virtex-E, Spartan-II, and Spartan-IIE devices

♦ TBUF_X*Y*:TBUF_X*Y* for Virtex-II, Virtex-II Pro, Virtex-II Pro X, and Virtex-4
devices
Constraints Guide www.xilinx.com AREA_GROUP 85
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The index numbers supplied do not directly correlate to the those indices used for
logic or brams.

• IOB iob_range:

This will be a colon-separated list of IOB sites that are legal for use by this module.

When used in modular designs, all routing that connects only members of an area group
will be constrained to lie within the range.

AREA_GROUP/RANGE UCF Constraint Syntax Two

This syntax is supported for all INST types that can be used in AREA_GROUP constraints.

For Spartan-3, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, and Virtex-4 devices,
AREA_GROUP is supported for various clock regions:

For a single region:

AREA_GROUP "group_name" RANGE = CLOCKREGION_X#Y#;

For a range of clock regions that form a rectangle:

AREA_GROUP "group_name" RANGE = CLOCKREGION_X#Y#:CLOCKREGION_X#Y#;

For a list of clock regions:

AREA_GROUP "group_name" RANGE = CLOCKREGION_X#Y#,CLOCKREGION_X#Y#,...;

The valid X# and Y# values vary by device. For Spartan-3, Spartan-3E, Virtex-II, Virtex-II
Pro, Virtex-II Pro X, and Virtex-4 devices, the X value is 0 or 1 for all devices, while the Y
value is 0 through 7, depending on the device.

AREA_GROUP/PLACE

The syntax for this constraint for modular designs is:

AREA_GROUP "group_name" PLACE=CLOSED;

PAR reads the value CLOSED and does not allow comps outside the AREA_GROUP to be
within the RANGE specified for the AREA_GROUP.

AREA_GROUP/MODE Constraint

PAR reads the value RECONFIG and uses only those routing resources that can be driven
within the reconfigurable region.

The syntax for this constraint for modular designs is:

AREA_GROUP “"group_name" MODE={RECONFIG};

MODE=RECONFIG identifies the AREA_GROUP as a partially reconfigurable region.
When implementing a design for partial reconfiguration, all AREA GROUPs should have
the MODE=RECONFIG constraint to ensure that the reconfiguration process does not
affect the behavior of the static (non-reconfigurable) portions of the design.

Incremental Design Use
For best results in an incremental design flow, a unique AREA_GROUP value should be
associated with hierarchical instances of the design that are to be used. TIMEGRP-based
AREA_GROUPs and AREA_GROUPs defined by tagging more than one instance in the
design with the same value may not yield consistent insulation between implementation
regions, and thus may not result in the best runtime or preservation of implementation for
Constraints Guide www.xilinx.com AREA_GROUP 86
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

unchanged portions of the design. To minimize the impact on overall design performance,
each hierarchical instance marked as an AREA GROUP should have its output signals
registered. AREA_GROUPs should be top-level instantiations.

AREA_GROUP/GROUP

The syntax for this constraint for incremental designs is:

AREA_GROUP "group_name" GROUP=CLOSED|OPEN;

By default, AREA_GROUPs are CLOSED in incremental design, ensuring the best possible
insulation of implementation. Setting GROUP=OPEN may improve overall design
performance, but may also result in more of the design being reimplemented when a small
change is made to the design.

AREA_GROUP/PLACE

The syntax for this constraint for incremental designs is:

AREA_GROUP "group_name" PLACE=CLOSED|OPEN;

AREA GROUPs are open to placement by default in incremental flows. Setting
PLACE=CLOSED may improve the consistency with which design performance is met for
that group, but may also increase the overall device utilization requirements for the design.

AREA_GROUP/IMPLEMENT

The syntax for this constraint in incremental design is:

AREA_GROUP "group_name" IMPLEMENT=FORCE|AUTO;

The default value is AUTO, which will cause the implementation tools to determine when
an AREA_GROUP needs to be reimplemented, based on detection of a design change or a
change to AREA_GROUP constraint values, such as RANGE and COMPRESSION. Use
IMPLEMENT=FORCE to force the tools to reimplement an AREA_GROUP when they
would otherwise have retained the previous implementation, that is, some other
constraint, such as a timing specification, has changed.

Partial Reconfiguration
Partial reconfiguration may be achieved on some Xilinx devices by using the modular
design flows and constraints described above, and invoking the MODE=RECONFIG
constraint. This constraint should be specified on all AREA_GROUPs in a design
employing partial reconfiguration. All other aspects of modular design apply to partial
reconfiguration flows can be set in PACE.

Defining From Timing Groups
To create an area group based on a timing group, use the following UCF and NCF syntax:

TIMEGRP timing_group_name AREA_GROUP = area_group_name;

where

• timing_group_name is the name of a previously defined timing group

• area_group_name is the name of a new area group to be defined from the TIMEGRP
contents
Constraints Guide www.xilinx.com AREA_GROUP 87
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

This is equivalent to manually assigning each member of the timing group to
area_group_name. The area group name defined by this statement can be used in RANGE
constraints, just like any other area group name.

In the AREA_GROUP definition, the timing_group_name is generally TNM_NET group,
which allows area groups to be formed based on the loads of clock or other control nets.
AREA_GROUPs defined in this way are not suitable for either modular nor incremental
design. Defining AREA_GROUPs from TIMEGRPs is useful for improving placement of
designs with many different clock domains in devices that have more clocks than clock
regions.

You can also specify a TNM group name, or the name of a user group defined by a
TIMEGRP statement. Edge qualifiers used in the TIMEGRP definition are ignored when
determining area group membership. In all cases, the AREA_GROUP members are
determined after the TIMEGRP has been propagated to its target elements.

Since TIMEGRPs can contain only synchronous elements and pads, area groups defined
from timing groups also contain only these element types. If an AREA_GROUP is defined
by a TIMEGRP that contains only flip-flops or latches, assigning a RANGE to that group
makes sense only if ungrouped logic is also allowed within the area. Therefore,
COMPRESSION should not be defined for such groups.

If a TNM_NET is used by a PERIOD specification, and is traced into a Virtex, Virtex-E,
Spartan-II, Spartan-IIE, CLKDLL or Spartan-3, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II
Pro X, Virtex, or Virtex-4, DCM, new TNM_NET groups and PERIOD specifications are
created at the CLKDLL or DCM outputs. If the original TNM_NET is used to define an area
group, and if more than one clock tap is used on the CLKDLL or DCM, the area group will
be split into separate groups at each clock tap.

For example, assume you have the following UCF constraints:

NET "clk" TNM_NET="clock";

TIMESPEC "TS_clk" = PERIOD "clock" 10 MHz;

TIMEGRP "clock" AREA_GROUP="clock_area";

If the net clk is traced into a CLKDLL or DCM, a new group and PERIOD specification is
created at each clock tap. Likewise, a new area group is created at each clock tap, with a
suffix indicating the clock tap name. If the CLK0 and CLK2X taps were used, the
AREA_GROUPS clock_area_CLK0 and clock_area_CLK2X are defined automatically.

When AREA_GROUP definitions are split in this manner, NGDBuild issues an
informational message, showing the names of the new groups. These new group names,
rather than the originally specified one, should be used in RANGE constraints.
Constraints Guide www.xilinx.com AREA_GROUP 88
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

ASYNC_REG

ASYNC_REG Architecture Support
The following table shows whether the constraint may be used with that device.

ASYNC_REG Applicable Elements
This constraint can be attached to registers and latches only. It should be used only on
registers or latches with asynchronous inputs (D input or the CE input).

ASYNC_REG Description
This timing constraint improves the behavior of asynchronously clocked data for
simulation. Specifically, it disables 'X' propagation during timing simulation. In the event
of a timing violation, the previous value is retained on the output instead of going
unknown.

ASYNC_REG Propagation Rules
Applies to the register or latch to which it is attached.

ASYNC_REG Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex No

Virtex-E No

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com ASYNC_REG 89
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

VHDL

Before using ASYNC_REG, declare it with the following syntax:

attribute ASYNC_REG : string;

After ASYNC_REG has been declared, specify the VHDL constraint as follows:

attribute ASYNC_REG of instance_name: label is "TRUE";

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

// synthesis attribute ASYNC_REG of instance_name: is "TRUE";

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

INST “instance_name” ASYNC_REG = {TRUE|FALSE};

The default (if constraint is not applied) is FALSE. If no boolean value is supplied it is
considered TRUE.

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints. You can set using the Misc tab.
Constraints Guide www.xilinx.com ASYNC_REG 90
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

BLKNM

BLKNM Architecture Support
The following table shows whether the constraint may be used with that device.

BLKNM Applicable Elements
If “Yes” is shown next to the device name in the Architecture Support table, the constraint
may be used with that device in one or more of the following design elements, or
categories of design elements. Not all device families support all these elements. To see
which design elements can be used with which device families, see the Xilinx Libraries
Guides. For more information, see the device data sheet.

• Flip-flop and latch primitives

• Any I/O element or pad

• FMAP

• BUFT

• ROM primitives

• RAMS and RAMD primitives

• Carry logic primitives

You can also attach BLKNM to the net connected to the pad component in a UCF file.
NGDBuild transfers the constraint from the net to the pad instance in the NGD file so that
it can be processed by the mapper. Use the following syntax:

NET “net_name” BLKNM=property_value;

Virtex Yes

Virtex-E Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com BLKNM 91
ISE 8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

BLKNM Description
BLKNM is an advanced mapping constraint. BLKNM assigns block names to qualifying
primitives and logic elements. If the same BLKNM constraint is assigned to more than one
instance, the software attempts to map them into the same block. Conversely, two symbols
with different BLKNM names are not mapped into the same block. Placing similar
BLKNMs on instances that do not fit within one block creates an error.

Specifying identical BLKNM constraints on FMAP tells the software to group the
associated function generators into a single CLB. Using BLKNM, you can partition a
complete CLB without constraining the CLB to a physical location on the device.

BLKNM constraints, like LOC constraints, are specified from the design. Hierarchical
paths are not prefixed to BLKNM constraints, so BLKNM constraints for different CLBs
must be unique throughout the entire design. For information on attaching hierarchy to
block names, see the “HBLKNM” constraint.

BLKNM allows any elements except those with a different BLKNM to be mapped into the
same physical component. Elements without a BLKNM can be packed with those that have
a BLKNM. For information on allowing only elements with the same XBLKNM to be
mapped into the same physical component, see the “XBLKNM” constraint.

BLKNM Propagation Rules
When attached to a design element, it is propagated to all applicable elements in the
hierarchy within the design element.

BLKNM Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a valid instance

• Attribute Name: BLKNM

• Attribute Value: block_name

VHDL

Before using BLKNM, declare it with the following syntax:

attribute blknm: string;

After BLKNM has been declared, specify the VHDL constraint as follows:

attribute blknm of
{component_name|signal_name|entity_name|label_name}:
{component|signal|entity|label} is “block_name”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.
Constraints Guide www.xilinx.com BLKNM 92
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Verilog

Specify as follows:

 // synthesis attribute blknm [of]
{module_name|instance_name|signal_name} [is] blk_name;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

The basic UCF syntax is:

INST “instance_name” BLKNM=block_name;

where

• block_name is a valid block name for that type of symbol

For information on assigning hierarchical block names, see the “HBLKNM”constraint.

The following statement assigns an instantiation of an element named block1 to a block
named U1358.

INST “$1I87/block1” BLKNM=U1358;

XCF

MODEL “entity_name” blknm = block_name;

BEGIN MODEL “entity_name”

 INST "instance_name" blknm = block_name;

END;
Constraints Guide www.xilinx.com BLKNM 93
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

BEL

BEL Architecture Support
The following table shows whether the constraint may be used with that device.

BEL Applicable Elements

BEL Description
BEL is an advanced placement constraint. It locks a logical symbol to a particular BEL site
in a slice, or an IOB. BEL differs from LOC in that LOC allows specification to the comp
level. BEL allows specification as to which particular BEL site of the or IOB slice is to be
used.

An IOB BEL constraint does not direct the mapper to pack the register into an IOB
component. Some other feature (the -pr switch, for example) must cause the packing. Once
the register is directed to an IOB, the BEL constraint will cause the proper placement
within the IOB.

Virtex No

Virtex-E No

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II No

Spartan-IIE No

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No

Registers FMAP

LUTs SRL16s

XORCY RAM16XLS

IFF1 IFF2

OFF1 OFF2

TFF1 TFF2
Constraints Guide www.xilinx.com BEL 94
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

BEL Propagation Rules
It is illegal to attach BEL to a net or signal.

BEL Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a valid instance

• Attribute Name: BEL

• Attribute Values: F, G, FFX, FFY, XORF, XORG

VHDL

Before using BEL, declare it with the following syntax:

attribute bel : string;

After BEL has been declared, specify the VHDL constraint as follows:

attribute bel of {component_name|label_name}: {component|label} is
“{F|G|FFX|FFY|XORF|XORG}”;

For a description of the BEL values, see “UCF and NCF” in this chapter.

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute bel [of] {module_name|instance_name} [is]
{F|G|FFX|FFY|XORF|XORG};

For a description of the BEL values, see “UCF and NCF” in this chapter.

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

The syntax is:

INST “instance_name” BEL={F | G |FFX | FFY | XORF | XORG};

where

• F and G identify specific LUTs, SRL16s, distributed RAM components in the slice

• FFX and FFY identify specific flip-flops, latches, and other elements in a slice

• XORF and XORG identify XORCY elements in a slice

The following statement locks xyzzy to the FFX site on the slice.

INST “xyzzy” BEL=FFX;
Constraints Guide www.xilinx.com BEL 95
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

BUFG (CPLD)

BUFG (CPLD) Architecture Support
The following table shows whether the constraint may be used with that device.

BUFG (CPLD) Applicable Elements
Any input buffer (IBUF), input pad net, or internal net that drives a CLK, OE, SR,
DATA_GATE pin.

BUFG (CPLD) Description
BUFG is an advanced fitter constraint and a synthesis constraint. When applied to an input
buffer or input pad net, the BUFG attribute maps the tagged signal to a global net. When
applied to an internal net, the tagged signal is either routed directly to a global net or
brought out to a global control pin to drive the global net, as supported by the target device
family architecture.

BUFG (CPLD) Propagation Rules
When attached to a net, BUFG has a net or signal form and so no special propagation is
required. When attached to a design element, BUFG is propagated to all applicable
elements in the hierarchy within the design element.

Virtex No

Virtex-E No

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 No

Spartan-II No

Spartan-IIE No

Spartan-3 No

Spartan-3E No

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes a

a. OE, SR not supported.

CoolRunner-II Yes
Constraints Guide www.xilinx.com BUFG (CPLD) 96
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

BUFG (CPLD) Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to an IBUF instance of the input pad connected to an IBUF input

• Attribute Name: BUFG

• Attribute Values: CLK, OE, SR, DATA_GATE

• BUFG=CLK: maps to a global clock (GCK) line

• BUFG=OE: maps to a global 3-state control (GTS) line

• BUFG=SR: maps to a global set/reset control (GSR) line

• BUFG=DATA_GATE: maps to the DataGate latch enable control line

VHDL

Before using BUFG, declare it with the following syntax:

attribute BUFG: string;

After BUFG has been declared, specify the VHDL constraint as follows:

attribute BUFG of signal_name: signal is “{CLK|OE|SR|DATA_GATE}”;

BUFG=CLK: maps to a global clock (GCK) line.

BUFG=OE: maps to a global 3-state control (GTS) line.

BUFG=SR: maps to a global set/reset control (GSR) line.

BUFG=DATA_GATE: maps to the DataGate latch enable control line.

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify BUFG as follows:

 // synthesis attribute BUFG [of] signal_name [is]
{CLK|OE|SR|DATA_GATE}

BUFG=CLK: maps to a global clock (GCK) line.

BUFG=OE: maps to a global 3-state control (GTS) line.

BUFG=SR: maps to a global set/reset control (GSR) line.

BUFG=DATA_GATE: maps to the DataGate latch enable control line.

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.
Constraints Guide www.xilinx.com BUFG (CPLD) 97
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

ABEL

XILINX PROPERTY 'bufg={clk|oe|sr|DATA_GATE} signal_name';

UCF and NCF

The basic UCF syntax is

NET “net_name” BUFG={CLK | OE | SR | DATA_GATE};

INST “instance_name” BUFG={CLK | OE | SR | DATA_GATE};

where

• CLK designates a global clock pin (all CPLD families).

• OE designates a global 3-state control pin (all CPLD devices except CoolRunner) or
internal global 3-state control line (CoolRunner-II only).

• SR designates a global set/reset pin (all CPLD devices except CoolRunner).

• DATA_GATE maps to the DataGate latch enable control line.

The following statement maps the signal named fastclk to a global clock net.

NET “fastclk” BUFG=CLK;

XCF

BEGIN MODEL “entity_name”

 NET "signal_name" BUFG = {CLK|OE|SR|DATA_GATE};

END;
Constraints Guide www.xilinx.com BUFG (CPLD) 98
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

COLLAPSE

COLLAPSE Architecture Support
The following table shows whether the constraint may be used with that device.

COLLAPSE Applicable Elements
Any internal net

COLLAPSE Description
COLLAPSE is an advanced fitter constraint. It forces a combinatorial node to be collapsed
into all of its fanouts.

COLLAPSE Propagation Rules
COLLAPSE is a net constraint. Any attachment to a design element is illegal.

COLLAPSE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a logic symbol or its output net

• Attribute Name: COLLAPSE

• Attribute Values: TRUE, FALSE

Virtex No

Virtex-E No

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 No

Spartan-II No

Spartan-IIE No

Spartan-3 No

Spartan-3E No

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com COLLAPSE 99
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

VHDL

Before using COLLAPSE, declare it with the following syntax:

attribute collapse: string;

After COLLAPSE has been declared, specify the VHDL constraint as follows:

attribute collapse of signal_name: signal is “yes”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute collapse [of] signal_name [is] “yes”;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

The basic UCF syntax is:

NET “net_name” COLLAPSE;

The following statement forces net $1N6745 to collapse into all its fanouts.

NET “$1I87/$1N6745” COLLAPSE;
Constraints Guide www.xilinx.com COLLAPSE 100
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

COMPGRP

COMPGRP Architecture Support
The following table shows whether the constraint may be used with that device.

COMPGRP Applicable Elements
Groups of components

COMPGRP Description
COMPGRP is an advanced grouping constraint and an advanced modular design
constraint. It identifies a group of components.

COMPGRP Propagation Rules
Not applicable.

COMPGRP Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com COMPGRP 101
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

PCF

COMPGRP “group_name”=comp_item1... comp_itemn [EXCEPT comp_group];

where

• comp_item is one of the following

♦ COMP “comp_name”

♦ COMPGRP “group_name”

Modular Designs
The AREA_GROUP/RANGE constraint is translated into a COMPGRP/LOCATE
constraint in the PCF file. This constraint has the following syntax:

COMPGRP "name" LOCATE = SITE "start:end";

The INST/AREA_GROUP is translated into some number of COMPGRP constraints in the
PCF file. A unique COMPGRP constraint will be defined as SLICEs, TBUFs and BRAMs
depending upon whether or not any INSTs of these types are found underneath the logical
node X. Each COMPGRP will contain all of the components containing the referenced
logic. The format of these constraints is:

COMPGRP "name.slice" COMP "c1" COMP "c2" ...;

Where components c1, c2 ... are all components of type slice that contain logic underneath
the logical node X.

For more information, see “Modular Design Use” in the “AREA_GROUP” constraint.
Constraints Guide www.xilinx.com COMPGRP 102
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

CONFIG

CONFIG Architecture Support
The following table shows whether the constraint may be used with that device.

CONFIG Applicable Elements
Used with PROHIBIT, STEPPING, and VREF

CONFIG Description
CONFIG can be defined with the following:

• “PROHIBIT”

• STEPPING

When the CONFIG STEPPING constraint is specified for an enhanced multiplier,
Timing Analyzer and TRCE perform timing analysis based on the enhanced multiplier
performance. For more information on STEPPING, see Xilinx Answer Record 14339,
“How do I access enhanced multiplier speed for my design? (CONFIG STEPPING
constraint)”

• “VREF”

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com CONFIG 103
ISE 8.1i

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=answer+record&sub=14339

Xilinx Constraints
R

CONFIG Propagation Rules
It is illegal to attach CONFIG to a net, signal, entity, module, or macro.

CONFIG Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF

The following rules apply:

• The package string must always begin with an alphabetic character — never with a
number.

• The speed string must always begin with a numeric character —never with an
alphabetic character.

• The text XC is an optional prefix to the whole part_type string.

• In a constraints file, the PART specification must be preceded by the keyword
CONFIG.

The following statement prohibits use of the site P45.

CONFIG PROHIBIT=P45;

For CLB-based Row/Column/Slice Designations

The following statement prohibits use of the CLB located in Row 6, Column 8.

CONFIG PROHIBIT=CLB_R6C8;

The following statement prohibits use of the site TBUF_R5C2.2.

CONFIG PROHIBIT=TBUF_R5C2.2;

For Slice-based XY Coordinate Designations

The following statement prohibits use of the slice at the SLICE_X6Y8 site.

CONFIG PROHIBIT=SLICE_X6Y8;

The following statement prohibits use of the TBUF at the TBUF_X6Y2 site.

CONFIG PROHIBIT=TBUF_X6Y2;

For more information on STEPPING, see Xilinx Answer Record 14339, “How do I access
enhanced multiplier speed for my design? (CONFIG STEPPING constraint)”

Following is a UCF syntax example.

CONFIG STEPPING="1";

For support with VREF, see the “VREF” constraint.

Project Navigator

For the Part keyword, double-click the part in the Sources window. Select the Device
Family and Device in the Project Properties dialog box.
Constraints Guide www.xilinx.com CONFIG 104
ISE 8.1i

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=answer+record&sub=14339

Xilinx Constraints
R

CONFIG_MODE

CONFIG_MODE Architecture Support
The following table shows whether the constraint may be used with that device.

CONFIG_MODE Applicable Elements
Attaches to the CONFIG symbol.

CONFIG_MODE Description
This constraint communicates to PAR which of the dual purpose configuration pins can be
used as general purpose IOs.

This constraint is used by PAR to prohibit the use of Dual Purpose IOs if they are required
for CONFIG_MODE: S_SELECTMAP+READBACK OR M_SELECTMAP+READBACK.

In the case of CONFIG_MODE: S_SELECTMAP OR M_SELECTMAP, PAR uses the Dual
Purpose IOs as General Purpose IOs only if necessary.

CONFIG_MODE Propagation Rules
Applies to dual-purpose I/Os.

CONFIG_MODE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com CONFIG_MODE 105
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

UCF

The basic UCF syntax is:

CONFIG CONFIG_MODE=string;

where

• string can be one of the following:

♦ S_SERIAL = Slave Serial Mode

♦ M_SERIAL = Master Serial Mode (The default value)

♦ S_SELECTMAP = Slave SelectMAP Mode

♦ M_SELECTMAP = Master SelectMAP Mode.

♦ B_SCAN = Boundary Scan Mode

♦ S_SELECTMAP+READBACK = Slave SelectMAP Mode with Persist set to
support Readback and Reconfiguration.

♦ M_SELECTMAP+READBACK = Mater SelectMAP Mode with Persist set to
support Readback and Reconfiguration.

♦ B_SCAN+READBACK = Boundary Scan Mode with Persist set to support
Readback and Reconfiguration
Constraints Guide www.xilinx.com CONFIG_MODE 106
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

COOL_CLK

COOL_CLK Architecture Support
The following table shows whether the constraint may be used with that device.

COOL_CLK Applicable Elements
Applies to any input pad or internal signal driving a register clock.

COOL_CLK Description
You can save power by combining clock division circuitry with the DualEDGE circuitry.
This capability is called CoolCLOCK. It is designed to reduce clocking power within a
CPLD. Because the clock net can be a significant power drain, the clock power can be
reduced by driving the net at half frequency, then doubling the clock rate using DualEDGE
triggered macrocells.

COOL_CLK Propagation Rules
Applying COOL_CLK to a clock net is equivalent to passing the clock through a divide-by-
two clock divider (CLK_DIV2) and replacing all flip-flops controlled by that clock with
DualEDGE flip-flops. Using the COOL_CLK attribute does not alter your overall design
functionality.

Some restrictions apply:

• You cannot use COOL_CLK on a clock that triggers any flip-flop on the low-going
edge. The CoolRunner-II clock divider can be triggered only on the high-rising edge
of the clock signal.

• If there are any DualEDGE flip-flops in your design source, the clock that controls any
of them cannot be specified as a COOL_CLK.

Virtex No

Virtex-E No

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 No

Spartan-II No

Spartan-IIE No

Spartan-3 No

Spartan-3E No

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II Yes
Constraints Guide www.xilinx.com COOL_CLK 107
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

• If there is already a clock divider in your design source, you cannot also use
COOL_CLK. CoolRunner-II devices contain only one clock divider.

COOL_CLK Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a input pad or internal signal driving a register clock

• Attribute Name: COOL_CLK

• Attribute Values: TRUE, FALSE

VHDL

Before using COOL_CLK, declare it with the following syntax:

attribute cool_clk: string;

After COOL_CLK has been declared, specify the VHDL constraint as follows:

attribute cool_clk of signal_name: signal is “true”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute cool_clk [of] signal_name [is] “true”;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

ABEL

XILINX PROPERTY 'COOL_CLK signal_name';

UCF and NCF

NET “signal_name” COOL_CLK;
Constraints Guide www.xilinx.com COOL_CLK 108
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

DATA_GATE

DATA_GATE Architecture Support
The following table shows whether the constraint may be used with that device.

DATA_GATE Applicable Elements
I/O pads and pins

DATA_GATE Description
The CoolRunner-II DataGate feature provides direct means of reducing power
consumption in your design. Each I/O pin input signal passes through a latch that can
block the propagation of incident transitions during periods when such transitions are not
of interest to your CPLD design. Input transitions that do not affect the CPLD design
function will still consume power, if not latched, as they are routed among the device’s
function blocks. By asserting the DataGate control I/O pin on the device, selected I/O pin
inputs become latched, thereby eliminating the power dissipation associated with external
transitions on those pins.

Applying the DATA_GATE attribute to any I/O pad indicates that the pass-through latch
on that device pin is to respond to the DataGate control line. Any I/O pad (except the
DataGate control I/O pin itself), including clock input pads, can be configured to get
latched by applying the DATA_GATE attribute. All other I/O pads that do not have a
DATA_GATE attribute remain unlatched at all times. The DataGate control signal itself can
be received from off-chip via the DataGate I/O pin, or you can generate it in your design
based on inputs that remain unlatched (pads without DATA_GATE attributes).

Virtex No

Virtex-E No

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 No

Spartan-II No

Spartan-IIE No

Spartan-3 No

Spartan-3E No

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II Yes a

a. Applies only to devices with 128 macrocells
or more.
Constraints Guide www.xilinx.com DATA_GATE 109
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

For more information on using DATA_GATE with Verilog and VHDL designs, see the
“BUFG (CPLD)” constraint.

DATA_GATE Propagation Rules
See “DATA_GATE Description” in this chapter.

DATA_GATE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to I/O pads and pins

• Attribute Name: DATA_GATE

• Attribute Values: TRUE, FALSE

VHDL

Before using DATA_GATE, declare it with the following syntax:

attribute DATA_GATE : string;

After DATA_GATE has been declared, specify the VHDL constraint as follows:

attribute DATA_GATE of signal_name: signal is “true”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute DATA_GATE [of] signal_name [is] “true”;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

ABEL

XILINX PROPERTY 'DATA_GATE signal_name';

NCF

Same as UCF.

UCF

NET “signal_name” DATA_GATE;

XCF

BEGIN MODEL “entity_name”
NET “signal_name” data_gate={true|false}”;
END;
Constraints Guide www.xilinx.com DATA_GATE 110
ISE 8.1i

http://www.xilinx.com

Constraints Guide www.xilinx.com DCI_VALUE 111
ISE 8.1i

Xilinx Constraints
R

DCI_VALUE

DCI_VALUE Architecture Support
The following table shows whether the constraint may be used with that device.

DCI_VALUE Applicable Elements
IOBs

DCI_VALUE Description
DCI_VALUE determines which buffer behavioral models are associated with the IOBs of a
design in the generation of an IBS file using IBISWriter.

DCI_VALUE Propagation Rules
Applies to the IOB to which it is attached.

DCI_VALUE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF

INST PIN pin_name DCI_VALUE = integer;

Legal values are integers 25 through 100 with an implied units of ohms. The default value
is 50 ohms.

Virtex No

Virtex-E No

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II No

Spartan-IIE No

Spartan-3 Yes

Spartan-3E No

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No

http://www.xilinx.com

Xilinx Constraints
R

Directed Routing

Directed Routing Architecture Support
The following table shows whether the constraint may be used with that device.

Directed Routing Applicable Elements
Applies only to nets.

Directed Routing Description
Directed routing is a means of maintaining the routing and timing for a small number of
loads and sources. Use of directed routing requires that the relative position between the
sources and loads be maintained exactly the same.

Directed Routing Propagation Rules
Not applicable.

Directed Routing Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF

The following examples are for illustration only. They are not valid executables.
Formulation of a directed routing constraint requires the placement of the source and load
components in a fixed location relative to each other.

Virtex No

Virtex-E No

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X No

Virtex-4 Yes

Spartan-II No

Spartan-IIE No

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com Directed Routing 112
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

FPGA Editor

To generate directed routing constraints with FPGA Editor, select Tools > Directed
Routing Constraints. FPGA Editor provides the following three settings for the type of
placement constraint to be generated automatically on the sources and loads components.
For more information, see the FPGA Editor help.

Do Not Generate Placement Constraint

“Do Not Generate Placement Constraint” generates a constraint for the routing only. It is
designed to be used with existing RPMs.

NET "net_name" ROUTE="{2;1;-4!-1;-53320;2920;14;90;200;30;13!0;-
2091;1480;24!0;16;-8!}";

Use Relative Location Constraint

“Use Relative Location Constraint” generates an RPM for the source and load components
along with the routing constraint. The RPM can be relocated around the device letting the
Placer make the final decision on placement.

NET "net_name" ROUTE="{2;1;-4!-1;-53320;2920;14;90;200;30;13!0;-
2091;1480;24!0;16;-8!}";

INST "inst1" RLOC=X3Y0;

INST "inst1" RPM_GRID=GRID;

INST "inst1" U_SET=macro name;

INST "inst1" BEL="F";

INST "inst2" RLOC=X3Y0;

INST "inst2" U_SET=macro name;

INST "inst2" BEL="G";

In the above example, each RLOC reference signals the launch of a new instance.
Accordingly, there are three instances encompassed within this example.

Use Absolute Location Constraint

“Use Absolute Location Constraint” causes the source and load components attached to
the target net to be locked in place.

NET "net_name" ROUTE="{2;1;-4!-1;-53320;2920;14;90;200;30;13!0;-
2091;1480;24!0;16;-8!}";

INST "inst1" RLOC=X3Y0;

INST "inst1" RPM_GRID=GRID;

INST "inst1" RLOC_ORIGIN=X87Y200;

INST "inst1" U_SET=macro name;

INST "inst1" BEL="F";

INST "inst2" RLOC=X0Y1;

INST "inst2" U_SET=macro name;

INST "inst2" BEL="F";

INST "inst3" RLOC=X3Y0;

INST "inst3" U_SET=macro name;

INST "inst3" BEL="G";
Constraints Guide www.xilinx.com Directed Routing 113
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

DISABLE

DISABLE Architecture Support
The following table shows whether the constraint may be used with that device.

DISABLE Applicable Elements
Global in constraints file

DISABLE Description
DISABLE is an advanced timing constraint. It controls path tracing. All path tracing
control statements from any source (netlist, UCF, or NCF) are passed forward to the PCF.
You cannot override a DISABLE in the netlist with an “ENABLE” in the UCF.

DISABLE Propagation Rules
Disables timing analysis of specified block delay symbol.

DISABLE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com DISABLE 114
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF

DISABLE=delay_symbol_name;

where

• delay_symbol_name is the name of one of the standard block delay symbols for path
tracing or a specific delay name in the datasheet

These symbols are listed in the following table. Component delay names are also
supported in the PCF.

The following statement prevents timing analysis on any path that includes the I to O
delay on any TBUF component in the design.

DISABLE=tbuf_i_o;

PCF

The syntax is the same as UCF.

Table 20-1: Standard Block Delay Symbols for Path Tracing

Delay Symbol Name Path Type Default

reg_sr_q Asynchronous Set/Reset to
output propagation delay

Disabled

reg_sr_clk Synchronous Set/Reset to
clock setup and hold checks

Enabled

lat_d_q Data to output transparent
latch delay

Disabled

ram_we_o RAM write enable to output
propagation delay

Enabled

tbuf_t_o TBUF 3-state to output
propagation delay

Enabled

tbuf_i_o TBUF input to output
propagation delay

Enabled

io_pad_i IO pad to input propagation
delay

Enabled

io_t_pad IO 3-state to pad propagation
delay

Enabled

io_o_i IO output to input
propagation delay. Disabled
for 3-stated IOBs.

Enabled

io_o_pad IO output to pad
propagation delay.

Enabled
Constraints Guide www.xilinx.com DISABLE 115
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

DRIVE

DRIVE Architecture Support
The following table shows whether the constraint may be used with that device.

DRIVE Applicable Elements
If “Yes” is shown next to the device name in the Architecture Support table, the constraint
may be used with that device in one or more of the following design elements, or
categories of design elements. Not all device families support all these elements. For which
design elements can be used with which device families, see the Xilinx Libraries Guides. For
more information, see the device data sheet.

• IOB output components (such as OBUF and OFD)

• SelectIO output buffers with IOSTANDARD = LVTTL, LVCMOS15, LVCMOS18,
LVCMOS25, or LVCMOS33

• Nets

DRIVE Description
DRIVE is a basic mapping directive that selects the output for the following devices:

• Virtex

• Virtex-E

• Virtex-II

• Virtex-II Pro

• Virtex-II Pro X

• Virtex-4

Virtex Yes

Virtex-E Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com DRIVE 116
ISE 8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

• Spartan-II

• Spartan-IIE

• Spartan-3

• Spartan-3E

DRIVE selects output drive strength (mA) for the SelectIO buffers that use the LVTTL,
LVCMOS12, LVCMOS15, LVCMOS18, LVCMOS25, or LVCMOS33 interface I/O standard.

You cannot change the LVCMOS drive strengths for Virtex-E devices. Only the variable
LVTTL drive strengths are available for Spartan-IIE and Virtex-E devices.

DRIVE Propagation Rules
DRIVE is illegal when attached to a net or signal, except when the net or signal is
connected to a pad. In this case, DRIVE is treated as attached to the pad instance. When
attached to a design element, DRIVE is propagated to all applicable elements in the
hierarchy below the design element.

DRIVE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a valid IOB output component

• Attribute Name: DRIVE

• Attribute Values: see “UCF and NCF” in this chapter

VHDL

Before using DRIVE, declare it with the following syntax:

attribute drive: string;

After DRIVE has been declared, specify the VHDL constraint as follows:

attribute drive of {component_name|entity_name|label_name}:
{component|entity|label} is “value”;

See the “UCF and NCF” section in this chapter for valid values.

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute drive [of] {module_name|instance_name} [is]
value;

See the “UCF and NCF” section in this chapter for valid values.

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.
Constraints Guide www.xilinx.com DRIVE 117
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF

IOB Output Components (UCF)

For Spartan-II, Spartan-IIE, Spartan-3, Spartan-3, Spartan-3E, Virtex, Virtex-E, Virtex-II,
Virtex-II Pro, Virtex-II Pro X, and Virtex-4 devices:

INST “instance_name” DRIVE={2|4|6|8|12|16|24};

where

• 12 mA is the default

SelectIO Output Components (IOBUF_SelectIO, OBUF_SelectIO, and
OBUFT_SelectIO)

• For the LVTTL standard with Spartan-II, Spartan-IIE, Spartan-3, Spartan-3E,Virtex,
Virtex-E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, and Virtex-4 devices:

INST “instance_name” DRIVE={2|4|6|8|12|16|24};

• For the LVCMOS12, LVCMOS15, and LVCMOS18 standards with Spartan-3, Spartan-
3E,Virtex-II, Virtex-II Pro, Virtex-II Pro X, and Virtex-4 devices:

INST “instance_name” DRIVE={2|4|6|8|12|16};

• For the LVCMOS25 and LVCMOS33 standards with Spartan-3, Spartan-3E,Virtex-II,
Virtex-II Pro, Virtex-II Pro X, and Virtex-4 devices:

INST “instance_name” DRIVE={2|4|6|8|12|16|24};

where

♦ 12 mA is the default for all architectures

XCF

MODEL “entity_name” drive={2|4|6|8|12|16|24};

BEGIN MODEL “entity_name”

NET “signal_name” drive={2|4|6|8|12|16|24};

END;

Constraints Editor

From the Project Navigator Processes window:

1. Double-click Create Timing Constraints under User Constraints.

Constraints Editor opens.

2. In the Ports tab grid with I/O Configuration Options checked, click the DRIVE column
in the row with the desired output port name.

3. Choose a value from the drop-down list.
Constraints Guide www.xilinx.com DRIVE 118
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

DROP_SPEC

DROP_SPEC Architecture Support
The following table shows whether the constraint may be used with that device.

DROP_SPEC Applicable Elements
Timing constraints

DROP_SPEC Description
DROP_SPEC is an advanced timing constraint. It allows you to specify that a timing
constraint defined in the input design should be dropped from the analysis. You can use
DROP_SPEC when new specifications defined in a constraints file do not directly override
all specifications defined in the input design, and some of these input design specifications
need to be dropped. While this timing command is not expected to be used frequnetly in
an input netlist (or NCF file), it is legal. If defined in an input design DROP_SPEC must be
attached to TIMESPEC.

DROP_SPEC Propagation Rules
It is illegal to attach DROP_SPEC to nets or macros. DROP_SPEC removes a specified
timing specification.

DROP_SPEC Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com DROP_SPEC 119
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF

TIMESPEC “TSidentifier”=DROP_SPEC;

where

• TSidentifier is the identifier name used for the timing specification that is to be
removed.

The following statement cancels the input design specification TS67.

TIMESPEC “TS67”=DROP_SPEC;

PCF

“TSidentifier” DROP_SPEC;
Constraints Guide www.xilinx.com DROP_SPEC 120
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

ENABLE

ENABLE Architecture Support
The following table shows whether the constraint may be used with that device.

ENABLE Applicable Elements
Global in constraints file

ENABLE Description
ENABLE is an advanced timing constraint. It controls what types of paths will be analyzed
during static timing. See also “DISABLE.”

ENABLE Propagation Rules
Enables timing analysis for specified path delays.

ENABLE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com ENABLE 121
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF

ENABLE can be applied only to a global timespec. The path tracing syntax is as follows in
the UCF file.

ENABLE= delay_symbol_name;

where

• delay_symbol_name is the name of one of the standard block delay symbols for path
tracing symbols shown in the following table, or a specific delay name defined in the
datasheet

PCF

ENABLE=delay_symbol_name;

or

TIMEGRP name ENABLE=delay_symbol_name;

Table 23-1: Standard Block Delay Symbols for Path Tracing

Delay Symbol Name Path Type Default

reg_sr_q Asynchronous Set/Reset to output propagation delay Disabled

reg_sr_clk Synchronous Set/Reset to clock setup and hold checks Enabled

lat_d_q Data to output transparent latch delay Disabled

ram_we_o RAM write enable to output propagation delay Enabled

tbuf_t_o TBUF 3-state to output propagation delay Enabled

tbuf_i_o TBUF input to output propagation delay Enabled

io_pad_i IO pad to input propagation delay Enabled

io_t_pad IO 3-state to pad propagation delay Enabled

io_o_1 IO output to input propagation delay. Disabled for 3-stated IOBs Enabled

io_o_pad IO output to pad propagation delay Enabled
Constraints Guide www.xilinx.com ENABLE 122
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

FAST

FAST Architecture Support
The following table shows whether the constraint may be used with that device.

FAST Applicable Elements
Output primitives, output pads, bidirectional pads

You can also attach FAST to the net connected to the pad component in a UCF file.
NGDBuild transfers the constraint from the net to the pad instance in the NGD file so that
it can be processed by the mapper. Use the following syntax:

NET “net_name” FAST;

FAST Description
FAST is a basic mapping constraint. It increases the speed of an IOB output. While FAST
produces a faster output, it may increase noise and power consumption.

FAST Propagation Rules
FAST is illegal when attached to a net except when the net is connected to a pad. In this
instance, FAST is treated as attached to the pad instance. When attached to a macro,
module, or entity, FAST is propagated to all applicable elements in the hierarchy below the
module.

FAST Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com FAST 123
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Schematic

• Attach to a valid instance

• Attribute Name: FAST

• Attribute Values: TRUE, FALSE

VHDL

Before using FAST, declare it with the following syntax:

attribute FAST: string;

After FAST has been declared, specify the VHDL constraint as follows:

attribute FAST of signal_name: signal is “true”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute fast [of] signal_name [is] “true”;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

ABEL

XILINX PROPERTY 'FAST mysignal’;

UCF and NCF

The following statement increases the output speed of the element y2:

INST “$1I87/y2” FAST;

The following statement increases the output speed of the pad to which net1 is connected:

NET “net1” FAST;

XCF

BEGIN MODEL “entity_name”

NET “signal_name” fast={true|false};

END;

Constraints Editor

From the Project Navigator Processes window:

1. Double-click Create Timing Constraints under User Constraints.

Constraints Editor opens.

2. In the Ports tab grid with I/O Configuration Options checked, click the FAST/SLOW
column in the row with the desired output port name.

3. Choose FAST from the drop-down list.
Constraints Guide www.xilinx.com FAST 124
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

FEEDBACK

FEEDBACK Architecture Support
The following table shows whether the constraint may be used with that device.

FEEDBACK Applicable Elements
Not applicable.

FEEDBACK Description
The FEEDBACK constraint is associated with the DCM. The constraint specifies the
external path delay that occurs when a DCM output drives off-chip and then back on-chip
into the DCM CLKFB input. This data is required for the timing tools to properly analyze
the path clocked for the DCM.

The basic UCF syntax is:

NET feedback_signal FEEDBACK = real units NET output_signal;

The feedback signal is the net that drives the CLKFB input of the DCM and the output
signal is the net that drives the output pad. The real value provides the path delay from the
output pad to the input pad. If units are not specified, then ns is assumed.

FEEDBACK Propagation Rules
Both the feedback_signal and output_signal must correspond to pad nets. If attached to any
other net, an error will result. The feedback_signal must be an input pad and output_signal
must be an output pad.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com FEEDBACK 125
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

FEEDBACK Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF

The basic UCF syntax is:

NET feedback_signal FEEDBACK =real units NEToutput_signal;

where

• feedback_signal is the name of the input pad net used as the feedback to the DCM

• real is the board trace delay calculated or measured by you

• units is either ns or ps. The default is ns.

• output_signal is the name of the output pad net driven by the DCM

XCF

BEGIN MODEL “entity_name”

NETfeedback_signal FEEDBACK = real units NET output_signal;

END;

For a description of feedback_signal, real, units, and output_signal, see “UCF” in this chapter.

PCF

{BEL |COMP} feedback_signal_pad FEEDBACK = real units {BEL |COMP}
output_signal;
Constraints Guide www.xilinx.com FEEDBACK 126
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

FILE

FILE Architecture Support
The following table shows whether the constraint may be used with that device.

FILE Applicable Elements
Instance declaration where the definition is defined in the specified file.

FILE Description
When you instantiate a module that resides in another netlist, ngdbuild finds this file by
looking it up by the file name. This requires the netlist to have the same name as a module
that is defined in the file. If you want to name the netlist differently than the module name,
the FILE constraint can be attached to a instance declaration. This tells ngdbuild to look for
the module in the file specified.

Some Xilinx constraints cannot be used in attributes, because they are also VHDL
keywords. To avoid this problem, use a constraint alias. Starting from the ISE 7.1 release,
each constraint has its own alias. The alias name is based on the original constraint name
with a “XIL” prefix. For example, the FILE constraint cannot be used in attributes directly.
You must use “XIL_FILE” instead. The existing XILFILE alias is still supported.

FILE Propagation Rules
Applicable only on instances.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com FILE 127
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

FILE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a valid instance

• Attribute Name: FILE

• Attribute Values: file_name.extension

where

• file_name is the name of a file that represents the underlying logic for the element
carrying the constraint

Example file types include EDIF, EDN, NGC, and NMC.

VHDL

Before using XILFILE, declare it with the following syntax:

attribute xilfile: string;

After XILFILE has been declared, specify the VHDL constraint as follows:

attribute xilfile of {instance_name|component_name} : {label|component}
is “ file_name”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

// synthesis attribute xilfile [of] instance_name is “file_name”;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

INST <instance definition> FILE= <filename definition is located in>;

Note: No valid syntax for UCF.
Constraints Guide www.xilinx.com FILE 128
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

FLOAT

FLOAT Architecture Support
The following table shows whether the constraint may be used with that device.

FLOAT Applicable Elements
Applies to nets or pins.

FLOAT Description
FLOAT is a basic mapping constraint. It allows 3-stated pads to float when not being
driven. This is useful when the default termination for applicable I/Os is set to PULLUP,
PULLDOWN, or KEEPER in Project Navigator.

FLOAT Propagation Rules
Applies to the net or pin to which it is attached

FLOAT Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a valid instance

• Attribute Name: FLOAT

• Attribute Value: None required. If attached, TRUE is assumed.

Virtex No

Virtex-E No

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 No

Spartan-II No

Spartan-IIE No

Spartan-3 No

Spartan-3E No

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com FLOAT 129
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

VHDL

Before using FLOAT, declare it with the following syntax:

attribute FLOAT: string;

After FLOAT has been declared, specify the VHDL constraint as follows:

attribute FLOAT of signal_name : signal is “TRUE”;

Verilog

Specify as follows:

 // synthesis attribute FLOAT [of] signal_name [is] “TRUE”;

ABEL

XILINX PROPERTY 'FLOAT signal_name';

UCF and NCF

The basic UCF syntax is:

NET “signal_name” FLOAT;

XCF

BEGIN MODEL “entity_name”

NET "signal_name" FLOAT;

END;
Constraints Guide www.xilinx.com FLOAT 130
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

FROM-THRU-TO

FROM-THRU-TO Architecture Support
The following table shows whether the constraint may be used with that device.

FROM-THRU-TO Applicable Elements
Predefined and user-defined groups

FROM-THRU-TO Description
FROM-TO-THRU is an advanced timing constraint, and is associated with the PERIOD
constraint of the high or low time. From synchronous paths, a FROM-TO-THRU constraint
controls only the setup path, not the hold path. This constraint applies to a specific path
that begins at a source group, passes through intermediate points, and ends at a
destination group. The source and destination groups can be either user or predefined
groups. You must define an intermediate path using TPTHRU before using THRU.

FROM-THRU-TO Propagation Rules
Applies to the specified FROM-THRU-TO path only.

FROM-THRU-TO Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com FROM-THRU-TO 131
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF

TIMESPEC “TSidentifier”=FROM “source_group” THRU
“thru_pt1”...[THRU“thru_pt2”...] TO “destination_group” value
[Units]{DATAPATHONLY};

identifier can consist of characters or underbars.

source_group and destination_group are user-defined or predefined groups.

thru_pt1 and thru_pt2 are intermediate points to define specific paths for timing analysis.

value is the delay time.

units can be ps, ms, ns, or us.

The DATAPATHONLY keyword indicates that the FROM-TO constraint will not take clock
skew or phase information into consideration. This keyword results in only the data path
between the groups being constrained and analyzed.

FROM or TO is optional; you can have just a FROM or just a TO.

You are not required to have a FROM, THRU, and TO. You can basically have any
combination (FROM-TO, FROM-THRU-TO, THRU-TO, TO, FROM, FROM-THRU-
THRUTHRU-TO, FROM-THRU, and so on). There is no restriction on the number of
THRU points. The source, thru points, and destination can be a net, bel, comp, macro, pin,
or timegroup.

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

1. Identify the through points using the Create ... Timing THRU Points button from the
Advanced tab.

2. Set a FROM-THRU-TO constraint for groups of elements in the Advanced tab by
clicking Specify next to “Slow/Fast Path Exceptions” (to set explicit times) or Specify
next to “Multi Cycle Paths“ (to set times relative to other time specifications).

3. Fill out the FROM/THRU/TO dialog box.

PCF

PATH "name"=FROM "source" THRU "thru_pt1" ...THRU "thru_ptn" TO
"destination" {DATAPATHONLY};

You are not required to have a FROM, THRU, and TO. You can have almost any
combination (such as FROM-TO, FROM-THRU-TO, THRU-TO, TO, FROM, FROM-
THRU-THRU-THRU-TO, and FROM-THRU). There is no restriction on the number of
THRU points. The source, thru points, and destination can be a net, bel, comp, macro, pin,
or timegroup.
Constraints Guide www.xilinx.com FROM-THRU-TO 132
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

FROM-TO

FROM-TO Architecture Support
The following table shows whether the constraint may be used with that device.

FROM-TO Applicable Elements
Predefined and user-defined groups

FROM-TO Description
FROM-TO defines a timing constraint between two groups. It is associated with the
PERIOD constraint of the high or low time. A group can be user-defined or predefined.
From synchronous paths, a FROM-TO constraint controls only the setup path, not the hold
path.

FROM-TO Propagation Rules
Applies to a path specified between two groups.

FROM-TO Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com FROM-TO 133
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF

TIMESPEC “TSname”=FROM “group1” TO “group2” value {DATAPATHONLY};

where

• TSname must always begin with “TS”. Any alphanumeric character or underscore
may follow.

• group1 is the origin path

• group2 is the destination path

• value iS ns by default. Other possible values are MHz or another timing specification
such as TS_C2S/2 or TS_C2S*2.

The DATAPATHONLY keyword indicates that the FROM-TO constraint will not take clock
skew or phase information into consideration. This keyword results in only the data path
between the groups being constrained and analyzed.

XCF

Only the basic form of FROM-TO is supported. Linked Specification and specification
using intermediate points are not supported.

There are additional limitations:

• FROM without TO and TO without FROM are not supported.

TIMESPEC TS_1 = FROM TG1 2 ns;

TIMESPEC TS_1 = TO TG1 2 ns;

• Pattern matching for predefined groups is not supported:

TIMESPEC TS_1 = FROM FFS(machine/*) TO FFS 2 ns;

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Advanced tab, click Specify next to “Slow/Fast Path Exceptions” (to set explicit
times) or Specify next to “Multi Cycle Paths“ (to set times relative to other time
specifications) and then fill out the FROM/THRU/TO dialog box.

PCF

PATH "name"=FROM "group1" TO "group2" value {DATAPATHONLY};

You are not required to have a FROM, THRU, and TO. You can have almost any
combination (such as FROM-TO, FROM-THRU-TO, THRU-TO, TO, FROM, FROM-
THRU-THRU-THRU-TO, and FROM-THRU). There is no restriction on the number of
THRU points. The source, thru points, and destination can be a net, bel, comp, macro, pin,
or timegroup.
Constraints Guide www.xilinx.com FROM-TO 134
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

HBLKNM

HBLKNM Architecture Support
The following table shows whether the constraint may be used with that device.

HBLKNM Applicable Elements
If “Yes” is shown next to the device name in the Architecture Support table, the constraint
may be used with that device in one or more of the following design elements, or
categories of design elements. Not all device families support all these elements. To see
which design elements can be used with which device families, see the Xilinx Libraries
Guides. For more information, see the device data sheet.

1. Registers

2. I/O elements and pads

3. FMAP

4. BUFT

5. PULLUP

6. ACLK, GCLK

7. BUFG

8. BUFGS, BUFGP

9. ROM

10. RAMS and RAMD

11. Carry logic primitives

Virtex Yes

Virtex-E Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com HBLKNM 135
ISE 8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

You can also attach HBLKNM to the net connected to the pad component in a UCF file.
NGDBuild transfers the constraint from the net to the pad instance in the NGD file so that
it can be processed by the mapper. Use the following syntax:

NET “net_name” HBLKNM=property_value;

HBLKNM Description
HBLKNM is an advanced mapping constraint. It assigns hierarchical block names to logic
elements and controls grouping in a flattened hierarchical design. When elements on
different levels of a hierarchical design carry the same block name, and the design is
flattened, NGDBuild prefixes a hierarchical path name to the HBLKNM value.

Like BLKNM, HBLKNM forces function generators and flip-flops into the same CLB.
Symbols with the same HBLKNM constraint map into the same CLB, if possible.

However, using HBLKNM instead of BLKNM has the advantage of adding hierarchy path
names during translation, and therefore the same HBLKNM constraint and value can be
used on elements within different instances of the same design element.

HBLKNM Propagation Rules
When attached to a design element, HBLKNM is propagated to all applicable elements in
the hierarchy within the design element.

HBLKNM Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a valid instance

• Attribute Name: HBLKNM

• Attribute Values: block_name

VHDL

Before using HBLKNM, declare it with the following syntax:

attribute hblkmnm: string;

After HBLKNM has been declared, specify the VHDL constraint as follows:

attribute hblknm of
{entity_name|component_name|signal_name|label_name}:
{entity|component|signal|label} is “block_name”;

where

• block_name is a valid block name for that type of symbol

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.
Constraints Guide www.xilinx.com HBLKNM 136
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Verilog

Specify as follows:

 // synthesis attribute hblknm [of]
{module_name|instance_name|signal_name} [is] block_name;

where

• block_name is a valid block name for that type of symbol

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

The basic UCF syntax is:

NET “net_name” HBLKNM=property_value;

INST “instance_name” HBLKNM=block_name;

where

• block_name is a valid block name for that type of symbol

The following statement specifies that the element this_fmap will be put into the block
named group1.

INST “$I13245/this_fmap” HBLKNM=group1;

The following statement attaches HBLKNM to the pad connected to net1.

NET “net1” HBLKNM=$COMP_0;

Elements with the same HBLKNM are placed in the same logic block if possible. Otherwise
an error occurs. Conversely, elements with different block names are not put into the same
block.
Constraints Guide www.xilinx.com HBLKNM 137
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

HU_SET

HU_SET Architecture Support
The following table shows whether the constraint may be used with that device.

HU_SET Applicable Elements
If “Yes” is shown next to the device name in the Architecture Support table, the constraint
may be used with that device in one or more of the following design elements, or
categories of design elements. Not all device families support all these elements. To see
which design elements can be used with which device families, see the Libraries Guides. For
more information, see the device data sheet.

1. Registers

2. FMAP

3. Macro Instance

4. ROM

5. RAMS, RAMD

6. BUFT

7. MULT18X18S

8. RAMB4_Sm_Sn, RAMB4_Sn

9. RAMB16_Sm_Sn, RAMB16_Sn

10. RAMB16

11. DSP48

Virtex Yes

Virtex-E Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com HU_SET 138
ISE 8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

HU_SET Description
HU_SET is an advanced mapping constraint. It is defined by the design hierarchy.
However, it also allows you to specify a set name. It is possible to have only one H_SET
within a given hierarchical element but by specifying set names, you can specify several
HU_SET sets.

NGDBuild hierarchically qualifies the name of the HU_SET as it flattens the design and
attaches the hierarchical names as prefixes.

The differences between an HU_SET constraint and an H_SET constraint include:

For background information about using the various set attributes, see “RLOC
Description” in the “RLOC” constraint.

HU_SET Propagation Rules
HU_SET is a design element constraint. Any attachment to a net is illegal.

HU_SET Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a valid instance

• Attribute Name: HU_SET

• Attribute Values: set_name

VHDL

Before using HU_SET, declare it with the following syntax:

attribute hu_set: string;

After HU_SET has been declared, specify the VHDL constraint as follows:

attribute hu_set of {component_name|entity_name|label_name}:
{component|entity|label} is “set_name”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

HU_SET H_SET

Has an explicit user-defined and
hierarchically qualified name for the set

Has only an implicit hierarchically
qualified name generated by the design-
flattening program

“Starts” with the symbols that are
assigned the HU_SET constrain

“Starts” with the instantiating macro one
level above the symbols with the RLOC
constraints
Constraints Guide www.xilinx.com HU_SET 139
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Verilog

Specify as follows:

 // synthesis attribute hu_set [of] {module_name|instance_name} [is]
set_name;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

The basic UCF syntax is:

INST “instance_name” HU_SET=set_name;

where

• set_name is the identifier for the set

The variable set_name must be unique among all the sets in the design.

The following statement assigns an instance of the register FF_1 to a set named heavy_set.

INST “$1I3245/FF_1” HU_SET=heavy_set;

XCF

MODEL “entity_name” hu_set={yes|no};

BEGIN MODEL “entity_name”

 INST "instance_name" hu_set=yes;

END;
Constraints Guide www.xilinx.com HU_SET 140
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

IFD_DELAY_VALUE

IFD_DELAY_VALUE Architecture Support
The following table shows whether the constraint may be used with that device.

IFD_DELAY_VALUE Applicable Elements
Any top-level I/O Port

IFD_DELAY_VALUE Description
The IFD_DELAY_VALUE constraint is a mapping constraint that will add additional static
delay to the input path of the FPGA array. This constraint can be applied to any input or
bi-directional signal which drives an IOB (Input Output Block) register. For more
information on the constraint of signals which do not drive IOB registers, see the
“IBUF_DELAY_VALUE” constraint.

The IFD_DELAY_VALUE constraint can be set to an integer value from 0-8, and as AUTO.
The value AUTO is the default value, and is used to guarantee that the input hold time of
the destination register is met by automatically adding the appropriate amount of delay to
the data path.

When the IFD_DELAY_VALUE constraint is set to 0, the data path will have no additional
delay added. The integers 1-8 correspond to increasing amounts of delay added to the data
path. These values do not directly correlate to a unit of time but rather additional buffer
delay.

For more information, see the Spartan-3E data sheet.

Virtex No

Virtex-E No

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 No

Spartan-II No

Spartan-IIE No

Spartan-3 No

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com IFD_DELAY_VALUE 141
ISE 8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

IFD_DELAY_VALUE Propagation Rules
Although IFD_DELAY_VALUE is attached to an I/O symbol, it applies to the entire I/O
component.

IFD_DELAY_VALUE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a net

• Attribute Name-IFD_DELAY_VALUE

• Attribute Values-0-8, AUTO

VHDL

Attach a VHDL attribute to the appropriate top-level port

attribute IFD_DELAY_VALUE : string;

attribute IFD_DELAY_VALUE of top_level_port_name: label is "value";

The following statement assigns an IFD_DELAY_VALUE increment of 5 to the net DataIn1

attribute IFD_DELAY_VALUE : string;

attribute IFD_DELAY_VALUE of DataIn1: label is "5";

Verilog

Attach a Verilog attribute to the appropriate top-level port

 (* IFD_DELAY_VALUE="value" *) input top_level_port_name;

The following statement assigns an IFD_DELAY_VALUE increment of 5 to the net DataIn1

 (* IFD_DELAY_VALUE="5" *) input DataIn1;

UCF and NCF

The basic UCF syntax is:

NET "top_level_port_name" IFD_DELAY_VALUE = value;

where

• value is the numerical IBUF delay setting

The following statement assigns an IFD_DELAY_VALUE increment of 5 to the net DataIn1

NET "DataIn1" IFD_DELAY_VALUE = 5;
Constraints Guide www.xilinx.com IFD_DELAY_VALUE 142
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

IBUF_DELAY_VALUE

IBUF_DELAY_VALUE Architecture Support
The following table shows whether the constraint may be used with that device.

IBUF_DELAY_VALUE Applicable Elements
Any top-level I/O Port

IBUF_DELAY_VALUE Description
The IBUF_DELAY_VALUE constraint is a mapping constraint that will add additional
static delay to the input path of the FPGA array. This constraint can be applied to any
input or bi-directional signal that is not directly driving a clock or IOB (Input Output
Block) register. For more information regarding the constraint of signals driving clock and
IOB registers, see the “IBUF_DELAY_VALUE” constraint. The IBUF_DELAY_VALUE
constraint can be set to an integer value from 0-16. The value 0 is the default value, and
applies no additional delay to the input path. A larger value for this constraint correlates to
a larger delay added to input path. These values do not directly correlate to a unit of time
but rather additional buffer delay. For more information, see the Spartan-3E data sheet.

IBUF_DELAY_VALUE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex No

Virtex-E No

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 No

Spartan-II No

Spartan-IIE No

Spartan-3 No

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com IBUF_DELAY_VALUE 143
ISE 8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

Schematic

• Attach a new property to the top-level port of the schematic

• Attribute Name-IBUF_DELAY_VALUE

• Attribute Values-0-8, AUTO

VHDL

Attach a VHDL attribute to the appropriate top-level port

attribute IBUF_DELAY_VALUE : string;

attribute IBUF_DELAY_VALUE of top_level_port_name: label is "value";

The following statement assigns an IBUF_DELAY_VALUE increment of 5 to the net
DataIn1

attribute IBUF_DELAY_VALUE : string;

attribute IBUF_DELAY_VALUE of DataIn1: label is "5";

Verilog

Attach a Verilog attribute to the appropriate top-level port

 (* IBUF_DELAY_VALUE="value" *) input top_level_port_name;

The following statement assigns an IBUF_DELAY_VALUE increment of 5 to the net
DataIn1

 (* IBUF_DELAY_VALUE="5" *) input DataIn1;

UCF and NCF

The basic UCF syntax is:

NET "top_level_port_name" IBUF_DELAY_VALUE = value;

where

• value is the numerical IBUF delay setting

The following statement assigns an IBUF_DELAY_VALUE increment of 5 to the net
DataIn1

NET "DataIn1" IBUF_DELAY_VALUE = 5;
Constraints Guide www.xilinx.com IBUF_DELAY_VALUE 144
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

INREG

INREG Architecture Support
The following table shows whether the constraint may be used with that device.

INREG Applicable Elements
Applies to register and latch instances with their D-inputs driven by input pads or to the
Q-output nets of such registers or latches.

INREG Description
This constraint applies to register and latch instances with their D-inputs driven by input
pads, or to the Q-output nets of such registers and latches. By default, registers and latches
in a CoolRunner XPLA3 or CoolRunner-II design that have their D-inputs driven by input
pads are automatically implemented using the device's Fast Input path, where possible. If
you disable the Project Navigator property Use Fast Input for Input Registers for the Fit
(Implement Design) process, then only register and latches with the INREG attribute are
considered for Fast Input optimization.

INREG Propagation Rules
Applies to register or latch to which it is attached or to the Q-output nets of such registers
or latches.

INREG Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex No

Virtex-E No

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 No

Spartan-II No

Spartan-IIE No

Spartan-3 No

Spartan-3E No

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com INREG 145
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Schematic

• Attach to a register, latch, or net

• Attribute Name: INREG

• Attribute Values: None (TRUE by default)

ABEL

XILINX PROPERTY 'inreg signal_name';

UCF

NET “signal_name” INREG;

INST “register_name” INREG;
Constraints Guide www.xilinx.com INREG 146
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

IOB

IOB Architecture Support
The following table shows whether the constraint may be used with that device.

IOB Applicable Elements
Non-INFF/OUTFF flip-flop and latch primitives, registers

IOB Description
IOB is a basic mapping and synthesis constraint. It indicates which flip-flops and latches
can be moved into the IOB. The mapper supports a command line option (-pr i | o | b) that
allows flip-flop or latch primitives to be pushed into the input IOB (i), output IOB (o), or
input/output IOB (b) on a global scale. The IOB constraint, when associated with a flip-
flop or latch, tells the mapper to pack that instance into an IOB type component if possible.
The IOB constraint has precedence over the mapper -pr command line option.

XST considers the IOB constraint as an implementation constraint, and will therefore
propagate it in the generated NGC file.

XST also duplicates the flip-flops and latches driving the Enable pin of output buffers, so
that the corresponding flip-flops and latches can be packed in the IOB.

IOB Propagation Rules
Applies to the design element to which it is attached.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com IOB 147
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

IOB Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a flip-flop or latch instance or to a register

• Attribute Name: IOB

• Attribute Values: TRUE, FALSE, AUTO

VHDL

Before using IOB, declare it with the following syntax:

attribute iob: string;

After IOB has been declared, specify the VHDL constraint as follows:

attribute iob of {component_name|entity_name|label_name}:
{component|entity|label} is “(true|false|auto)”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute iob [of] {module_name|instance_name} [is]
(true|false|auto);

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

The basic syntax is:

INST “instance_name” IOB={TRUE|FALSE|AUTO};

where

• TRUE allows the flip-flop or latch to be pulled into an IOB

• FALSE indicates not to pull it into an IOB

• AUTO, XST takes into account timing constraints and will automatically decide to
push or not to push flip-flops into IOBs

The following statement instructs the mapper from placing the foo/bar instance into an
IOB component.

INST “foo/bar” IOB=TRUE;

XCF

BEGIN MODEL “entity_name”

NET “signal_name” iob={true|false|auto};

INST “instance_name” iob={true|false|auto};

END;
Constraints Guide www.xilinx.com IOB 148
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Misc tab, click Specify next to “Registers to be placed in IOBs“ and move the desired
register to the Registers for IOB packing list. This sets the IOB constraint to TRUE.

Project Navigator

You can specify IOB globally with the Pack I/O Registers into IOBs option in the Xilinx
Specific Options tab of the Process Properties dialog box within the Project Navigator. YES
maps to TRUE. NO maps to FALSE.

With a design selected in the Sources window, right-click Synthesize in the Processes
window to access the appropriate Process Properties dialog box.
Constraints Guide www.xilinx.com IOB 149
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

IOBDELAY

IOBDELAY Architecture Support
The following table shows whether the constraint may be used with that device.

IOBDELAY Applicable Elements
Any I/O symbol (I/O pads, I/O buffers, or input pad nets)

IOBDELAY Description
IOBDELAY is a basic mapping constraint. It specifies how the input path delay elements in
Spartan-II, Spartan-IIE, Spartan-3, Virtex, Virtex-E, Virtex-II, Virtex-II Pro, and Virtex-II Pro
X devices are to be programmed. There are two possible destinations for input signals: the
local IOB input FF or a load external to the IOB. Spartan-II, Spartan-3, Virtex, Virtex-E,
Virtex-II, Virtex-II Pro, and Virtex-II Pro X devices allow a delay element to delay the signal
going to one or both of these destinations.

IOBDELAY cannot be used concurrently with “NODELAY”.

IOBDELAY Propagation Rules
Although IOBDELAY is attached to an I/O symbol, it applies to the entire I/O component.

IOBDELAY Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 No

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com IOBDELAY 150
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Schematic

• Attach to an I/O symbol

• Attribute Name: IOBDELAY

• Attribute Values: NONE, BOTH, BUF, IFD

VHDL

Before using IOBDELAY, declare it with the following syntax:

attribute iobdelay: string;

After IOBDELAY has been declared, specify the VHDL constraint as follows:

attribute iobdelay of {component_name|label_name}: {component|label} is
“{NONE|BOTH|IBUF|IFD}”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute iobdelay [of] {module_name|instance_name} [is]
{NONE|BOTH|IBUF|IFD};

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

The basic UCF syntax is:

INST “instance_name” IOBDELAY={NONE|BOTH|IBUF|IFD};

where

• NONE, the default, sets the delay OFF for both the IBUF and IFD paths.

• BOTH sets the delay ON for both the IBUF and IFD paths.

• IBUF sets the delay to OFF for any register inside the I/O component and to ON for
the registers outside of the component if the input buffer drives a register D pin
outside of the I/O component.

• IFD sets the delay to ON for any register inside the I/O component and to OFF for the
registers outside the component if a register occupies the input side of the I/O
component, regardless of whether the register has the IOB=TRUE constraint.

The following statement sets the delay OFF for the IBUF and IFD paths.

INST “xyzzy” IOBDELAY=NONE;

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Ports tab grid with the I/O Configuration Options checked, click the IOBDELAY
column in the row with the desired input port name and choose a value from the drop-
down list.
Constraints Guide www.xilinx.com IOBDELAY 151
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

IOSTANDARD

IOSTANDARD Architecture Support
The following table shows whether the constraint may be used with that device.

IOSTANDARD Applicable Elements
If “Yes” is shown next to the device name in the Architecture Support table, the constraint
may be used with that device in one or more of the following design elements, or
categories of design elements. Not all device families support all these elements. To see
which design elements can be used with which device families, see the Xilinx Libraries
Guides. For more information, see the device data sheet.

• IBUF, IBUFG, OBUF, OBUFT

• IBUFDS, IBUFGDS, OBUFDS, OBUFTDS

• Output Voltage Banks

IOSTANDARD Description
IOSTANDARD is a basic mapping constraint and synthesis constraint.

IOSTANDARD for FPGA Devices

Use IOSTANDARD to assign an I/O standard to an I/O primitive.

All components with IOSTANDARD must follow the same placement rules (banking
rules) as the SelectIO components. See the Xilinx Libraries Guides for information on the
banking rules for each architecture. For descriptions of the supported I/O standards, see
the device data sheet.

Virtex Yes

Virtex-E Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 No

CoolRunner-II Yes
Constraints Guide www.xilinx.com IOSTANDARD 152
ISE 8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Xilinx Constraints
R

For Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X, the recommended procedure is
to attach IOSTANDARD to a buffer component instead of using the SelectIO variants of a
component. For example, use an IBUF with the IOSTANDARD=HSTL_III constraint
instead of the IBUF_HSTL_III component.

For Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X, differential signaling standards
apply to IBUFDS, IBUFGDS, OBUFDS, and OBUFTDS only (not IBUF or OBUF).

IOSTANDARD for CPLD Devices

You can apply IOSTANDARD to I/O pads of CoolRunner-II devices to specify both input
threshold and output VCCIO voltage. For supported values, see the device data sheet.

You can apply IOSTANDARD to outputs of XC9500XV devices to specify the VCCO
voltage. The IOSTANDARD names supported by XC9500XV are:

• LVTTL (VCCO=3.3V)

• LVCMOS2 (VCCO=2.5V)

• X25TO18 (VCCO=1.8V)

The X25TO18 setting is provided for generating 1.8V compatible outputs from a CPLD
normally operating in a 2.5V environment.

The CPLD fitter automatically groups outputs with compatible IOSTANDARD settings
into the same bank when no location constraints are specified.

IOSTANDARD Propagation Rules
It is illegal to attach IOSTANDARD to a net or signal except when the signal or net is
connected to a pad. In this case, IOSTANDARD is treated as attached to an IOB instance
(IBUF, OBUF, IOB FF). When attached to a design element, IOSTANDARD propagates to
all applicable elements in the hierarchy within the design element.

IOSTANDARD Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to an I/O primitive

• Attribute Name: IOSTANDARD

• Attribute Values: iostandard_name

For more information, see “UCF and NCF” in this chapter.

VHDL

Before using IOSTANDARD, declare it with the following syntax:

attribute iostandard: string;

After IOSTANDARD has been declared, specify the VHDL constraint as follows:

attribute iostandard of {component_name|label_name}: {component|label}
is “iostandard_name”;
Constraints Guide www.xilinx.com IOSTANDARD 153
ISE 8.1i

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Xilinx Constraints
R

For more information about iostandard_name, see “UCF and NCF” in this chapter.

For CPLD devices you can also apply IOSTANDARD to the pad signal.

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute iostandard [of] {module_name|instance_name}
[is] iostandard_name;

For a description of iostandard_name, see the UCF section.

For CPLD devices you can also apply IOSTANDARD to the pad signal.

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

ABEL

XILINX PROPERTY 'iostandard=iostandard_name mysignal';

UCF and NCF

The basic syntax is:

INST “instance_name” IOSTANDARD=iostandard_name;

NET “pad_net_name” IOSTANDARD=iostandard_name;

where

• iostandard_name is an IO Standard name as specified in the the device data sheet

XCF

BEGIN MODEL “entity_name”

INST “instance_name” iostandard=string;

NET “signal_name” iostandard=string;

END;

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Ports tab grid with the I/O Configuration Options checked, click the IOSTANDARD
column in the row with the desired net name and choose a value from the drop-down list.

PACE

PACE is mainly used to assign location constraints to IOs. It can also be used to assign
certain IO properties such as IO Standards. You can access PACE from the Processes
window in the Project Navigator.

For more information, see the PACE help, especially the topics within Editing Pins and
Areas in the Procedures section.
Constraints Guide www.xilinx.com IOSTANDARD 154
ISE 8.1i

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Xilinx Constraints
R

KEEP

KEEP Architecture Support
The following table shows whether the constraint may be used with that device.

KEEP Applicable Elements
Signals

KEEP Description
KEEP is an advanced mapping constraint and synthesis constraint. When a design is
mapped, some nets may be absorbed into logic blocks. When a net is absorbed into a block,
it can no longer be seen in the physical design database. This may happen, for example, if
the components connected to each side of a net are mapped into the same logic block. The
net may then be absorbed into the block containing the components. KEEP prevents this
from happening.

KEEP is translated into an internal constraint known as NOMERGE when targeting an
FPGA. Messaging from the implementation tools will therefore refer to the system
property NOMERGE, not KEEP.

KEEP Propagation Rules
Applies to the signal to which it is attached.

KEEP Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com KEEP 155
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Schematic

• Attach to a net

• Attribute Name: KEEP

• Attribute Values: TRUE, FALSE

VHDL

Before using KEEP, declare it with the following syntax:

attribute keep : string;

After KEEP has been declared, specify the VHDL constraint as follows:

attribute keep of signal_name: signal is “true”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute keep [of] signal_name [is] “true”;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

ABEL

mysignal NODE istype ‘keep’;

UCF and NCF

The following statement ensures that the net $SIG_0 will remain visible.

NET “$1I3245/$SIG_0” KEEP;

XCF

BEGIN MODEL “entity_name”

NET “signal_name” keep={yes|no|true|false};

END;
Constraints Guide www.xilinx.com KEEP 156
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

KEEP_HIERARCHY

KEEP_HIERARCHY Architecture Support
The following table shows whether the constraint may be used with that device.

KEEP_HIERARCHY Applicable Elements
KEEP_HIERARCHY is attached to logical blocks, including blocks of hierarchy or
symbols.

KEEP_HIERARCHY Description
KEEP_HIERARCHY is a synthesis and implementation constraint. If hierarchy is
maintained during Synthesis, the Implementation tools will use this constraint to preserve
the hierarchy throughout the implementation process and allow a simulation netlist to be
created with the desired hierarchy.

XST may flatten the design to get better results by optimizing entity or module boundaries.
You can set KEEP_HIERARCHY to true so that the generated netlist is hierarchical and
respects the hierarchy and interface of any entity or module of your design.

This option is related to the hierarchical blocks (VHDL entities, Verilog modules) specified
in the HDL design and does not concern the macros inferred by the HDL synthesizer.
Three values are available for this option:

• true

Allows the preservation of the design hierarchy, as described in the HDL project. If this
value is applied to synthesis, it will also be propagated to implementation.

• false

Hierarchical blocks are merged in the top level module.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com KEEP_HIERARCHY 157
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

• soft

Allows the preservation of the design hierarchy in synthesis, but the
KEEP_HIERARCHY constraint is not propagated to implementation.

For CPLD devices, the default is true. For FPGA devices, the default is false.

In general, an HDL design is a collection of hierarchical blocks, and preserving the
hierarchy gives the advantage of fast processing because the optimization is done on
separate pieces of reduced complexity. Nevertheless, very often, merging the hierarchy
blocks improves the fitting results (fewer PTerms and device macrocells, better frequency)
because the optimization processes (collapsing, factorization) are applied globally on the
entire logic.

The keep_hierarchy constraint enables or disables hierarchical flattening of user-defined
design units. Allowed values are true and false. By default, the user hierarchy is
preserved.

In the following figure, if KEEP_HIERARCHY is set to the entity or module I2, the
hierarchy of I2 will be in the final netlist, but its contents I4, I5 will be flattened inside I2.
Also I1, I3, I6, I7 will be flattened.

Figure 39-1: KEEP_HIERARCHY EXAMPLE

KEEP_HIERARCHY Propagation Rules
Applies to the entity or module to which it is attached.

KEEP_HIERARCHY Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to the entity or module symbol

• Attribute Name: KEEP_HIERARCHY

• Attribute Values: TRUE, FALSE

X9542

I0 I0

I2 KEEP HIERARCHY YES I2

I1 I3

I7 I6

I5 I4

Design View Netlist View

NGC FILE 1 (I0)
Constraints Guide www.xilinx.com KEEP_HIERARCHY 158
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

VHDL

Before using KEEP_HIERARCHY, declare it with the following syntax:

attribute keep_hierarchy : string;

After KEEP_HIERARCHY has been declared, specify the VHDL constraint as follows:

attribute keep_hierarchy of architecture_name: architecture is
true|false|soft;

The default is false for FPGA devices and true for CPLD devices.

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute keep_hierarchy [of] module_name [is]
{true|false|soft};

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

For instances:

INST “instance_name” KEEP_HIERARCHY={true|false|soft};

XCF

MODEL “entity_name” keep_hierarchy={true|false|soft};

Project Navigator

Set KEEP_HIERARCHY globally with the Keep Hierarchy option in the Synthesis Options
tab of the Process Properties dialog box within the Project Navigator. With a design
selected in the Sources window, right-click Synthesize in the Processes window to access
the Process Properties dialog box.
Constraints Guide www.xilinx.com KEEP_HIERARCHY 159
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

KEEPER

KEEPER Architecture Support
The following table shows whether the constraint may be used with that device.

KEEPER Applicable Elements
3-state input/output pad nets.

KEEPER Description
KEEPER is a basic mapping constraint. It retains the value of the output net it is attached
to. For example, if logic 1 is being driven onto the net, KEEPER drives a weak/resistive 1
onto the net. If the net driver is then 3-stated, KEEPER continues to drive a weak/resistive
1 onto the net.

The KEEPER constraint must follow the same banking rules as the KEEPER component.
For more information on banking rules, see the Xilinx Libraries Guides .

KEEPER, PULLUP, and PULLDOWN are only valid on pad NETs, not on INSTs of any
kind.

For CoolRunner-II devices, the use of KEEPER and the use of PULLUP are mutually
exclusive across the whole device.

KEEPER Propagation Rules
KEEPER is illegal when attached to a net or signal except when the net or signal is
connected to a pad. In this case, KEEPER is treated as attached to the pad instance.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II Yes
Constraints Guide www.xilinx.com KEEPER 160
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

KEEPER Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to an output pad net

• Attribute Name: KEEPER

• Attribute Values: TRUE, FALSE

VHDL

Before using KEEPER, declare it with the following syntax:

attribute keeper: string;

After KEEPER has been declared, specify the VHDL constraint as follows:

attribute keeper of signal_name : signal is “yes”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

 // synthesis attribute keeper [of] signal_name [is] “yes”;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

ABEL

XILINX PROPERTY 'KEEPER mysignal';

UCF and NCF

These statement configures the IO to use KEEPER:

NET "pad_net_name" KEEPER;

XCF

BEGIN MODEL “entity_name”

NET “signal_name” keeper={true|false};

END;
Constraints Guide www.xilinx.com KEEPER 161
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

LOC
This section contains the following:

• “LOC Architecture Support”

• “LOC Applicable Elements”

• “LOC Description”

• “LOC Propagation Rules”

• “LOC Syntax for FPGA Devices”

• “LOC Syntax for CPLD Devices”

• “LOC Syntax Examples”

• “BUFT Examples”

• “Delay Locked Loop (DLL) Constraint Examples”

• “Digital Clock Manager (DCM) Constraint Examples”

• “Flip-Flop Constraint Examples”

• “Global Buffer Constraint Examples”

• “I/O Constraint Examples”

• “IOB Constraint Examples”

• “Mapping Constraint Examples (FMAP)”

• “Multiplier Constraint Examples”

• “ROM Constraint Examples”

• “Block RAM (RAMBs) Constraint Examples”

• “Slice Constraint Examples”

• “LOC for Modular Designs”

LOC Architecture Support
The following table shows whether the constraint may be used with that device.

Virtex Yes

Virtex-E Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

XC9500, XC9500XL, XC9500XV Yes
Constraints Guide www.xilinx.com LOC 162
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

LOC Applicable Elements
If “Yes” is shown next to the device name in the Architecture Support table, the constraint
may be used with that device in one or more of the following design elements, or
categories of design elements. Not all device families support all these elements. To see
which design elements can be used with which device families, see the Xilinx Libraries
Guides. For more information, see the device data sheet.

1. Registers

2. FMAP

3. IO elements

4. ROM

5. RAMS, RAMD

6. BUFT

7. Clock buffers

8. Edge decoders

9. Block RAMs

10. Multipliers

11. DCMs

12. DLLs

LOC Description
LOC is a basic placement constraint and a synthesis constraint.

LOC Description for FPGA Devices

LOC defines where a design element can be placed within an FPGA. It specifies the
absolute placement of a design element on the FPGA die. It can be a single location, a range
of locations, or a list of locations. You can specify LOC from the design file and also direct
placement with statements in a constraints file.

To specify multiple locations for the same symbol, separate each location within the field
using a comma. The comma specifies that the symbols can be placed in any of the specified
locations. You can also specify an area in which to place a design element or group of
design elements.

A convenient way to find legal site names is use the FPGA Editor, PACE, or Floorplanner.
The legal names are a function of the target part type. To find the correct syntax for
specifying a target location, load an empty part into the FPGA Editor (or look in the
Floorplanner). Place the cursor on any block, then click the block to display its location in
the FPGA Editor history area. Do not include the pin name such as .I, .O, or .T as part of the
location.

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com LOC 163
ISE 8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

You can use LOC for logic that uses multiple CLBs, IOBs, soft macros, or other symbols. To
do this, use LOC on a soft macro symbol, which passes the location information down to
the logic on the lower level. The location restrictions are automatically applied to all blocks
on the lower level for which LOCs are legal.

Spartan-II, Spartan-IIE, Virtex, and Virtex-E

The physical site specified in the location value is defined by the row and column numbers
for the array, with an optional extension to define the slice for a given row/column
location. A Spartan-II, Spartan-IIE, Virtex, Virtex-E slice is composed of:

• Two LUTs (which can be configured as RAM or shift registers)

• Two flip-flops (which can also be configured as latches)

• Two XORCYs

• Two MULT_ANDs

• One MUXF5

• One MUXF6

• One MUXCY

Only one MUXF6 can be used between the two adjacent slices in a specific row/column
location. The two slices at a specific row/column location are adjacent to one another.

The block RAMs (RAMB4s) have a different row/column grid specification than the CLB
and TBUFs. A block RAM located at RAMB4_R3C1 is not located at the same site as a flip-
flop located at CLB_R3C1. Therefore, the location value must start with "CLB," "TBUF," or
"RAMB4." The location cannot be shortened to reference only the row, column, and
extension. The optional extension specifies the left-most or right-most slice for the
row/column.

The location value for global buffers and DLL elements is the specific physical site name
for available locations.

Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X

In the Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X CLBs, there are four slices,
arranged vertically, per CLB with the bottom two slices on the left side of the CLB and the
top two slices on the right side of the CLB. Each slice is equivalent and contains two
function generators (F and G), two storage elements, arithmetic logic gates, large
multiplexers, wide function capability, and two fast carry look-ahead chains.

The Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X architectures diverge from the
traditional Row/Column/Slice designators on the CLB. Spartan-3, Virtex-II, Virtex-II Pro,
and Virtex-II Pro X use a Cartesian-based XY designator at the slice level. The slice-based
location specification uses the form: SLICE_XmYn. The XY slice grid starts as X0Y0 in the
lower left CLB tile of the chip. The X values start at 0 and increase horizontally to the right
in the CLB row, with two different X values per CLB. The Y values start at 0 and increase
vertically up in the CLB column, with two different Y values per CLB. The XY slice
numbering scheme is shown in the following figure.
Constraints Guide www.xilinx.com LOC 164
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Following are examples of how to specify the slices in the XY coordinate system.

The Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X block RAMs, TBUFs, and
multipliers have their own specification different from the SLICE specifications. Therefore,
the location value must start with "SLICE," "RAMB," "TBUF," or "MULT." The Spartan-3,
Virtex-II, Virtex-II Pro, and Virtex-II Pro X block RAMs and multipliers have their own XY
grids different from the SLICE XY grid. A block RAM located at RAMB16_X2Y3 is not

Figure 41-1: Slice and TBUF Numbering in Spartan-3,
Virtex-II, Virtex-II Pro, and Virtex-II Pro X

X9418

SLICE_X1Y3TBUF_X0Y3

SLICE_X1Y2

SLICE_X0Y3

SLICE_X0Y2

TBUF_X0Y2

SLICE_X1Y1TBUF_X0Y1

SLICE_X1Y0

SLICE_X0Y1

SLICE_X0Y0

TBUF_X0Y0
SLICE_X3Y1TBUF_X2Y1

SLICE_X3Y0

SLICE_X2Y1

SLICE_X2Y0

TBUF_X2Y0

First CLB in lower left
corner of Virtex2 Device

SLICE_X0Y0 First (bottom) slice of the CLB in the lower left corner of the chip

SLICE_X0Y1 Second slice of the CLB in the lower left corner of the chip

SLICE_X1Y0 Third slice of the CLB in the lower left corner of the chip

SLICE_X1Y1 Fourth (top) slice of the CLB in the lower left corner of the chip

SLICE_X0Y2 First slice of the second CLB in CLB column 1

SLICE_X2Y0 First (bottom) slice of the bottom CLB in CLB column 2

SLICE_X2Y1 Second slice of the bottom CLB in CLB column 2

SLICE _X50Y125 Slice located 125 slices up from and 50 slices to the right of
SLICE_X0Y0
Constraints Guide www.xilinx.com LOC 165
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

located at the same site as a flip-flop located at SLICE_X2Y3. A multiplier located at
MULT18X18_X2Y3 is not located at the same site as a flip-flop located at SLICE_X2Y3 or at
the same site as a block RAM located at RAMB16_X2Y3. However, the two TBUFs in each
CLB follow the same XY grid as the SLICEs. A TBUF located at TBUF_X2Y3 is in the same
CLB as a flip-flop located at SLICE_X2Y3.

Because there are two TBUFs per CLB and four slices per CLB, the X value for a TBUF is
always an even integer or zero (for example, TBUF_X1Y1 is illegal).

The location values for global buffers and DLL elements is the specific physical site names
for available locations.

LOC Description for CPLD Devices

For CPLD devices, use the LOC=pin_name constraint on a PAD symbol or pad net to assign
the signal to a specific pin. The PAD symbols are IPAD, OPAD, IOPAD, and UPAD. You
can use the LOC=FBnn constraint on any instance or its output net to assign the logic or
register to a specific function block or macrocell, provided the instance is not collapsed.

The LOC=FBnn_mm constraint on any internal instance or output pad assigns the
corresponding logic to a specific function block or macrocell within the CPLD. If a LOC is
placed on a symbol that does not get mapped to a macrocell or is otherwise removed
through optimization, the LOC will be ignored.

Pin assignment using the LOC constraint is not supported for bus pad symbols such as
OPAD8.

Location Specification Types for FPGA Devices

Use the following location types to define the physical location of an element.

Table 41-1: Location Specification Types for FPGA Devices

Element Types Location Examples Meaning

IOBs

P12 IOB location (chip carrier)

A12 IOB location (pin grid)

B, L, T, R Applies to IOBs and indicates edge locations
(bottom, left, top, right) for Spartan-II,
Spartan-IIE, Spartan-3, Virtex, Virtex-E,
Virtex-II, Virtex-II Pro, and Virtex-II Pro X
devices

LB, RB, LT, RT, BR, TR, BL, TL Applies to IOBs and indicates half edges (for
example, left bottom, right bottom) for
Spartan-II, Spartan-IIE, Spartan-3, Virtex,
Virtex-E, Virtex-II, Virtex-II Pro, and Virtex-II
Pro X devices

Bank0, Bank1, Bank2, Bank3, Bank4, Bank5,
Bank6, Bank7

Applies to IOBs and indicates half edges
(banks) for Spartan-II, Spartan-IIE, Spartan-3,
Virtex, Virtex-E, Virtex-II, Virtex-II Pro, and
Virtex-II Pro X devices

CLBs
Constraints Guide www.xilinx.com LOC 166
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

CLB_R4C3 (or .S0 or .S1) CLB location for Spartan-II, Spartan-IIE,
Virtex, Virtex-E devices

CLB_R6C8.S0 (or .S1) Function generator or register slice for
Spartan-II, Spartan-IIE, Virtex, Virtex-E
devices

Slices

SLICE_X22Y3 Slice location for Spartan-3, Virtex-II, Virtex-II
Pro, and Virtex-II Pro X devices

TBUFs

TBUF_R6C7 (or .0 or .1) TBUF location for Spartan-II, Spartan-IIE,
Virtex, Virtex-E devices

TBUF_X6Y7 TBUF location for Spartan-3, Virtex-II, Virtex-
II Pro, and Virtex-II Pro X devices

Block RAMs

RAMB4_R3C1 Block RAM location for Spartan-II, Spartan-
IIE, Virtex, Virtex-E devices

RAMB16_X2Y56 Block RAM location for Spartan-3, Virtex-II,
Virtex-II Pro, and Virtex-II Pro X devices

Multipliers

MULT18X18_X55Y82 Multiplier location for Spartan-3, Virtex-II,
Virtex-II Pro, and Virtex-II Pro X devices

Global Clocks

GCLKBUF0 (or 1, 2, or 3) Global clock buffer location for Spartan-II,
Spartan-IIE, Virtex, Virtex-E devices

GCLKPAD0 (or 1, 2, or 3) Global clock pad location for Spartan-II,
Spartan-IIE, Virtex, Virtex-E devices

Delay Locked
Loops

DLL0P(or S) (or 1, 2, or 3) Delay Locked Loop element location for
Spartan-II, Spartan-IIE, Virtex, Virtex-E
devices

Digital Clock
Manager

DCM_X0Y0 Digital Clock Manager for Spartan-3, Virtex-
II, Virtex-II Pro, and Virtex-II Pro X devices

Table 41-1: Location Specification Types for FPGA Devices

Element Types Location Examples Meaning
Constraints Guide www.xilinx.com LOC 167
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The wildcard character (*) can be used to replace a single location with a range as shown in
the following example:

The following are not supported.

• Dot extensions on ranges. For example, LOC=CLB_R0C0:CLB_R5C5.G.

• Wildcard character for Spartan-II, Spartan-IIE, Spartan-3, Virtex, Virtex-E, Virtex-II,
Virtex-II Pro, or Virtex-II Pro X global buffer, global pad, or DLL locations.

LOC Priority

When specifying two adjacent LOCs on an input pad and its adjoining net, the LOC
attached to the net has priority. In the following diagram, LOC=11 takes priority over
LOC=38.

Figure 41-2: LOC Priority Example

LOC Propagation Rules
For all nets, LOC is illegal when attached to a net or signal except when the net or signal is
connected to a pad. In this case, LOC is treated as attached to the pad instance.

For CPLD nets, LOC attaches to all applicable elements that drive the net or signal.

When attached to a design element, LOC propagates to all applicable elements in the
hierarchy within the design element.

LOC Syntax for FPGA Devices
This section discusses LOC syntax for FPGA devices in:

• “Single Location”

• “Multiple Locations”

• “Range of Locations”

CLB_R*C5 Any CLB in column 5 of a Spartan-II, Spartan-IIE, Virtex, or Virtex-E
device

SLICE_X*Y5 Any slice of a Spartan-3, Virtex-II, Virtex-II Pro, or Virtex-II Pro X
device whose Y coordinate is 5

X9531

IPAD IBUF

LOC=38 LOC=11
Constraints Guide www.xilinx.com LOC 168
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Single Location

The basic UCF syntax is:

INST “instance_name” LOC=location;

where

• location is a legal location for the part type

Examples of the syntax for single LOC constraints are given in the following table.

Table 41-2: Single LOC Constraint Examples

Constraint (UCF Syntax) Description

INST “instance_name“LOC=P12; Place I/O at location P12.

INST “instance_name“LOC=CLB_R3C5;

(Spartan-II, Spartan-IIE, Virtex, and Virtex-E)

Place logic in either slice of the CLB in row3, column 5.

INST “instance_name“LOC=CLB_R3C5.S0;

(Spartan-II, Spartan-IIE, Virtex, and Virtex-E)

Place logic in the left slice of the CLB in row 3, column 5.

INST “instance_name“ LOC=SLICE_X3Y2;

(Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-
II Pro X)

Place logic in slice X3Y2 on the XY SLICE grid.

INST “instance_name“ LOC=TBUF_R1C2.*;

(Spartan-II, Spartan-IIE, Virtex, and Virtex-E)

Place both TBUFs in row 1, column 2.

INST “instance_name“ LOC=TBUF_X0Y6;

(Virtex-II, Virtex-II Pro, and Virtex-II Pro X)

Place logic in the BUFT located at TBUF_ X0Y6 on the XY SLICE
grid

INST “instance_name” LOC=RAMB4_R*C1;

(Spartan-II, Spartan-IIE, Virtex, and Virtex-E)

Specifies any block RAM in column 1 of the block RAM array

INST “instance_name“ LOC=RAMB16_X0Y6;

(Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-
II Pro X)

Place the logic in the block RAM located at RAMB16_X0Y6 on
the XY RAMB grid.

INST “instance_name“
LOC=MULT18X18_X0Y6;

(Spartan-3, Virtex-II, Virtex-II Pro,

and Virtex-II Pro X)

Place the logic in the multiplier located at MULT18X18_X0Y6 on
the XY MULT grid.
Constraints Guide www.xilinx.com LOC 169
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Multiple Locations

LOC=location1,location2,...,locationx

Separating each such constraint by a comma specifies multiple locations for an element.
When you specify multiple locations, PAR can use any of the specified locations. Examples
of multiple LOC constraints are provided in the following table.

Currently, using a single constraint there is no way to constrain multiple elements to a
single location or multiple elements to multiple locations.

Range of Locations

The basic UCF syntax is:

INST “instance_name” LOC=location:location [SOFT];

You can define a range by specifying the two corners of a bounding box. Except for
Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X, specify the upper left and lower right
corners of an area in which logic is to be placed. For Spartan-3, Virtex-II, Virtex-II Pro, and
Virtex-II Pro X, specify the lower left and upper right corners. Use a colon (:) to separate the
two boundaries.

The logic represented by the symbol is placed somewhere inside the bounding box. The
default is to interpret the constraint as a “hard” requirement and to place it within the box.
If SOFT is specified, PAR may place the constraint elsewhere if better results can be
obtained at a location outside the bounding box. Examples of LOC constraints used to
specify a range are given in the following table.

Table 41-3: Multiple LOC Constraint Examples

Constraint Description

INST “instance_name“
LOC=clb_r4c5.s1,
clb_r4c6.*;

(Spartan-II, Spartan-IIE,
Virtex, and Virtex-E)

Place the flip-flop in the right-most slice of CLB R4C5 or
in either slice of CLB R4C6.

INST “instance_name“
LOC=SLICE_X2Y10,
SLICE_X1Y10;

(Spartan-3, Virtex-II, Virtex-II
Pro, and Virtex-II Pro X)

Place the logic in SLICE_X2Y10 or in SLICE_X1Y10 on
the XY SLICE grid.
Constraints Guide www.xilinx.com LOC 170
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

LOC ranges can be supplemented with the keyword SOFT. Unlike AREA_GROUP, LOC
ranges do not influence the packing of symbols. LOC range is strictly a placement
constraint used by PAR.

LOC Syntax for CPLD Devices
The basic UCF syntax is:

INST “instance_name” LOC=pin_name;

or

INST “instance_name” LOC=FBff;

or

INST “instance_name” LOC=FBff_mm;

where

• pin_name is Pnn for numeric pin names or rc for row-column pin names

• ff is a function block number

• mm is a macrocell number within a function block

LOC Syntax Examples
For examples of legal placement constraints for each type of logic element in FPGA
designs, see “LOC Syntax for CPLD Devices” in this chapter, and the “RLOC” constraint.
Logic elements include flip-flops, ROMs and RAMs, block RAMS, FMAPs, BUFTs, CLBs,
IOBs, I/Os, edge decoders, and global buffers.

Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to an instance

• Attribute Name: LOC

• Attribute Values: value

Table 41-4: LOC Range Constraint Examples

Constraint Description

INST “instance_name“
LOC=CLB_R1C1:CLB_R4C4;

(Spartan-II, Spartan-IIE, Virtex, and Virtex-E
devices)

Place logic in either slice in the top left corner of the CLB
bounded by row 4, column 4.

INST “instance_name“
LOC=SLICE_X3Y5:SLICE_X5Y20;

(Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II
Pro X devices)

Place logic in any slice within the rectangular area bounded
by SLICE_X3Y5 (the lower left corner) and SLICE_X5Y20
(the upper right corner) on the XY SLICE grid.
Constraints Guide www.xilinx.com LOC 171
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

For valid values, see “LOC Syntax for FPGA Devices” and “LOC Syntax for CPLD
Devices” in this chapter.

VHDL

Before using LOC, declare it with the following syntax:

attribute loc: string;

After LOC has been declared, specify the VHDL constraint as follows:

attribute loc of {signal_name|label_name}: {signal|label} is
“location”;

Furthermore, setting the LOC constraint on a bus is done as follows:

attribute loc of bus_name : signal is “location_1 location_2
location_3...”;

To constrain only a portion of a bus (CPLD devices only), use the following syntax:

attribute loc of bus_name : signal is “* * location_1 * location_2...”;

For more information about location, see “LOC Syntax for FPGA Devices” and “LOC
Syntax for CPLD Devices”in this chapter.

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute loc [of] {instance_name|signal_name} [is]
location;

Furthermore, setting the LOC constraint on a bus is done as follows:

//synthesis attribute loc [of] bus_name [is] “location_1 location_2
location_3...”;

To constrain only a portion of a bus (CPLD devices only), use the following syntax:

//synthesis attribute loc [of] bus_name [is] “* * location_1 *
location_2...”;

For more information about location, see “LOC Syntax for FPGA Devices” and “LOC
Syntax for CPLD Devices” in this chapter.

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

ABEL

Pin Assignment

mysignal PIN 12;

Internal Location Constraint

XILINX PROPERTY 'loc=fb1 mysignal’;
Constraints Guide www.xilinx.com LOC 172
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF

The following statement specifies that each instance found under “FLIP_FLOPS” is to be
placed in any CLB in column 8.

INST “/FLIP_FLOPS/*” LOC=CLB_R*C8;

The following statement specifies that an instantiation of MUXBUF_D0_OUT be placed in
IOB location P110.

INST “MUXBUF_D0_OUT” LOC=P110;

The following statement specifies that the net DATA<1> be connected to the pad from IOB
location P111.

NET “DATA<1>” LOC=P111

XCF

BEGIN MODEL “entity_name”

PIN “signal_name” loc=string;

INST “instance_name” loc=string;

END;

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Ports tab grid, double-click the Location column in the row with the desired port
name and fill out the Location dialog box. This locks the selected signal to the specified pin.
You cannot set any other location constraints in the Constraints Editor.

PCF

LOC writes out a LOCATE constraint to the PCF file. For more information, see the
“LOCATE” constraint.

Floorplanner

After you place your logic within the Floorplanner, save the file as a UCF file to create a
LOC constraint. For more information, see the following topics in the Floorplanner help:

• Creating and Editing Area Constraints

• Using a Floorplanner UCF File in Project Navigator

• Assigning Area Constraints for Modular Design

PACE

The Pin Assignments Editor is mainly used for assigning location constraints to IOs in
designs. You can access PACE from the Processes window in the Project Navigator.
Double-click Assign Package Pins or Create Area Constraints under User Constraints.

For more information, see the PACE help, especially the topics within Editing Pins and
Areas in the Procedures section.
Constraints Guide www.xilinx.com LOC 173
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

BUFT Examples
You can constrain internal 3-state buffers (BUFTs) to an individual BUFT location, a list of
BUFT locations, or a rectangular block of BUFT locations. BUFT constraints all refer to
locations with a prefix of TBUF, which is the name of the physical element on the device.

BUFT constraints can be assigned from the schematic or through the UCF file. From the
schematic, LOC constraints are attached to the target BUFT. The constraints are then
passed into the EDIF netlist file and after mapping are read by PAR. Alternatively, in a
constraints file a BUFT is identified by a unique instance name.

Fixed Locations

This section describes fixed locations for:

• “Virtex, Virtex-E, Spartan-II, and Spartan-IIE”

• “Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X”

Virtex, Virtex-E, Spartan-II, and Spartan-IIE

For Virtex, Virtex-E, Spartan-II, and Spartan-IIE use the following syntax to denote fixed
locations.

TBUF_RrowCcol{.0|.1}

where

• row is the row location

• col is the column location

They can be any number between 0 and 99, inclusive. They must be less than or equal to
the number of CLB rows or columns in the target device.

A suffix of .0 or .1 is required.

The suffixes have the following meanings:

• 0 indicates at least one TBUF at the specific row/column

• 1 indicates the second TBUF at the specific row/column

Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X

For Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X, use the following syntax to
denote fixed locations:

TBUF_XmYn

where

• m and n represent XY values on the slice-based X0Y0 grid

The TBUFs are associated with the SLICE grid. Because there are two TBUFs per CLB and
four slices per CLB, the X value for a TBUF location can only be an even integer or zero.
The values must be less than or equal to the number of slices in the target device.

Range of Locations

This section describes relative locations for:

• “Spartan-II, Spartan-IIE, Virtex, and Virtex-E”

• “Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X”
Constraints Guide www.xilinx.com LOC 174
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Spartan-II, Spartan-IIE, Virtex, and Virtex-E

For Spartan-II, Spartan-IIE, Virtex, or Virtex-E, use the following syntax to denote a range
of locations from the lowest to the highest.

TBUF_RrowCcol:TBUF_RrowCcol

Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X

For Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X, use the following syntax to
denote a range of locations from the lowest to the highest.

TBUF_XvalueYvalue:TBUF_XvalueYvalue

Format of BUFT LOC Constraints

The following examples illustrate the format of BUFT LOC constraints. Specify LOC= and
the BUFT location.

The next statements place BUFTs at any location in the first column of BUFTs. The asterisk
(*) is a wildcard character.

The following statements place BUFTs within the rectangular block defined by the two
TBUFs/LOCs. For all architectures except Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II
Pro X, the first specified BUFT is in the upper left corner and the second specified BUFT is
in the lower right corner. For Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X, the first
BUFT is the lower left corner and the second is the upper right corner.

CLB-Based Row/Column/Slice Designations

Note: The examples in this section apply to Spartan-II, Spartan-IIE, Virtex, and Virtex-E
architectures.

In the following examples, the instance names of two BUFTs are /top-72/rd0 and /top-
79/ed7. The examples are:

• “Example One: BUFT Adjacent to a Specific CLB”

• “Example Two: BUFT in a Specific Location”

• “Example Three: Column of BUFTs”

• “Example Four: Row of BUFTs”

LOC=TBUF_R1C1.0 (or .1) Spartan-II, Spartan-IIE, Virtex, and Virtex-E

LOC=TBUF_X2Y1 Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X

LOC=TBUF_R*C0 Spartan-II, Spartan-IIE, Virtex, and Virtex-E

LOC=TBUF_X0Y* Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X

LOC=TBUF_R1C1:TBUF_R2C8 Spartan-II, Spartan-IIE, Virtex, and Virtex-)

LOC=TBUF_X0Y1:TBUF_X2Y8 Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X
Constraints Guide www.xilinx.com LOC 175
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Example One: BUFT Adjacent to a Specific CLB

The following example specifies a BUFT adjacent to a specific CLB.

Place the BUFT adjacent to CLB R1C5. In Spartan-II, Spartan-IIE, Virtex, and Virtex-E, PAR
places the BUFT in one of two slices of the CLB at row 1, column 5.

Example Two: BUFT in a Specific Location

The following example places a BUFT in a specific location.

Place the BUFT adjacent to CLB R1C5. In Spartan-II, Spartan-IIE, Virtex, and Virtex-E, the
.1 tag specifies the second TBUF in CLB R1C5.

BUFTs that drive the same signal must carry consistent constraints. If you specify .1 or .2
for one of the BUFTs that drives a given signal, you must also specify .1 or .2 on the other
BUFTs on that signal; otherwise, do not specify any constraints at all.

Example Three: Column of BUFTs

The following example specifies a column of BUFTs.

Place BUFTs in column 3 on any row. This constraint might be used to align BUFTs with a
common enable signal. You can use the wildcard (*) character in place of either the row or
column number to specify an entire row or column of BUFTs.

Example Four: Row of BUFTs

The following example specifies a row of BUFTs.

Place the BUFT on one of the longlines in row 7 for any column. You can use the wildcard
(*) character in place of either the row or column number to specify an entire row or
column of BUFTs.

Schematic LOC=TBUF_R1C5

UCF INST “/top-72/rd0” LOC=TBUF_R1C5;

Schematic LOC=TBUF_r1c5.1

UCF INST “/top-72/rd0” LOC=TBUF_r1c5.1;

Schematic LOC=TBUF_r*c3

UCF INST “/top-72/rd0 /top-79/ed7”
LOC=TBUF_r*c3;

Schematic LOC=TBUF_r7c*

UCF INST “/top-79/ed7” LOC=TBUF_r7c*;
Constraints Guide www.xilinx.com LOC 176
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Sliced-Based XY Coordinate Designations

Note: The examples in this section apply to the Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro
X architectures.

The examples are:

• “Example One: BUFT in a Specific Location”

• “Example Two: Column of BUFTs”

• “Example Three: Row of BUFTs”

Example One: BUFT in a Specific Location

The following example places a BUFT in a specific location.

Place the BUFT in TBUF_X4Y5 in the CLB containing SLICE_X4Y5.

BUFTs that drive the same signal must carry consistent constraints.

Example Two: Column of BUFTs

The following example specifies a column of BUFTs.

Place BUFTs in the column of CLBs that contains the TBUFs whose X coordinate is 6. This
constraint might be used to align BUFTs with a common enable signal. You can use the
wildcard (*) character in place of either the X or Y coordinate to specify an entire row (X*)
or column (Y*) of BUFTs.

Example Three: Row of BUFTs

The following example specifies a row of BUFTs.

Place the BUFT on one of the longlines in the row of CLBs that contains TBUFs whose Y
coordinate is 6. You can use the wildcard (*) character in place of either the X or Y
coordinate to specify an entire row (X*) or column (Y*) of TBUFs.

CLB Examples (CLB-Based Row/Column/Slice Architectures Only)

Note: This section applies only to the architecture that uses the CLB-based Row/Column/Slice
designations:

You can assign soft macros and flip-flops to a single CLB location, a list of CLB locations, or
a rectangular block of CLB locations. You can also specify the exact function generator or
flip-flop within a CLB. CLB locations are identified as CLB_RrowCcol for Spartan-II,
Spartan-IIE, Virtex, and Virtex-E. The upper left CLB is CLB_R1C1.

Schematic LOC=TBUF_X4Y5

UCF INST “/top-72/rd0” LOC=TBUF_X4Y5;

Schematic LOC=TBUF_X6Y*

UCF INST “/top-72/rd0 /top-79/ed7” LOC=TBUF_X6Y*;

Schematic LOC=TBUF_X*Y6

UCF INST “/top-79/ed7” LOC=TBUF_X*Y6;
Constraints Guide www.xilinx.com LOC 177
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

CLB Locations

CLB locations can be a fixed location or a range of locations.

Fixed Locations

Use the following syntax to denote fixed locations.

For Spartan-II, Spartan-IIE, Virtex, and Virtex-E:

CLB_RrowCcol{.S0 | .S1}

where

• row is the row location

• col is the column location

They can be any number between 0 and 99, inclusive, or *.

They must be less than or equal to the number of CLB rows or columns in the target device.

The suffixes have the following meanings.

• .S0 means the right-most slice in the Spartan-II, Spartan-IIE, Virtex, and Virtex-E CLB

• .S1 means the left-most slice in the Spartan-II, Spartan-IIE, Virtex, and Virtex-E CLB

Range of Locations

Use the following syntax to denote a range of locations from the highest to the lowest.

CLB_Rrow1Ccol:CLB_Rrow2Ccol2

Format of CLB Constraints

The following examples illustrate the format of CLB constraints. Enter LOC= and the pin
or CLB location. If the target symbol represents a soft macro, the LOC constraint is applied
to all appropriate symbols (flip-flops, maps) contained in that macro. If the indicated logic
does not fit into the specified blocks, an error is generated.

• The following UCF statement places logic in the designated CLB.

INST “instance_name” LOC=CLB_R1C1.S0;

(Spartan-II, Spartan-IIE, Virtex, and Virtex-E devices)

• The following UCF statement places logic within the first column of CLBs. The
asterisk (*) is a wildcard character.

INST “instance_name” LOC=CLB_R*C1.S0;

(Spartan-II, Spartan-IIE, Virtex, and Virtex-E devices)

• The next two UCF statements place logic in any of the three designated CLBs. There is
no significance to the order of the LOC statements.

INST “instance_name” LOC=CLB_R1C1,CLB_R1C2,CLB_R1C3;

(Spartan-II, Spartan-IIE, Virtex, and Virtex-E devices)

• The following statement places logic within the rectangular block defined by the first
specified CLB in the upper left corner and the second specified CLB towards the
lower right corner.

INST “instance_name” LOC=CLB_R1C1:CLB_R8C5;

(Spartan-II, Spartan-IIE, Virtex, and Virtex-E devices)
Constraints Guide www.xilinx.com LOC 178
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

You can prohibit PAR from using a specific CLB, a range of CLBs, or a row or column of
CLBs. Such PROHIBIT constraints can be assigned only through the User Constraints File
(UCF). CLBs are prohibited by specifying a PROHIBIT constraint at the design level, as
shown in the following examples.

Example One

Do not place any logic in the CLB in row 1, column 5. CLB R1C1 is in the upper left corner
of the device.

Example Two

Do not place any logic in the rectangular area bounded by the CLB R1C1 in the upper left
corner and CLB R5C7 in the lower right.

Example Three

Do not place any logic in any row of column 3. You can use the wildcard (*) character in
place of either the row or column number to specify an entire row or column of CLBs.

Example Four

Do not place any logic in either CLB R2C4 or CLB R7C9.

Delay Locked Loop (DLL) Constraint Examples
Note: This section applies to Spartan-II, Spartan-IIE, Virtex, and Virtex-E devices only.

You can constrain DLL elements—CLKDLL, CLKDLLE, and CLKDLLHF—to a specific
physical site name. Specify LOC=DLL and a numeric value (0 through 3) to identify the
location.

Following is an example.

Schematic None

UCF CONFIG PROHIBIT=clb_r1c5;

Schematic None

UCF CONFIG PROHIBIT=clb_r1c1:clb_r5c7;

Schematic None

UCF CONFIG PROHIBIT=clb_r*c3;

Schematic None

UCF CONFIG PROHIBIT=clb_r2c4, clb_r7c9;

Schematic LOC=DLL1P

UCF INST “buf1” LOC=DLL1P;
Constraints Guide www.xilinx.com LOC 179
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Digital Clock Manager (DCM) Constraint Examples
Note: This section applies to Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X devices only.

You can lock the DCM in the UCF file. The syntax is as follows:

INST “instance_name” LOC = DCM_XAYB;

A is the X coordinate, starting with 0 at the left-hand bottom corner. A increases in value as
you move across the device to the right.

B is the Y coordinate, starting with 0 at the left-hand bottom corner. B increases in value as
you move up the device.

For example:

INST “myinstance” LOC = DCM_X0Y0;

Flip-Flop Constraint Examples
Flip-flop constraints can be assigned from the schematic or through the UCF file.

From the schematic, attach LOC constraints to the target flip-flop. The constraints are then
passed into the EDIF netlist and are read by PAR after the design is mapped.

The following examples show how the LOC constraint is applied to a schematic and to a
UCF (User Constraints File). The instance names of two flip-flops, /top-12/fdrd and /top-
54/fdsd, are used to show how you would enter the constraints in the UCF.

CLB-Based Row/Column/Slice Designations

The Virtex architecture uses CLB-based Row/Column/Slice designations.

Flip-flops can be constrained to a specific CLB, a range of CLBs, a row or column of CLBs,
or a specific half-CLB.

Example One

Place the flip-flop in the CLB in row 1, column 5. CLB R1C1 is in the upper left corner of the
device.

Example Two

Place the flip-flop in the rectangular area bounded by the CLB R1C1 in the upper left
corner and CLB R5C7 in the lower right corner.

Schematic LOC=CLB_RlC5

UCF INST “/top-12/fdrd” LOC=CLB_R1C5;

Schematic LOC=CLB_R1C1:CLB_R5C7

UCF INST “/top-12/fdrd”
LOC=CLB_R1C1:CLB_R5C7;
Constraints Guide www.xilinx.com LOC 180
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Example Three

Place the flip-flops in any row of column 3. You can use the wildcard (*) character in place
of either the row or column number to specify an entire row or column of CLBs.

Example Four

Place the flip-flop in either CLB R2C4 or CLB R7C9.

In Example Four, repeating the LOC constraint and separating each such constraint by a
comma specifies multiple locations for an element. When you specify multiple locations,
PAR can use any of the specified locations.

Example Five

Do not place the flip-flop in any column of row 5. You can use the wildcard (*) character in
place of either the row or column number to specify an entire row or column of CLBs.

Slice-Based XY Grid Designations

Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X are the only architectures that use
slice-based XY grid designations.

Flip-flops can be constrained to a specific slice, a range of slices, a row or column of slices.

Example One

Place the flip-flop in SLICE_X1Y5. SLICE_X0Y0 is in the lower left corner of the device.

Example Two

Place the flip-flop in the rectangular area bounded by the SLICE_X1Y1 in the lower left
corner and SLICE_X5Y7 in the upper right corner.

Schematic LOC=CLB_R*C3

UCF INST “/top-12/fdrd/top-54/fdsd”
LOC=CLB_R*C3;

Schematic LOC=CLB_R2C4,CLB_R7C9

UCF INST “/top-54/fdsd”
LOC=CLB_R2C4,CLB_R7C9;

Schematic PROHIBIT=CLB_R5C*

UCF CONFIG PROHIBIT=CLB_R5C*;

Schematic LOC=SLICE_XlY5

UCF INST “/top-12/fdrd” LOC=SLICE_X1Y5;

Schematic LOC=SLICE_R1C1:SLICE_R5C7

UCF INST “/top-12/fdrd” LOC=SLICE_X1Y1:SLICE_X5Y7;
Constraints Guide www.xilinx.com LOC 181
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Example Three

Place the flip-flops anywhere in the row of slices whose Y coordinate is 3. Use the wildcard
(*) character in place of either the X or Y value to specify an entire row (Y*) or column (X*)
of slices.

Example Four

Place the flip-flop in either SLICE_X2Y4 or SLICE_X7Y9.

In Example Four, repeating the LOC constraint and separating each such constraint by a
comma specifies multiple locations for an element. When you specify multiple locations,
PAR can use any of the specified locations.

Example Five

Do not place the flip-flop in the column of slices whose X coordinate is 5. Use the wildcard
(*) character in place of either the X or Y value to specify an entire row (Y*) or column (X*)
of slices.

Global Buffer Constraint Examples
Note: This section applies to Spartan-II, Spartan-IIE, Spartan-3, Virtex, Virtex-E, Virtex-II, Virtex-II
Pro, and Virtex-II Pro X devices only.

You can constrain a Spartan-II, Spartan-IIE, Spartan-3, Virtex, Virtex-E, Virtex-II, Virtex-II
Pro, or Virtex-II Pro X global buffer (BUFGP and IBUFG_SelectIO variants) to a specific
buffer site name or dedicated global clock pad in the device model.

From the schematic, attach LOC constraints to the global buffer symbols. Specify LOC=
and GCLKBUF plus a number (0 through 3) to create a specific buffer site name in the
device model. Or, specify LOC= and GCLKPAD plus a number (0 through 3) to create a
specific dedicated global clock pad in the device model. The constraints are then passed
into the EDIF netlist and after mapping are read by PAR.

Schematic LOC=SLICE_X*Y3

UCF INST “/top-12/fdrd/top-54/fdsd”
LOC=SLICE_X*Y3;

Schematic LOC=SLICE_X2Y4,SLICE_X7Y9

UCF INST “/top-54/fdsd” LOC=SLICE_X2Y4, SLICE_X7Y9;

Schematic PROHIBIT=SLICE_X5Y*

UCF CONFIG PROHIBIT=SLICE_X5Y*;
Constraints Guide www.xilinx.com LOC 182
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Example

I/O Constraint Examples
You can constrain I/Os to a specific IOB. You can assign I/O constraints from the
schematic or through the UCF file.

From the schematic, attach LOC constraints to the target PAD symbol. The constraints are
then passed into the netlist file and read by PAR after mapping.

Alternatively, in the UCF file a pad is identified by a unique instance name. The following
example shows how the LOC constraint is applied to a schematic and to a UCF (User
Constraints File). In the examples, the instance names of the I/Os are /top-102/data0_pad
and /top-117/q13_pad. The example uses a pin number to lock to one pin.

Place the I/O in the IOB at pin 17. For pin grid arrays, a pin name such as B3 or T1 is used.

IOB Constraint Examples
You can assign I/O pads, buffers, and registers to an individual IOB location. IOB locations
are identified by the corresponding package pin designation.

The following examples illustrate the format of IOB constraints. Specify LOC= and the pin
location. If the target symbol represents a soft macro containing only I/O elements, for
example, INFF8, the LOC constraint is applied to all I/O elements contained in that macro.
If the indicated I/O elements do not fit into the specified locations, an error is generated.

The following UCF statement places the I/O element in location P13. For PGA packages,
the letter-number designation is used, for example, B3.

INST “instance_name” LOC=P13;

You can prohibit the mapper from using a specific IOB. You might take this step to keep
user I/O signals away from semi-dedicated configuration pins. Such PROHIBIT
constraints can be assigned only through the UCF file.

IOBs are prohibited by specifying a PROHIBIT constraint preceded by the CONFIG
keyword, as shown in the following example.

Do not place user I/Os in the IOBs at pins 36, 37, or 41. For pin grid arrays, pin names such
as D14, C16, or H15 are used.

Schematic LOC=GCLKBUF1

UCF INST “buf1” LOC=GCLKBUF1;

Schematic LOC=GCLKPAD1

UCF INST “buf1” LOC=GCLKPAD1;

Schematic LOC=P17

UCF INST “/top-102/data0_pad” LOC=P17;

Schematic None

UCF CONFIG PROHIBIT=p36, p37, p41;
Constraints Guide www.xilinx.com LOC 183
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Mapping Constraint Examples (FMAP)
Mapping constraints control the mapping of logic into CLBs. They have two parts. The first
part is an FMAP component placed on the schematic. The second is a LOC constraint that
can be placed on the schematic or in the constraints file.

FMAP controls the mapping of logic into function generators. This symbol does not define
logic on the schematic; instead, it specifies how portions of logic shown elsewhere on the
schematic should be mapped into a function generator.

The FMAP symbol defines mapping into a four-input (F) function generator. For Spartan-
II, Spartan-IIE, Virtex, and Virtex-E, the four-input function generator defined by the
FMAP is assigned to one of the two slices of the CLB.

For the FMAP symbol as with the CLBMAP primitive, MAP=PUC or PUO is supported, as
well as the LOC constraint. (Currently, pin locking is not supported. MAP=PLC or PLO is
translated into PUC and PUO, respectively.)

Example One

Place the FMAP symbol in the CLB at row 7, column 3.

Example Two

Place the FMAP symbol in either the CLB at row 2, column 4 or the CLB at row 3, column 4.

Example Three

Place the FMAP symbol in the area bounded by CLB R5C5 in the upper left corner and CLB
R10C8 in the lower right

Example Four (Virtex, Virtex-E, Spartan-II, and Spartan-IIE)

Place the FMAP in the right-most slice of the CLB in row 10, column 11.

Multiplier Constraint Examples
Note: This section applies to Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X devices only.

Multiplier constraints can be assigned from the schematic or through the UCF file. From
the schematic, attach the LOC constraints to a multiplier symbol. The constraints are then

Schematic LOC=CLB_R7C3

UCF INST “$1I323” LOC=CLB_R7C3;

Schematic LOC=CLB_R2C4,CLB_R3C4

UCF INST “top/dec0011” LOC=CLB_R2C4,CLB_R3C4;

Schematic LOC=CLB_R5C5:CLB_R10C8

UCF INST “$3I27” LOC=CLB_R5C5:CLB_R10C8;

Schematic LOC=CLB_R10C11.S0

UCF INST “/top/done” LOC=CLB_R10C11.S0;
Constraints Guide www.xilinx.com LOC 184
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

passed into the netlist file and after mapping they are read by PAR. For more information
on attaching LOC constraints, see the application user guide. Alternatively, in the
constraints file a multiplier is identified by a unique instance name.

A Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X multiplier has a different XY grid
specification than slices, block RAMs, and TBUFs. It is specified using MULT18X18_XmYn
where the X and Y coordinate values correspond to the multiplier grid array. A multiplier
located at MULT18X18_X0Y1 is not located at the same site as a flip-flop located at
SLICE_X0Y1 or a block RAM located at RAMB16_X0Y1.

For example, assume you have a device with two columns of multipliers, each column
containing two multipliers, where one column is on the right side of the chip and the other
is on the left. The multiplier located in the lower left corner is MULT18X18_X0Y0. Because
there are only two columns of multipliers, the multiplier located in the upper right corner
is MULT18X18_X1Y1.

ROM Constraint Examples
Memory constraints can be assigned from the schematic or through the UCF file.

From the schematic, attach the LOC constraints to the memory symbol. The constraints are
then passed into the netlist file and after mapping they are read by PAR. For more
information on attaching LOC constraints, see the application user guide.

Alternatively, in the constraints file memory is identified by a unique instance name. One
or more memory instances of type ROM can be found in the input file. All memory macros
larger than 16 x 1 or 32 x 1 are broken down into these basic elements in the netlist file.

In the following examples, the instance name of the ROM primitive is /top-7/rq.

CLB-Based Row/Column/Slice Designations

The Virtex architecture uses CLB-based Row/Column/Slice designations. You can
constrain a ROM to a specific CLB, a range of CLBs, a row or column of CLBs.

Example One

Place the memory in the CLB in row 1, column 5. CLB R1C1 is in the upper left corner of the
device. You can only apply a single-CLB constraint such as this to a 16 x 1 or 32 x 1 memory.

Example Two

Place the memory in either CLB R2C4 or CLB R7C9.

Schematic LOC=MULT18X18_X0Y0

UCF INST “/top-7/rq” LOC=MULT18X18_X0Y0;

Schematic LOC=clb_r1c5

UCF INST “/top-7/rq” LOC=clb_r1c5;

Schematic LOC=clb_r2c4, clb_r7c9

UCF INST “/top-7/rq” LOC=clb_r2c4, clb_r7c9;
Constraints Guide www.xilinx.com LOC 185
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Example Three

Do not place the memory in any column of row 5. You can use the wildcard (*) character in
place of either the row or column number in the CLB name to specify an entire row or
column of CLBs.

Slice-Based XY Designations

Only Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X devices use slice-based XY grid
designations. You can constrain a ROM to a specific slice, a range of slices, or a row or
column of slices.

Example One

Place the memory in the SLICE_X1Y1. SLICE_X1Y1 is in the lower left corner of the device.
You can apply a single-SLICE constraint such as this only to a 16 x 1 or 32 x 1 memory.

Example Two

Place the memory in either SLICE_X2Y4 or SLICE_X7Y9.

Example Three

Do not place the memory in column of slices whose X coordinate is 5. You can use the
wildcard (*) character in place of either the X or Y coordinate value in the SLICE name to
specify an entire row (Y*) or column (X*) of slices.

Block RAM (RAMBs) Constraint Examples
Note: This section applies only to Spartan-II, Spartan-IIE, Spartan-3, Virtex, Virtex-E, Virtex-II,
Virtex-II Pro, and Virtex-II Pro X devices.

Block RAM constraints can be assigned from the schematic or through the UCF file. From
the schematic, attach the LOC constraints to the block RAM symbol. The constraints are
then passed into the netlist file. After mapping they are read by PAR. For more information
on attaching LOC constraints, see the application user guide. Alternatively, in the
constraints file a memory is identified by a unique instance name.

Schematic PROHIBIT clb_r5c*

UCF CONFIG PROHIBIT=clb_r5c*;

Schematic LOC=SLICE_X1Y1

UCF INST “/top-7/rq” LOC=SLICE_X1Y1;

Schematic LOC=SLICE_X2Y4, SLICE_X7Y9

UCF INST “/top-7/rq” LOC=SLICE_X2Y4, SLICE_X7Y9;

Schematic PROHIBIT SLICE_X5Y*

UCF CONFIG PROHIBIT=SLICE_X5Y*;
Constraints Guide www.xilinx.com LOC 186
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Spartan-II, Spartan-IIE, Virtex, and Virtex-E Devices

A Spartan-II, Spartan-IIE, Virtex, and Virtex-E block RAM has a different row/column grid
specification than CLBs and TBUFs. It is specified using RAMB4_RnCn where the numeric
row and column numbers refer to the block RAM grid array. A block RAM located at
RAMB4_R3C1 is not located at the same site as a flip-flop located at CLB_R3C1.

For example, assume you have a device with two columns of block RAM, each column
containing four blocks, where one column is on the right side of the chip and the other is on
the left. The block RAM located in the upper left corner is RAMB4_R0C0. Because there are
only two columns of block RAM, the block located in the upper right corner is
RAMB4_R0C1.

Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X Devices

A Spartan-3, Virtex-II, Virtex-II Pro, or Virtex-II Pro X block RAM has a different XY grid
specification than a slice, multiplier, or TBUF. It is specified using RAMB16_XmYn where
the X and Y coordinate values correspond to the block RAM grid array. A block RAM
located at RAMB16_X0Y1 is not located at the same site as a flip-flop located at
SLICE_X0Y1.

For example, assume you have a device with two columns of block RAM, each column
containing two blocks, where one column is on the right side of the chip and the other is on
the left. The block RAM located in the lower left corner is RAMB16_X0Y0. Because there
are only two columns of block RAM, the block located in the upper right corner is
RAMB16_X1Y1.

Slice Constraint Examples
Note: This section applies only to Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X devices.
These are currently the only architectures that use the slice-based XY grid designations.

You can assign soft macros and flip-flops to a single slice location, a list of slice locations, or
a rectangular block of slice locations.

Slice locations can be a fixed location or a range of locations. Use the following syntax to
denote fixed locations.

SLICE_XmYn

where

• m and n are the X and Y coordinate values, respectively

They must be less than or equal to the number of slices in the target device.

Use the following syntax to denote a range of locations from the highest to the lowest.

SLICE_XmYn:SLICE_XmYn

Schematic LOC=RAMB4_R0C0

UCF INST “/top-7/rq” LOC=RAMB4_R0C0;

Schematic LOC=RAMB16_X0Y0

UCF INST “/top-7/rq” LOC=RAMB16_X0Y0;
Constraints Guide www.xilinx.com LOC 187
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Format of Slice Constraints

The following examples illustrate the format of slice constraints: LOC= and the slice
location. If the target symbol represents a soft macro, the LOC constraint is applied to all
appropriate symbols (flip-flops, maps) contained in that macro. If the indicated logic does
not fit into the specified blocks, an error is generated.

Slice Constraints Example One

The following UCF statement places logic in the designated slice for Spartan-3, Virtex-II,
Virtex-II Pro, and Virtex-II Pro X devices.

INST “instance_name” LOC=SLICE_X133Y10;

Slice Constraints Example Two

The following UCF statement places logic within the first column of slices for Spartan-3,
Virtex-II, Virtex-II Pro, and Virtex-II Pro X devices. The asterisk (*) is a wildcard character

INST “instance_name” LOC=SLICE_X0Y*;

Slice Constraints Example Three

The following UCF statement places logic in any of the three designated slices for Spartan-
3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X. There is no significance to the order of the
LOC statements.

INST “instance_name” LOC=SLICE_X0Y3, SLICE_X67Y120, SLICE_X3Y0;

Slice Constraints Example Four

For Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X devices, the following UCF
statement places logic within the rectangular block defined by the first specified slice in the
lower left corner and the second specified slice towards the upper right corner.

INST “instance_name” LOC=SLICE_X3Y22:SLICE_X10Y55;

Slices Prohibited

You can prohibit PAR from using a specific slice, a range of slices, or a row or column of
slices. Such prohibit constraints can be assigned only through the User Constraints File
(UCF). Slices are prohibited by specifying a PROHIBIT constraint at the design level, as
shown in the following examples.

Slices Prohibited Example One

Do not place any logic in the SLICE_X0Y0. SLICE_X0Y0 is at the lower left corner of the
device.

Schematic None

UCF CONFIG PROHIBIT=SLICE_X0Y0;
Constraints Guide www.xilinx.com LOC 188
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Slices Prohibited Example Two

Do not place any logic in the rectangular area bounded by SLICE_X2Y3 in the lower left
corner and SLICE_X10Y10 in the upper right.

Slices Prohibited Example Three

Do not place any logic in a slice whose location has 3 as the X coordinate. This designates
a column of prohibited slices. You can use the wildcard (*) character in place of either the X
or Y coordinate to specify an entire row (X*) or column (Y*) of slices.

Schematic None

UCF CONFIG PROHIBIT=SLICE_X2Y3:SLICE_X10Y10;

Schematic None

UCF CONFIG PROHIBIT=SLICE_X3Y*;
Constraints Guide www.xilinx.com LOC 189
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Example Four

Do not place any logic in either SLICE_X2Y4 or SLICE_ X7Y9.

LOC for Modular Designs
The PIN/LOC UCF constraint has the following syntax:

PIN "module.pin" LOC="location";

This UCF syntax is used exclusively within the modular design flow. This constraint is
translated into a COMP/LOCATE constraint in the PCF file. This constraint has the
following syntax:

COMP "name" LOCATE = SITE "location";

The PIN/LOC constraint specifies that the pseudo component that will be created for pin
“pin” on module “module” should be located in the site location. Pseudo logic is created
only when a net connects from a pin on one module to a pin on another module.

Schematic None

UCF CONFIG PROHIBIT=SLICE_X2Y4, SLICE_X7Y9;
Constraints Guide www.xilinx.com LOC 190
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

LOCATE

LOCATE Architecture Support
The following table shows whether the constraint may be used with that device.

LOCATE Applicable Elements
CLBs, IOBs, TBUFs, DCMs, clock logic, macros

LOCATE Description
LOCATE is a basic placement constraint and a modular design constraint. It specifies a
single location, multiple single locations, or a location range.

LOCATE Propagation Rules
When attached to a macro, the constraint propagates to all elements of the macro. When
attached to a primitive, the constraint applies to the entire primitive.

LOCATE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com LOCATE 191
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

PCF

Single or multiple single locations

COMP “comp_name” LOCATE=[SOFT] “site_item1”... “site_itemn” [LEVEL n];
COMPGRP “group_name” LOCATE=[SOFT] “site_item1”... “site_itemn” [LEVEL
n];
MACRO name LOCATE=[SOFT] “site_item1”... “site_itemn” [LEVEL n];

Range of locations

COMP “comp_name” LOCATE=[SOFT] SITE “site_name” : SITE “site_name”
[LEVEL n];
COMPGRP “group_name” LOCATE=[SOFT] SITE “site_name” : SITE “site_name”
[LEVEL n];
MACRO “macro_name” LOCATE=[SOFT] SITE “site_name” : SITE “site_name”
[LEVEL n];

where

• site_name is a component site (that is, a CLB or IOB location)

• site_item is one of the following:

♦ SITE “site_name”

♦ SITEGRP “site_group_name”

• n in LEVEL n is 0, 1, 2, 3, or 4

LOCATE for Modular Design Use
The AREA_GROUP/RANGE constraint is translated into a COMPGRP/LOCATE
constraint in the PCF file. This constraint has the following syntax:

COMPGRP "name" LOCATE = SITE "start:end";

For more information, see “Modular Design Use” in the “AREA_GROUP” constraint.

The PIN/LOC constraint is translated into a COMP/LOCATE constraint in the PCF file.
This constraint has the following syntax:

COMP "name" LOCATE = SITE "location";

For more information, see “LOC for Modular Designs” in the “LOC” constraint.
Constraints Guide www.xilinx.com LOCATE 192
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

LOCK_PINS

LOCK_PINS Architecture Support
The following table shows whether the constraint may be used with that device.

LOCK_PINS Applicable Elements
The LOCK_PINS constraint is applied only to specific instances of LUT symbols.

LOCK_PINS Description
The LOCK_PINS constraint instructs the implementation tools to not swap the pins of the
LUT symbol to which it is attached. The LOCK_PINS constraint should not be confused
with the Lock Pins process in Project Navigator, which is used to preserve the existing
pinout of a CPLD design.

LOCK_PINS Propagation Rules
LOCK_PINS is applied only to a single LUT instance.

LOCK_PINS Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com LOCK_PINS 193
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

VHDL

Before using LOCK_PINS, declare it with the following syntax:

attribute lock_pins: string;

After LOCK_PINS has been declared, specify the VHDL constraint as follows:

attribute lock_pins of {component_name|label_name } : {component|label}
is “all”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

//synthesis attribute LOCK_PINS [of] {module_name|instance name} [is]
all;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

Using No Designator

INST “XSYM1” LOCK_PINS;

Using the ALL Attribute

INST “XSYM1” LOCK_PINS=’ALL’;

Using a PIN Assignment List

INST I_589 LOCK_PINS=I0:A2;

INST I_894 LOCK_PINS=I3:A1,I2:A4;

INST tvAgy LOCK_PINS=I0:A4,I1:A3,I2:A2,I3:A1;
Constraints Guide www.xilinx.com LOCK_PINS 194
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

MAP

MAP Architecture Support
The following table shows whether the constraint may be used with that device.

MAP Applicable Elements
FMAP

MAP Description
MAP is an advanced mapping constraint. Place MAP on an FMAP to specify whether pin
swapping and the merging of other functions with the logic in the map are allowed. If
merging with other functions is allowed, other logic can also be placed within the CLB, if
space allows.

MAP Propagation Rules
Applies to the design element to which it is attached.

MAP Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com MAP 195
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF

The basic UCF syntax is:

INST “instance_name” MAP=[PUC | PUO | PLC | PLO];

where

the terms have the following meanings:

• PUC

The CLB pins are unlocked (U) and the CLB is closed (C).

• PUO

The CLB pins are unlocked (U) and the CLB is open (O).

• PLC

The CLB pins are locked (L) and the CLB is closed (C).

• PLO

The CLB pins are locked (L) and the CLB is open (O).

The default is PUO. Currently, only PUC and PUO are observed. PLC and PLO are
translated into PUC and PUO, respectively.

As used in these definitions, the following terms have the meanings indicated.

• Unlocked

The software can swap signals among the pins on the CLB.

• Locked

The software cannot swap signals among the pins on the CLB.

• Open

The software can add or remove logic from the CLB.

• Closed

The software cannot add or remove logic from the function specified by the MAP
symbol.

The following statement allows pin swapping and ensures that no logic other than that
defined by the original map will be mapped into the function generators.

INST “$1I3245/map_of_the_world” map=puc;
Constraints Guide www.xilinx.com MAP 196
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

MAXDELAY

MAXDELAY Architecture Support
The following table shows whether the constraint may be used with that device.

 MAXDELAY Applicable Elements
Nets

MAXDELAY Description
The MAXDELAY attribute defines the maximum allowable delay on a net.

MAXDELAY Propagation Rules
Applies to the net to which it is attached.

 MAXDELAY Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com MAXDELAY 197
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Schematic

• Attach to a net

• Attribute Name: MAXDELAY

• Attribute Values: value units

where

♦ value is the numerical time delay

♦ units are us, ms, ns, ps

VHDL

Before using MAXDELAY, declare it with the following syntax:

attribute maxdelay: string;

After MAXDELAY has been declared, specify the VHDL constraint as follows:

attribute maxdelay of signal_name: signal is “value [units]”;

where

• value is a positive integer

Valid units are ps, ns, us, ms, GHz, MHz, and kHz. The default is ns.

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute maxdelay [of] signal_name [is] value [units];

where

• value is a positive integer

Valid units are ps, ns, us, ms, GHz, MHz, and kHz. The default is ns.

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

NET “net_name” MAXDELAY=value units;

where

• value is the numerical time delay.

• units are us, ns, ms, ps.

The following statement assigns a maximum delay of 1 us to the net $SIG_4.

NET “$1I3245/$SIG_4” MAXDELAY=10 ns;
Constraints Guide www.xilinx.com MAXDELAY 198
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

PCF

item MAXDELAY = maxvalue [PRIORITY integer];

where

• item can be:

♦ ALLNETS

♦ NET name

♦ TIMEGRP name

♦ ALLPATHS

♦ PATH name

♦ path specification

• maxvalue can be:

♦ a numerical time value with units of us, ms, ps, or ns

♦ a numerical frequency value with units of GHz, MHz, or KHz

♦ a TSidentifier

FPGA Editor

To set MAXDELAY to all paths or nets, click Main Properties from the File menu and select
the Global Physical Constraints tab.

To set the constraint to a selected path or net, click Properties of Selected Items from the
Edit menu with a routed net selected and use the Physical Constraints tab.
Constraints Guide www.xilinx.com MAXDELAY 199
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

MAXPT

MAXPT Architecture Support
The following table shows whether the constraint may be used with that device.

MAXPT Applicable Elements
Signals

MAXPT Description
MAXPT is an advanced ABEL constraint. It applies to CPLD devices only. MAXPT
specifies the maximum number of product terms the fitter is permitted to use when
collapsing logic into the node to which MAXPT is applied. MAXPT overrides the
Collapsing P-term Limit setting in Project Navigator for the attached node.

MAXPT Propagation Rules
Applies to the signal to which it is attached.

MAXPT Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex No

Virtex-E No

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 No

Spartan-II No

Spartan-IIE No

Spartan-3 No

Spartan-3E No

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com MAXPT 200
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

VHDL

Before using MAXPT, declare it with the following syntax:

attribute maxpt: integer;

After MAXPT has been declared, specify the VHDL constraint as follows:

attribute maxpt of signal_name : signal is “integer”;

where

• integer is any positive integer

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute maxpt [of] signal_name [is] integer;

where

• integer is any positive integer

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

ABEL

XILINX PROPERTY 'maxpt=8 mysignal';

Valid values are any positive integers.

UCF and NCF

Net “signal_name” maxpt=integer;
Constraints Guide www.xilinx.com MAXPT 201
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

MAXSKEW

MAXSKEW Architecture Support
The following table shows whether the constraint may be used with that device.

MAXSKEW Applicable Elements
Nets

MAXSKEW Description
MAXSKEW is a timing constraint used to control the amount of skew on a net. Skew is
defined as the difference between the delays of all loads driven by the net. You can control
the maximum allowable skew on a net by attaching MAXSKEW directly to the net. It is
important to understand exactly what MAXSKEW defines. Consider the following
example.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No

Figure 47-1: MAXSKEW

X9540

BA

t (2)
a

t (4)
b

Data Delay (DD) = 2.5
Constraints Guide www.xilinx.com MAXSKEW 202
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

In the preceding diagram, for ta(2), 2 ns is the maximum delay for the Register A clock. For
tb(4), 4 ns is the maximum delay for the Register B clock. MAXSKEW defines the maximum
of tb minus the maximum of ta, that is, 4-2=2.

In some cases, relative minimum delays are used on a net for setup and hold timing
analysis. When the MAXSKEW constraint is applied to network resources which use
relative minimum delays, the MAXSKEW constraint will take relative minimum delays
into account in the calculation of skew.

Overuse of this constraint, or too tight of a requirement (value), can cause long PAR
runtimes.

MAXSKEW Propagation Rules
Applies to the net to which it is attached.

MAXSKEW Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a net

• Attribute Name: MAXSKEW

• Attribute Values: allowable_skew [units]

where

♦ allowable_skew is the timing requirement

♦ units may be ms, us, ns, ps. The default is ns.

VHDL

Before using MAXSKEW, declare it with the following syntax:

attribute maxskew: string;

After MAXSKEW has been declared, specify the VHDL constraint as follows:

attribute maxskew of signal_name : signal is “allowable_skew [units]”;

where

• allowable_skew is the timing requirement

Valid units are ps, ns, us, ms, GHz, MHz, and kHz. The default is ns.

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.
Constraints Guide www.xilinx.com MAXSKEW 203
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Verilog

Specify as follows:

 // synthesis attribute maxskew [of] signal_name [is] allowable_skew
[units];

where

• allowable_skew is the timing requirement

Valid units are ps, ns, us, ms, GHz, MHz, and kHz. The default is ns.

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

NET “net_name” MAXSKEW=allowable_skew [units];

where

• allowable_skew is the timing requirement

• units may be ms, us, ns, ps. The default is ns.

The following statement specifies a maximum skew of 3 ns on net $SIG_6.

NET “$1I3245/$SIG_6” MAXSKEW=3 ns;

FPGA Editor

To set constraints in FPGA Editor, select Edit > Properties of Selected Items. With a routed
net selected, you can set MAXSKEW from the Physical Constraints tab.
Constraints Guide www.xilinx.com MAXSKEW 204
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

NODELAY

NODELAY Architecture Support
The following table shows whether the constraint may be used with that device.

NODELAY Applicable Elements
Input register

You can also attach NODELAY to a net connected to a pad component in a UCF file.
NGDBuild transfers the constraint from the net to the pad instance in the NGD file so that
it can be processed by the mapper. Use the following UCF syntax:

NET “net_name” NODELAY;

NODELAY Description
NODELAY is an advanced mapping constraint. The default configuration of IOB flip-flops
in designs includes an input delay that results in no external hold time on the input data
path. This delay can be removed by placing NODELAY on input flip-flops or latches,
resulting in a smaller setup time but a positive hold time.

The input delay element is active in the default configuration for Spartan-II, Spartan-3,
Spartan-3E,Virtex, Virtex-II, Virtex-II Pro, Virtex-II Pro X, and Virtex-4.

NODELAY can be attached to the I/O symbols and the special function access symbols
TDI, TMS, and TCK.

NODELAY Propagation Rules
NODELAY is illegal when attached to a net or signal except when the net or signal is
connected to a pad. In this case, NODELAY is treated as attached to the pad instance.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com NODELAY 205
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

When attached to a design element, NODELAY is propagated to all applicable elements in
the hierarchy within the design element.

NODELAY Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a valid instance

• Attribute Name: NODELAY

• Attribute Values: TRUE, FALSE

VHDL

Before using NODELAY, declare it with the following syntax:

attribute nodelay: string;

After NODELAY has been declared, specify the VHDL constraint as follows:

attribute nodelay of {component_name|signal_name|label_name}:
{component|signal|label} is “true”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute nodelay [of]
{module_name|instance_name|signal_name} [is] true;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

The following statement specifies that IOB register inreg67 not have an input delay.

INST “$1I87/inreg67” NODELAY;

The following statement specifies that there be no input delay to the pad that is attached to
net1.

NET “net1” NODELAY;

XCF

BEGIN MODEL “entity_name”

 NET "signal_name" nodelay=true;

 INST "instance_name" nodelay=true;

END;
Constraints Guide www.xilinx.com NODELAY 206
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

NOREDUCE

NOREDUCE Architecture Support
The following table shows whether the constraint may be used with that device.

NOREDUCE Applicable Elements
Any net

NOREDUCE Description
NOREDUCE is a fitter and synthesis constraint. It prevents minimization of redundant
logic terms that are typically included in a design to avoid logic hazards or race conditions.
NOREDUCE also identifies the output node of a combinatorial feedback loop to ensure
correct mapping. When constructing combinatorial feedback latches in a design, always
apply NOREDUCE to the latch’s output net and include redundant logic terms when
necessary to avoid race conditions.

NOREDUCE Propagation Rules
NOREDUCE is a net or signal constraint. Any attachment to a design element is illegal.

NOREDUCE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex No

Virtex-E No

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 No

Spartan-II No

Spartan-IIE No

Spartan-3 No

Spartan-3E No

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com NOREDUCE 207
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Schematic

• Attach to a net

• Attribute Name: NOREDUCE

• Attribute Values: TRUE, FALSE

VHDL

Before using NOREDUCE, declare it with the following syntax:

attribute noreduce: string;

After NOREDUCE has been declared, specify the VHDL constraint as follows:

attribute noreduce of signal_name: signal is “yes”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute noreduce [of] signal_name [is] “yes”;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

ABEL

mysignal NODE istype 'retain’;

UCF and NCF

The following statement specifies that there be no Boolean logic reduction or logic collapse
from the net named $SIG_12 forward.

NET “$SIG_12” NOREDUCE;

XCF

BEGIN MODEL “entity_name”

NET “signal_name” noreduce={yes|no|true|false};

END;
Constraints Guide www.xilinx.com NOREDUCE 208
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

OFFSET

OFFSET Architecture Support

OFFSET Applicable Elements
Global, nets, time groups

OFFSET Description
OFFSET is a basic timing constraint. It specifies the timing relationship between an
external clock and its associated data-in or data-out pin. OFFSET is used only for pad-
related signals, and cannot be used to extend the arrival time specification method to the
internal signals in a design. A clock that comes from an internal signal is one generated
from a synch element, like a FF. A clock that comes from a PAD and goes through a DLL,
DCM, clock buffer, or combinatorial logic is supported.

Uses of OFFSET

OFFSET allows you to:

• Calculate whether a setup time is being violated at a flip-flop whose data and clock
inputs are derived from external nets.

• Specify the delay of an external output net derived from the Q output of an internal
flip-flop being clocked from an external device pin.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com OFFSET 209
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Advantages of OFFSET

Following are some of the advantages of OFFSET over a FROM:TO constraint:

• Includes the clock path delay for each individual synchronous element

• Includes clock phase introduced by a DLL/DCM for each individual synchronous
element

• Includes clock phase introduced by a rising or falling clock edge

• Subtracts the clock path delay from the data path delay for inputs and adds the clock
path delay to the data path delay for outputs

• Checks for hold time violations on inputs

• Includes paths for all synchronous element types (FFS, RAMS, CPUs, MULTS, HSIOS,
and LATCHES)

• Utilizes a global syntax that allows all inputs or outputs to be constrained by a clock

• Allows specifying IO constraints either directly as the setup and clock-to-out required
by a device (IN BEFORE and OUT AFTER) or indirectly as the time used by the path
external to the device (IN AFTER and OUT BEFORE)

Types of Offset Specifications

There are three types of offset specifications:

• Global

• Net-specific

• Group

For CPLD designs, clock inputs referenced by OFFSET constraints must be explicitly
assigned to a global clock pin (using either the BUFG symbol or applying the BUFG=CLK
constraint to an ordinary input). Otherwise, OFFSET will not be used during timing-
driven optimization of the design.

OFFSET Propagation Rules
OFFSET is a net constraint. Any attachment to a design element is illegal.

OFFSET Syntax

Global Method

UCF Syntax

OFFSET = {IN|OUT} “offset_time” [units] [VALID <datavalid time>]
{BEFORE|AFTER} “clk_name” [TIMEGRP “group_name”];

PCF Syntax

OFFSET = {IN|OUT} “offset_time” [units] [VALID <datavalid time>]
{BEFORE|AFTER} COMP “clk_iob_name” [TIMEGRP “group_name”];[HIGH/LOW]

where

• offset_time is the external differential between the initial clock edge and data
transition. For FPGA architectures the initial clock edge is defined by the period
Constraints Guide www.xilinx.com OFFSET 210
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

constraint keyword HIGH/LOW or the HIGH/LOW keyword on the OFFSET
constraint.

• HIGH/LOW or the HIGH/LOW keyword on the OFFSET constraint.

• units is an optional field that indicates the units for the offset time. The default units
are nanoseconds, but the timing number can be followed by ps, ns, us, ms to show the
intended units.

• The UCF syntax variable clk_name is the fully hierarchical net name of the clock net
between its pad and its input buffer.

• The PCF syntax variable clk_iob_name is the block name of the clock IOB.

• The optional TIMEGRP group_name defines a group of registers that will be analyzed.
By default, all registers clocked by clk_name will be analyzed.

• IN | OUT specifies that the offset is computed with respect to an input IOB or an
output IOB. For a bidirectional IOB, the IN |OUT syntax lets you specify the flow of
data (input or output) on the IOB.

• BEFORE | AFTER describe data arrival in relation to the current clock or the next
clock edge.

• BEFORE defines the relationship between data arrival and the next clock edge. For
example, OFFSET IN BEFORE indicates that data will be valid at the input pin of a
Xilinx device at a specified time before the next clock edge arrives at the Xilinx device.

• AFTER defines the relationship between data arrival and the current clock edge. For
example, OFFSET IN AFTER indicates that data will be valid at the input of a Xilinx
device at a specified amount of time AFTER the current clock edge on the upstream
device.

• All inputs/outputs are offset relative to clk_name or clk_iob_name. For example,
OFFSET= IN 20 ns BEFORE clk1 dictates that all inputs will have data present at the
pad at least 20 ns before the initial edge of clk1 arrives at the pad.

• VALID defines how long the data will be valid. By default, it is equal to the offset
time, which specifies a zero hold time requirement. If the data is available after the
clock edge, use the VALID keyword to define the entire data valid window. VALID
must be larger or equal to the offset time. For more information, see “Timing
Constraint Strategies” in Chapter 4.

• HIGH/LOW can be used to override the HIGH/LOW keyword defined on the
PERIOD constraint. This is useful for DDR designs when one signal is captured by a
rising or falling clock edge FF for setup or created by a rising or falling clock edge FF
for CLOCK-TO-OUT. For more information, see “Source Synchronous Timing” in
“Timing Constraint Strategies” in Chapter 4.

Net-Specific Method

OFFSET can also be used to specify a constraint for a specific data net in a UCF file or
schematic or a specific input or output component in a PCF file.

Schematic Syntax When Attached to a Net

OFFSET = {IN|OUT} “offset_time” [units] {BEFORE|AFTER} “clk_name”
[TIMEGRP “group_name”]

UCF Syntax

 NET “pad_net_name” OFFSET = {IN|OUT} “offset_time” [units]
{BEFORE|AFTER} “clk_name” [TIMEGRP “group_name”];
Constraints Guide www.xilinx.com OFFSET 211
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

PCF Syntax

 COMP “pad_net_name” OFFSET = {IN|OUT} “offset_time” [units]
{BEFORE|AFTER} COMP “clk_iob_name” [TIMEGRP “group_name”];

where

• pad_net_name is the name of the net attached to the pad

• offset_time is the external differential between the initial clock edge and data transition

• units is an optional field that indicates the units for offset time. The default units are in
nanoseconds, but the timing number can be followed by ps, ns, us to indicate the
intended units

• clk_iob_name is the block name of the clock IOB

The PCF file uses IO blocks (comps) instead of nets.

If COMP “iob_name“ is omitted in the PCF or NET “name” is omitted in the UCF, the
specification is assumed to be global.

It is possible for one offset constraint to generate multiple data and clock paths (for
example, when both data and clock inputs have more than a single sequential element in
common).

OFFSET Examples

The OFFSET examples in this section apply to the following figures.

Figure 50-1: OFFSET Example Schematic

Figure 50-2: OFFSET IN Timing Diagram

CLK

DATA
TSUDATA_IN

CLK_SYS

TCLK

TDATA TQ

TCO

Q_OUTQ

COMP

FPGA Boundary

X8737

DATA_IN

CLK_SYS

TIN_AFTER TIN_BEFORE

TP

X8735
Constraints Guide www.xilinx.com OFFSET 212
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Example One: OFFSET IN BEFORE

OFFSET IN BEFORE defines the available time for data to propagate from the pad and
setup at the synchronous element (COMP). The time can be thought of as the time
differential of data arriving at the edge of the device before the next clock edge arrives at
the device. See Figure 50-1 and Figure 50-2. The equation that defines this relationship is as
follows.

TDATA + TSU - TCLK < TIN_BEFORE

For example, if TIN_BEFORE equals 20 ns, the following syntax applies.

Schematic syntax attached to DATA_IN

OFFSET=IN 20.0 BEFORE “CLK_SYS”

UCF syntax

NET “DATA_IN” OFFSET=IN 20.0 BEFORE “CLK_SYS”;

PCF syntax

COMP “DATA_IN” OFFSET=IN 20.0 ns BEFORE COMP “CLK_SYS”;

This constraint indicates that the data will be present on the DATA_IN pad at least 20 ns
before the triggering edge of the clock net arrives at the clock pad.

To ensure that the timing requirements are met, the timing analysis software verifies that
the maximum delay along the path DATAIN to COMP (minus the 20.0 ns offset) would be
less than or equal to the minimum delay along the reference path CLOCK to COMP.

Example Two : OFFSET IN AFTER

This constraint describes the time used by the data external to the FPGA. OFFSET subtracts
this time from the PERIOD declared for the clock to determine the available time for the
data to propagate from the pad and setup at the synchronous element. The time can be
thought of as the differential of data arriving at the edge of the device after the current
clock edge arrives at the edge of the device. See Figure 50-1 and Figure 50-2. The equation
that defines this relationship is as follows.

 TDATA + TSU - TCLK < TP - TIN_AFTER

TP is the clock period.

For example, if TIN_AFTER equals 30 ns, the following syntax applies.

Schematic syntax attached to DATA_IN

OFFSET=IN 30.0 AFTER “CLK_SYS”

UCF syntax

NET “DATA_IN” OFFSET=IN 30.0 AFTER “CLK_SYS”;

PCF syntax

COMP “DATA_IN” OFFSET=IN 30.0 ns AFTER COMP “CLK_SYS”;

This constraint indicates that the data will arrive at the pad of the device (COMP) no more
than 30 ns after the triggering edge of the clock arrives at the clock pad. The path DATA_IN
to COMP would contain the setup time for the COMP data input relative to the CLK_SYS
input.

Verification is almost identical to Example One, except that the offset margin (30.0 ns) is
added to the data path delay. This is caused by the data arriving after the reference input.
Constraints Guide www.xilinx.com OFFSET 213
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The timing analysis software verifies that the data can be clocked in prior to the next
triggering edge of the clock.

A PERIOD or FREQUENCY is required only for offset OUT constraints with the BEFORE
keyword, or for offset IN with the AFTER keyword.

Example Three : OFFSET OUT AFTER

This constraint defines the time available for the data to propagate from the synchronous
element to the pad. This time can also be considered as the differential of data leaving the
edge of the device after the current clock edge arrives at the edge of the device. See
Figure 50-1 and Figure 50-3.

The equation that defines this relationship is as follows.

 TQ + TCO + TCLK < TOUT_AFTER

For example, if TOUT_AFTER equals 35 ns, the following syntax applies.

Schematic syntax attached to Q_OUT

OFFSET=OUT 35.0 AFTER “CLK_SYS”

UCF syntax

NET “Q_OUT” OFFSET=OUT 35.0 AFTER “CLK_SYS”;

PCF syntax

COMP “Q_OUT” OFFSET=OUT 35.0 ns AFTER COMP “CLK_SYS”;

This constraint calls for the data to leave the FPGA 35 ns after the present clock input
arrives at the clock pad. The path COMP to Q_OUT would include the CLOCK-to-Q delay
(component delay).

Verification involves ensuring that the maximum delay along the reference path (CLK_SYS
to COMP) and the maximum delay along the data path (COMP to Q_OUT) does not
exceed the specified offset.

Example Four: OFFSET OUT BEFORE

This constraint defines the time used by the data external to the FPGA. OFFSET subtracts
this time from the clock PERIOD to determine the available time for the data to propagate
from the synchronous element to the pad. The time can also be considered as the
differential of data leaving the edge of the device before the next clock edge arrives at the
edge of the device. See Figure 50-1 and Figure 50-3.

Figure 50-3: OFFSET OUT Timing Diagram

Q_OUT

CLK_SYS

TOUT_AFTER

TP

TOUT_BEFORE

X8736
Constraints Guide www.xilinx.com OFFSET 214
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The equation that defines this relationship is:

 TQ + TCO + TCLK < TP - TOUT_BEFORE

For example, if TOUT_BEFORE equals 15 ns, the following syntax applies.

Schematic syntax attached to Q_OUT

OFFSET=OUT 15.0 BEFORE “CLK_SYS”

UCF syntax

NET “Q_OUT” OFFSET=OUT 15.0 BEFORE “CLK_SYS”;

PCF syntax

COMP “Q_OUT” OFFSET=OUT 15.0 ns BEFORE COMP “CLK_SYS”;

This constraint states that the data clocked to Q_OUT must leave the FPGA 15 ns before the
next triggering edge of the clock arrives at the clock pad. The path COMP to Q_OUT
includes the CLK_SYS-to-Q delay (component delay). The data clocked to Q_OUT will
leave the FPGA 15.0 ns before the next clock input.

Verification involves ensuring that the maximum delay along the reference path (CLK_SYS
to COMP) and the maximum delay along the data path (COMP to Q_OUT) do not exceed
the clock period minus the specified offset.

As in Example Two, a PERIOD or FREQUENCY constraint is required only for offset OUT
constraints with the BEFORE keyword, or for offset IN with the AFTER keyword.

Input/Output Group Method

Group inputs and outputs into a single timegrp when they have the same timing
requirement. A single timegrp reduces place and route runtime, static timing runtime,
and memory usage, and generates a smaller report.

TIMEGRP “name” OFFSET={IN | OUT} offset_time [units] {BEFORE | AFTER}
"clk_net" [TIMEGRP "reggroup"];

where

• group is the name of a time group containing IOB components (UCF) or pad BELs
(PCF)

• offset_time is the external offset

• units is an optional field to indicate the units for the offset time. The default is
nanoseconds, but the timing number can be followed by ps, ns, us, ms, GHz, MHz, or
kHz to indicate the intended units.

• IN or OUT specifies that the offset is computed with respect to an input IOB or an
output IOB. For a bidirectional IOB, the IN or OUT lets you specify the flow of data
(input output) on the IOB.

• BEFORE or AFTER indicates whether the data is to arrive (input) or leave (output) the
device before or after the clock input

• clk_net is the fully hierarchical netname of the clock net between the pad and its input
buffer. All inputs/outputs are offset relative to clk_net

• reggroup previously defined time group of register BELs

Valid HIGH/LOW

Only registers in the time group clocked by the specified IOB component is checked
against the specified offset time. The optional time group qualifier, TIMEGRP "reggroup,"
Constraints Guide www.xilinx.com OFFSET 215
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

can be added to any OFFSET constraint to indicate that the offset applies only to registers
specified in the qualifying group. When used with the "Register Group method," the
"register time" group lists the synchronous elements that qualify which register elements
clocked by "clk_net" get analyzed.

Register Group Method

A clock register time group allows you to define a specific set of registers to which an
OFFSET constraint applies based on a clock edge. Consider the following example.

You can define time groups for the registers A, B and C, even though these registers have
the same data and clock source. The syntax is as follows.

UCF /PCF Syntax

TIMEGRP “B”=RISING FFS; TIMEGRP “C”=FALLING FFS;

Schematic Syntax Attached to DATA

OFFSET=IN 10 BEFORE “CLOCK” TIMEGRP “AB”

OFFSET=IN 20 BEFORE “CLOCK” TIMEGRP “C”

UCF Syntax

NET “DATA” OFFSET=IN 10 BEFORE “CLOCK” TIMEGRP “AB”;

NET “DATA” OFFSET=IN 20 BEFORE “CLOCK” TIMEGRP “C”;

PCF Syntax

COMP “DATA” OFFSET=IN 10 BEFORE COMP “CLOCK” TIMEGRP “AB”;

COMP “DATA” OFFSET=IN 20 BEFORE COMP “CLOCK” TIMEGRP “C”;

Even though the registers A, B and C have a common data and clock source, timing
analysis applies two different offsets (10 ns and 20 ns). Registers A and B belong to the
offset with 10 ns, and Register C belongs to the offset with 20 ns.

Figure 50-4: Using Timegroups with Registers

X8458

CBA

DATA

CLOCK
Constraints Guide www.xilinx.com OFFSET 216
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

However, you must use some caution when using timegroups with registers. Consider the
following diagram.

This circuit is identical to Figure 50-4 except that an inverter has been inserted in the path
to Register B. In this instance, even though this register is a member of the time group
whose offset triggers on the rising edge, the addition of the inverter classifies register B as
triggering on the falling edge like Register C.

Normally, the tools will move an inverter to the register, in which case, B would be a part
of the timegroup “Falling”. However if the clock is gated with logic that inverts, then the
inverter will not become part of the register. In that case, one way to solve this problem is
to create a timegroup with an exception for Register B.

For more information, see “Creating Groups by Exclusion” in the “TIMEGRP” constraint.

OFFSET Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a specific net

• Attribute Name: OFFSET

• Attribute Values: IN|OUT offset_time BEFORE|AFTER clk_pad_netname

VHDL

Not applicable. Use OFFSET_IN_BEFORE, OFFSET_OUT_AFTER.

Verilog

Not applicable. Use OFFSET_IN_BEFORE, OFFSET_OUT_AFTER.

Figure 50-5: Problematic Timegroup Definition

X8459

CBA

DATA

CLOCK
Constraints Guide www.xilinx.com OFFSET 217
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF

UCF syntax

TIMEGRP “name” OFFSET = {IN|OUT} offset_time [units] {BEFORE|AFTER}
“clk_name” [TIMEGRP “group_name”];

The following example specifies that the data will be present on input43 at least 20 ns
before the triggering edge of the clock signal CLOCK.

NET “input43” OFFSET=IN 20 BEFORE “CLOCK”;

XCF

Same as the UCF syntax.

Only OFFSET IN BEFORE and OFFSET OUT AFTER are supported. Two methods with
some limitations are supported:

• Global method without TIMEGRP specification

OFFSET = IN 3 ns BEFORE clk;

OFFSET = OUT 3 ns AFTER clk;

• Net-specific method without TIMEGRP specification

NET STRTSTOP OFFSET = IN 3 ns BEFORE clk;

NET ONESOUT OFFSET = OUT 3 ns AFTER clk;

Alternate Method is not yet supported.

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

Set the OFFSET IN BEFORE constraint by setting Pad to Setup times in the Global, Ports, or
Advanced tab.

Set the OFFSET OUT AFTER constraint by setting Clock to Pad times in the Global, Ports,
or Advanced tabs.

PCF

See “OFFSET Syntax” in this chapter.

OFFSET -- Constraining Dual Data Rate (DDR) IOs

OFFSET OUT CONSTRAINTS -- DDR

The OFFSET OUT constraint is with respect to only a single edge of the input clock pad.
Therefore, if you are using multiple clock phases (as is typically the case with source
synchronous designs), the OFFSET OUT constraint must be manually adjusted by the
clock phase.

Assume all outputs will be with respect to the rising edge of clk_p (this is specified as the
HIGH keyword in the period constraint), and the clock to output budget allows for 6.0ns
for the main data path. Therefore, the tx_data clocked by clk0 should reach the pad 6.0ns
after a rising edge at the clock input pad, clk_p. The design clocks out DDR data, which is
Constraints Guide www.xilinx.com OFFSET 218
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

driven by clk0 and local inversion (~clk0). Therefore, the tx_data clocked by ~clk0 should
reach the pad 6.0ns + ½ clock cycle after a rising edge at clk_p.

This source synchronous design requires that the forwarded clock (tx_clk) be sent center-
aligned with data (tx_data). Therefore, tx_clk is forwarded by clk90 and clk270. It is expected
that the rising edge of tx_clk will reach the pad 6.0ns + ¼ clock cycle after a rising edge at
clk_p. Likewise, the falling edge should occur 6.0ns + ¾ clock cycle after a rising edge at
clk_p.

The Xilinx tools do not automatically adjust any of the clock phases for you. Therefore,
they must be manually adjusted when creating the IO constraints.

In this sample design, there is additional test logic (test_port) driven off the clk0 domain.
This logic is non-timing critical, and is not registered in the IOB (perhaps due to IO
placement restrictions or some other reason). Therefore, the clock to output budget allows
10.0ns for these signals.

There are several ways that these output paths might be constrained, one example is listed
below:

Create main PERIOD constraint. This is required in order
to pass the phase keyword to each of the derived clocks
(clk0, clk90, clk270)
Note that the HIGH keyword indicates all transitions are with respect
to the rising clock edge of clk_p.

NET “clk_p” TNM_NET = “CLK”;
TIMESPEC “TS_CLK” = PERIOD “CLK” 8.0 ns HIGH 50%;

Create separate timing groups based off each clock domain

NET “clk0” TNM = “CLK0_GRP_DDR” ;
NET “clk90” TNM = “CLK90_GRP” ;
NET “clk270” TNM = “CLK270_GRP” ;

clk0 contains both rising and falling clock edges. Therefore
break the clk0 group (CLK0_GRP_DDR) into two timing groups – required
to constrain each group separately.

TIMEGRP “CLK0_GRP_ALL” = RISING “CLK0_GRP_DDR” ; # clk0 registers
TIMEGRP “CLK180_GRP” = FALLING “CLK0_GRP_DDR” ; # ~clk0 registers

The new clk0 group (CLK0_GRP_ALL) contains both the tx_data ports that
should be constrained, but also the test_port signals that are slower.
Add these slower signals to their own group, and remove them from
the main clk0 group.

INST “test_port” TNM = “TEST_GRP” ;
TIMEGRP “CLK0_GRP” = “CLK0_GRP_ALL” EXCEPT “TEST_GRP” ;

Now that all groups are created, generate the OFFSET constraints.
Recall that the OFFSET constraints must be manually adjusted to
account for the clock phase. In this design, clock cycle = 8.0ns (as
defined by the PERIOD).

OFFSET = OUT 6.0 ns AFTER “clk_p” TIMEGRP “CLK0_GRP” ; #6.0ns
OFFSET = OUT 8.0 ns AFTER “clk_p” TIMEGRP “CLK90_GRP” ;
#6.0ns + ¼ clock cycle

OFFSET = OUT 10.0 ns AFTER “clk_p” TIMEGRP “CLK180_GRP”;
#6.0ns + ½ clock cycle

OFFSET = OUT 12.0 ns AFTER “clk_p” TIMEGRP “CLK270_GRP”;
#6.0ns + ¾ clock cycle

OFFSET = OUT 10.0 ns AFTER “clk_p” TIMEGRP “TEST_GRP” ; #10.0ns
Constraints Guide www.xilinx.com OFFSET 219
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The resulting timing report should show the data path, the clock path, and also include the
clock arrival time (clock phase). The timing report for clk0 and clk180 shows:

==

Timing constraint: OFFSET = OUT 6 nS AFTER COMP "clk_p" TIMEGRP
"CLK0_GRP" ;

4 items analyzed, 0 timing errors detected.

Minimum allowable offset is 5.097ns.

--

Slack: 0.903ns (requirement - (clock arrival + clock path + data path))
Source: clk_p (PAD)
Destination: tx_data<0> (PAD)
Source Clock: clk0 rising at 0.000ns
Requirement: 6.000ns
Data Path Delay: 5.667ns (Levels of Logic = 0)
Clock Path Delay: -0.570ns (Levels of Logic = 3)

==

Timing constraint: OFFSET = OUT 10 nS AFTER COMP "clk_p" TIMEGRP
"CLK180_GRP" ;

4 items analyzed, 0 timing errors detected.

Minimum allowable offset is 9.097ns.

--

Slack: 0.903ns (requirement - (clock arrival + clock path + data path))
Source: clk_p (PAD)
Destination: tx_data<0> (PAD)
Source Clock: clk0 falling at 4.000ns
Requirement: 10.000ns
Data Path Delay: 5.667ns (Levels of Logic = 0)
Clock Path Delay: -0.570ns (Levels of Logic = 3)

As can be seen, the CLK0_GRP is clocked out at time 0ns by the clk0 clock. Likewise, the
CLK180_GRP is clocked out at ½ clock cycle (8.0ns / 2 = 4.0ns) by the falling edge of clk0.

Similarly, the CLK90_GRP should be clocked out at ¼ clock cycle (8.0ns / 4 = 2.0ns) by
clk90 clock. The CLK270_GRP should be clocked out at ¾ clock cycle (8.0ns * ¾ = 6.0ns) by
clk270 clock.

==

Timing constraint: OFFSET = OUT 8 nS AFTER COMP "clk_p" TIMEGRP
"CLK90_GRP" ;

1 item analyzed, 0 timing errors detected.
Minimum allowable offset is 5.104ns.

--

Slack: 2.896ns (requirement - (clock arrival + clock path + data path))
Source: clk_p (PAD)
Destination: tx_clk (PAD)
Source Clock: clk90 rising
Requirement: 8.000ns
Data Path Delay: 5.667ns (Levels of Logic = 0)
Clock Path Delay: -0.563ns (Levels of Logic = 3)
Constraints Guide www.xilinx.com OFFSET 220
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

If you have items analyzed in the clk90 period, then the report would look as expected:

==

Timing constraint: OFFSET = OUT 8 nS AFTER COMP "clk_p" TIMEGRP
"CLK90_GRP" ;

1 item analyzed, 0 timing errors detected.

Minimum allowable offset is 5.104ns.

--

Slack: 2.896ns (requirement - (clock arrival + clock path + data path))
Source: clk_p (PAD)
Destination: tx_clk (PAD)
Source Clock: clk90 rising at 2.000ns
Requirement: 8.000ns
Data Path Delay: 5.667ns (Levels of Logic = 0)
Clock Path Delay: -0.563ns (Levels of Logic = 3)

Finally, if the LOW keyword was specified in the period constraint:

NET “clk_p” TNM_NET = “CLK”;
TIMESPEC “TS_CLK” = PERIOD “CLK” 8.0 ns LOW 50%;

Then all output constraints would be with relation to the falling edge of clk_p. For the
above example, all constraints would now be shifted – the clk180 constraint would now
occur at time 0ns, clk270 at ¼ clock cycle, clk0 at ½ clock cycle, and clk90 at ¾ clock cycle.

==

Timing constraint: OFFSET = OUT 10 nS AFTER COMP "clk_p" TIMEGRP
"CLK0_GRP" ;

4 items analyzed, 0 timing errors detected.

Minimum allowable offset is 9.097ns.

--

Slack: 0.903ns (requirement - (clock arrival + clock path + data path))
Source: clk_p (PAD)
Destination: tx_data<0> (PAD)
Source Clock: clk0 rising at 4.000ns
Requirement: 10.000ns
Data Path Delay: 5.667ns (Levels of Logic = 0)
Clock Path Delay: -0.570ns (Levels of Logic = 3)

==

Timing constraint: OFFSET = OUT 12 nS AFTER COMP "clk_p" TIMEGRP
"CLK90_GRP" ;

1 item analyzed, 0 timing errors detected.

Minimum allowable offset is 11.152ns.

--

Slack: 0.848ns (requirement - (clock arrival + clock path + data path))
Source: clk_p (PAD)
Destination: tx_clk (PAD)
Source Clock: clk90 rising at 6.000ns
Requirement: 12.000ns
Data Path Delay: 5.667ns (Levels of Logic = 0)
Clock Path Delay: -0.515ns (Levels of Logic = 3)

==

Timing constraint: OFFSET = OUT 6 nS AFTER COMP "clk_p" TIMEGRP
"CLK180_GRP" ;
Constraints Guide www.xilinx.com OFFSET 221
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

4 items analyzed, 0 timing errors detected.

Minimum allowable offset is 5.097ns.

--

Slack: 0.903ns (requirement - (clock arrival + clock path + data path))
Source: clk_p (PAD)
Destination: tx_data<0> (PAD)
Source Clock: clk0 falling at 0.000ns
Requirement: 6.000ns
Data Path Delay: 5.667ns (Levels of Logic = 0)
Clock Path Delay: -0.570ns (Levels of Logic = 3)

==

Timing constraint: OFFSET = OUT 8 nS AFTER COMP "clk_p" TIMEGRP
"CLK270_GRP" ;

1 item analyzed, 0 timing errors detected.

Minimum allowable offset is 7.140ns.

--

Slack: 0.860ns (requirement - (clock arrival + clock path + data path))
Source: clk_p (PAD)
Destination: tx_clk (PAD)
Source Clock: clk270 rising at 2.000ns
Requirement: 8.000ns
Data Path Delay: 5.667ns (Levels of Logic = 0)
Clock Path Delay: -0.527ns (Levels of Logic = 3)

OFFSET IN CONSTRAINTS

Similar to the OFFSET OUT constraint, the OFFSET IN constraint is with respect to either
the rising or falling clock edge of the clock pad. Therefore, if you are using multiple clock
phases, the OFFSET IN constraint must be manually adjusted by the clock phase.

As an example, assume the following circuit:

Assume all outputs will be with respect to the rising edge of clk_p (specified as the HIGH
keyword in the period constraint), and the input setup budget is 2.0ns. Therefore, the data
should be stable on din 2.0ns before the rising edge of clk_p. This input flop captures DDR
data, and the falling edge data will likewise be valid 2.0ns before the falling edge of clk_p.
Recall that the OFFSET constraint is only with respect to one clock edge (in this example
the rising). The falling edge data will not be stable until ½ clock cycle after the rising edge
of clk_p. Therefore, subtract ½ clock cycle from the OFFSET constraint.

There are several ways that these input paths may be constrained. One example is listed
below:

Create main PERIOD constraint.

NET clk_p TNM_NET = CLK;
TIMESPEC TS_CLK = PERIOD CLK 8.0 ns HIGH 50%;

Create separate timing groups based off each clock domain

NET clk0 TNM = CLK0_GRP_DDR;
TIMEGRP CLK0_GRP = RISING CLK0_GRP_DDR ; # clk0 registers
TIMEGRP CLK180_GRP = FALLING CLK0_GRP_DDR ; # ~clk0 registers

Now that all groups are created, generate the OFFSET constraints.
Recall that the OFFSET constraints must be manually adjusted to
account for the clock phase.
Constraints Guide www.xilinx.com OFFSET 222
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

OFFSET = IN 2.0 ns BEFORE clk_p TIMEGRP CLK0_GRP ; # 2.0ns
OFFSET = IN -2.0 ns BEFORE clk_p TIMEGRP CLK180_GRP ;
2.0ns – ½ clock cycle

For the rising edge data, these constraints state that data will be valid 2.0ns before the
rising edge of clk_p. Because the rising edge is defined in the period constraint, the falling
edge data must also be with respect to this edge. Therefore, the falling edge data will not be
valid until 2.0ns after the clk_p, which generates a negative offset before constraint.

==

Timing constraint: OFFSET = IN 2 nS BEFORE COMP "clk_p" TIMEGRP
"CLK0_GRP" ;

4 items analyzed, 0 timing errors detected.

Minimum allowable offset is 1.488ns.

--

Slack: 0.512ns (requirement - (data path - clock path - clock arrival))
Source: din<0> (PAD)
Destination: doutp_d1_0 (FF)
Destination Clock: clk0 rising at 0.000ns
Requirement: 2.000ns
Data Path Delay: 0.918ns (Levels of Logic = 0)
Clock Path Delay: -0.570ns (Levels of Logic = 3)

==

Timing constraint: OFFSET = IN -2000 pS BEFORE COMP "clk_p" TIMEGRP
"CLK180_GRP" ;

4 items analyzed, 0 timing errors detected.

Offset is -2.512ns.

Negative offset in this situation may cause a hold violation.

--
Slack: 0.512ns (requirement - (data path - clock path - clock arrival))
Source: din<0> (PAD)
Destination: doutn_d1_0 (FF)
Destination Clock: clk0 falling at 4.000ns
Requirement: -2.000ns
Data Path Delay: 0.918ns (Levels of Logic = 0)
Clock Path Delay: -0.570ns (Levels of Logic = 3)

The timing tools report that the negative offset may cause a hold violation. However, this
warning was put in the tools to flag non-DDR designs where the user has a data path that
is less than the clock path. In the DDR case, this does not hold true as can be seen from the
OFFSET IN constraint reports above – the data path is always longer than the clock path –
and this warning can safely be ignored.

If the LOW keyword is given, the same rules will apply as existed for the OFFSET OUT
case. The clk0 clock arrival time will now be rising at 4.0ns, and the clk180 falling time will
be at 0ns.

Sample Verilog source code is given in “Verilog Source Code--DDR.” This code combines
the two previous figures into a simple test design. “UCF File -- DDR” contains the
corresponding constraints (UCF) file.
Constraints Guide www.xilinx.com OFFSET 223
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Verilog Source Code--DDR

‘define WIDTH 4
module test
(
clk_p,
din,
rst,
tx_data,
tx_clk,
test_port
);
input clk_p;
input [‘WIDTH-1:0] din;
input rst;
output [‘WIDTH-1:0] tx_data;
output tx_clk;
output test_port;
reg test_port;
reg [‘WIDTH-1:0] doutp;

reg [‘WIDTH-1:0] doutn;
reg [‘WIDTH-1:0] doutp_d1;
reg [‘WIDTH-1:0] doutn_d1;

wire clk_ibuf;
wire clk0_unbuf;
wire clk90_unbuf;
wire clk270_unbuf;
wire clk0;
wire clk90;
wire clk180;
wire clk270;

IBUFG CLK_IBUF (.I(clk_p), .O(clk_ibuf));
DCM DCM_A (.CLKIN (clk_ibuf),

.CLKFB (clk0),

.CLK0 (clk0_unbuf),

.CLK90 (clk90_unbuf),

.CLK180 (),

.CLK270 (clk270_unbuf));
BUFG CLK0_BUF (.I(clk0_unbuf), .O(clk0));
BUFG CLK90_BUF (.I(clk90_unbuf), .O(clk90));
BUFG CLK270_BUF (.I(clk270_unbuf), .O(clk270));

assign clk180 = ~clk0;

always @(posedge clk0 or posedge rst)
begin

if (rst)
doutp_d1 <= 0;

else
doutp_d1 <= din;

end

always @(posedge clk0)
begin

doutp <= doutp_d1;
end
Constraints Guide www.xilinx.com OFFSET 224
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

always @(posedge clk180 or posedge rst)
begin

if (rst)
doutn_d1 <= 0;

else
doutn_d1 <= din;

end

always @(posedge clk180)
begin

doutn <= doutn_d1;
end

always @(posedge clk0)
begin

test_port <= doutp_d1[0] & doutn_d1[0];
end

FDDRRSE U0_DDR (
.D0(doutp[0]),
.D1(doutn[0]),
.C0(clk0),
.C1(clk180),
.CE(1’b1),
.R(1’b0),
.S(1’b0),
.Q(tx_data[0])

);

FDDRRSE U1_DDR (
.D0(doutp[1]),
.D1(doutn[1]),
.C0(clk0),
.C1(clk180),
.CE(1’b1),
.R(1’b0),
.S(1’b0),
.Q(tx_data[1])

);

FDDRRSE U2_DDR (
.D0(doutp[2]),
.D1(doutn[2]),
.C0(clk0),
.C1(clk180),
.CE(1’b1),
.R(1’b0),
.S(1’b0),
.Q(tx_data[2])

);

FDDRRSE U3_DDR (
.D0(doutp[3]),
.D1(doutn[3]),
.C0(clk0),
.C1(clk180),
.CE(1’b1),
.R(1’b0),
Constraints Guide www.xilinx.com OFFSET 225
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

.S(1’b0),

.Q(tx_data[3])
);

FDDRRSE CLK_DDR (
.D0(1’b1),
.D1(1’b0),
.C0(clk90),
.C1(clk270),
.CE(1’b1),
.R(1’b0),
.S(1’b0),
.Q(tx_clk)

);

endmodule

UCF File -- DDR

Create main PERIOD constraint. This is required in order
to pass the phase keyword to each of the derived clocks
(clk0, clk90, clk270)
Note that the HIGH keyword indicates all transitions are with respect
to the rising clock edge of clk_p.

NET "clk_p" TNM_NET = "CLK";
TIMESPEC "TS_CLK" = PERIOD "CLK" 8.0 ns HIGH 50%;

Create separate timing groups based off each clock domain

NET "clk0" TNM = "CLK0_GRP_DDR" ;
NET "clk90" TNM = "CLK90_GRP" ;
NET "clk270" TNM = "CLK270_GRP" ;

clk0 contains both rising and falling clock edges. Therefore
break the clk0 group (CLK0_GRP_DDR) into two timing groups - required
to constrain each group separately.

TIMEGRP "CLK0_GRP_ALL" = RISING "CLK0_GRP_DDR" ; # clk0 registers
TIMEGRP "CLK180_GRP" = FALLING "CLK0_GRP_DDR" ; # ~clk0 registers

The new clk0 group (CLK0_GRP_ALL) contains both the tx_data ports that
should be constrained, but also the test_port signals that are slower.
Add these slower signals to their own group, and remove them from
the main clk0 group.

INST "test_port" TNM = "TEST_GRP" ;
TIMEGRP "CLK0_GRP" = "CLK0_GRP_ALL" EXCEPT "TEST_GRP" ;

Now that all groups are created, generate the OFFSET constraints.
Recall that the OFFSET constraints must be manually adjusted to
account for the clock phase. In this design, clock cycle = 8.0ns (
as defined by the PERIOD).

OFFSET = OUT 6.0 ns AFTER "clk_p" TIMEGRP "CLK0_GRP" ; #6.0ns
OFFSET = OUT 8.0 ns AFTER "clk_p" TIMEGRP "CLK90_GRP" ;
#6.0ns + ¼ clock cycle

OFFSET = OUT 10.0 ns AFTER "clk_p" TIMEGRP "CLK180_GRP";
#6.0ns + ½ clock cycle

OFFSET = OUT 12.0 ns AFTER "clk_p" TIMEGRP "CLK270_GRP";
#6.0ns + ¾ clock cycle

OFFSET = OUT 10.0 ns AFTER "clk_p" TIMEGRP "TEST_GRP" ; #10.0ns
OFFSET = IN 2.0 ns BEFORE clk_p TIMEGRP CLK0_GRP ; # 2.0ns
Constraints Guide www.xilinx.com OFFSET 226
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

OFFSET = IN -2.0 ns BEFORE clk_p TIMEGRP CLK180_GRP ;
2.0ns - ½ clock cycle

OFFSET -- Constraining DDR Registers and Negative-Edge-to-Negative-
Edge Paths

When the timing tools are adding or subtracting half of the period to OFFSETs for DDR
flip-flops and negative-edge-clocked output flip-flops, you need to know how to constrain
these.

1. Group the negative groups separately, and then modify the constraint value to take the
difference between clock edges into account.

2. Assuming that the PERIOD constraint specifies a High starting edge for the negative
flip-flop groups, subtract half of the clock period from the OFFSET IN requirement and
add half of the clock period to the OFFSET OUT requirement.

For example:

NET "main_clk" TNM_NET = "main_clk";

TIMESPEC "TS_main_clk" = PERIOD "main_clk" 16 ns HIGH 50%;

INST DDR_inputs* TNM = IN_DDR; #IN_DDR includes only pads
INST DDR_outputs* TNM = OUT_DDR; #OUT_DDR includes only pads

TIMEGRP "falling_reg" = FALLING "main_clk";
#falling _reg includes synchronous elements

or you can use the following code:

INST "IN_DDR_01" TNM = "falling_reg";
#falling_reg includes synchronous elements

TIMEGRP "IN_DDR" OFFSET = IN 10 ns BEFORE "main_clk";

TIMEGRP "IN_DDR" OFFSET = IN 2 ns BEFORE "main_clk" TIMEGRP
"falling_reg"; (User Manually Adjusts the Requirement)

TIMEGRP "OUT_DDR" OFFSET = OUT 12 ns AFTER "main_clk";

TIMEGRP "OUT_DDR" OFFSET = OUT 20 ns AFTER "main_clk" TIMEGRP
"falling_reg"; (User Manually Adjusts the Requirement)

For duty cycles other than 50-50 that are specified with a HIGH PERIOD TIMESPEC, take
the difference from the rising edge to the falling edge and apply it to the negative edge
group. For a PERIOD that is specified as a Low starting edge, apply the falling-edge-to-
rising-edge time to the positive edge group.
Constraints Guide www.xilinx.com OFFSET 227
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

OPEN_DRAIN

OPEN_DRAIN Architecture Support

OPEN_DRAIN Applicable Elements
Output pads and pad nets.

OPEN_DRAIN Description
CoolRunner-II outputs can be configured to drive the primary macrocell output function
as an open-drain output signal on the pin. The OPEN_DRAIN constraint applies to non 3-
state (always active) outputs in the design. The output structure is configured as open-
drain so that a one state on the output signal in the design produces a high-Z on the device
pin instead of a driven High voltage.

The high-Z behavior associated with the OPEN_DRAIN constraint is not exhibited during
functional simulation, but will be represented accurately during post-fit timing simulation.

The logically-equivalent alternative to using the OPEN_DRAIN constraint is to take the
original output-pad signal in the design and use it as a 3-state disable for a constant-zero
output data value. The CPLD Fitter automatically optimizes all 3-state outputs with
constant-zero data value in the design to take advantage of the open-drain capability of the
device.

OPEN_DRAIN Propagation Rules
The constraint is a net or signal constraint. Any attachment to a macro, entity, or module is
illegal.

Virtex No

Virtex-E No

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 No

Spartan-II No

Spartan-IIE No

Spartan-3 No

Spartan-3E No

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II Yes
Constraints Guide www.xilinx.com OPEN_DRAIN 228
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

OPEN_DRAIN Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to an output pad net

• Attribute Name: OPEN_DRAIN

• Attribute Values: TRUE, FALSE

VHDL

Before using OPEN_DRAIN, declare it with the following syntax:

attribute OPEN_DRAIN: string;

After OPEN_DRAIN has been declared, specify the VHDL constraint as follows:

attribute OPEN_DRAIN of signal_name : signal is “TRUE”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute OPEN_DRAIN [of] signal_name [is] “TRUE”;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

ABEL

XILINX PROPERTY 'OPEN_DRAIN mysignal';

UCF and NCF File

NET “mysignal” OPEN_DRAIN;

XCF

BEGIN MODEL “entity_name”

 NET "signal_name" OPEN_DRAIN=true;

END;
Constraints Guide www.xilinx.com OPEN_DRAIN 229
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

OPT_EFFORT

OPT_EFFORT Architecture Support

OPT_EFFORT Applicable Elements
Any macro or hierarchy level.

OPT_EFFORT Description
OPT_EFFORT is a basic placement and routing constraint. It defines an effort level used by
the optimizer.

OPT_EFFORT Propagation Rules
OPT_EFFORT is a macro, entity, module constraint. Any attachment to a net or signal is
illegal.

OPT_EFFORT Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a macro

• Attribute Name: OPT_EFFORT

• Attribute Values: Default (Low), Lowest, Low, Normal, High, Highest

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com OPT_EFFORT 230
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF

The following statement attaches a High effort of optimization to all of the logic contained
within the module defined by instance $1I678/adder.

INST “$1I678/adder” OPT_EFFORT=HIGH;

Project Navigator

Define globally with the Place and Route Effort Level (Overall) option in the Place and
Route Properties tab of the Process Properties dialog box in the Project Navigator. The
default is Low.

With a design selected in the Sources window, right-click Implement Design in the
Processes window to access the appropriate Process Properties dialog box.
Constraints Guide www.xilinx.com OPT_EFFORT 231
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

OPTIMIZE

OPTIMIZE Architecture Support
The following table shows whether the constraint may be used with that device.

OPTIMIZE Applicable Elements
Any macro, entity, module or hierarchy level.

OPTIMIZE Description
OPTIMIZE is a basic mapping constraint. It defines whether optimization is performed on
the flagged hierarchical tree. OPTIMIZE has no effect on any symbol that contains no
combinatorial logic, such as an input or output buffer.

OPTIMIZE Propagation Rules
Applies to the macro, entity, or module to which it is attached.

OPTIMIZE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a design element

• Attribute Name: OPTIMIZE

• Attribute Values: AREA, SPEED, BALANCE, OFF

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com OPTIMIZE 232
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

VHDL

Before using OPTIMIZE, declare it with the following syntax:

attribute optimize string;

After OPTIMIZE has been declared, specify the VHDL constraint as follows:

attribute optimize of {entity_name:entity} is
“{area|speed|balance|off}”

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify OPTIMIZE as follows:

 // synthesis attribute optimize [of] module_name [is]
{area|speed|balance|off}

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

The following statement specifies that no optimization be performed on an instantiation of
the macro CTR_MACRO.

INST “/$1I678/CTR_MACRO” OPTIMIZE=OFF;

Project Navigator

Define globally with the Optimization Strategy (Cover Mode) option in the Map Properties
tab of the Process Properties dialog box in the Project Navigator. The default is Area.

With a design selected in the Sources window, right-click Implement Design in the
Processes window to access the appropriate Process Properties dialog box.
Constraints Guide www.xilinx.com OPTIMIZE 233
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

PERIOD

PERIOD Architecture Support
The following table shows whether the constraint may be used with that device.

Note: For XST, PERIOD applies to FPGA devices only.

PERIOD Applicable Elements
Nets that feed forward to drive flip-flop clock pins

PERIOD Description
PERIOD is a basic timing constraint and synthesis constraint. A clock period specification
checks timing between all synchronous elements within the clock domain as defined in the
destination element group. The group may contain paths that pass between clock domains
if the clocks are defined as a function of one or the other.

The period specification is attached to the clock net. The definition of a clock period is
unlike a FROM-TO style specification because the timing analysis tools automatically take
into account any inversions of the clock net at register clock pins, lock phase, and includes
all synchronous item types in the analysis. It also checks for hold violations.

A PERIOD constraint on the clock net in the following figure would generate a check for
delays on all paths that terminate at a pin that has a setup or hold timing constraint relative

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com PERIOD 234
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

to the clock net. This could include the data paths CLB1.Q to CLB2.D, as well as the path
EN to CLB2.EC (if the enable were synchronous with respect to the clock).

The timing tools do not check pad-to-register paths relative to setup requirements. For
example, in the preceding figure, the path from D1 to Pin D of CLB1 is not included in the
PERIOD constraint. The same is true for CLOCK_TO_OUT.

Special rules apply when using TNM and TNM_NET with the PERIOD constraint for
DLLs and DCMs. These rules are explained in “PERIOD Specifications on CLKDLLs and
DCMs.”

Preferred Method

The preferred method for defining a clock period allows more complex derivative
relationships to be defined as well as a simple clock period. The following constraint is
defined using the TIMESPEC keyword in conjunction with a TNM constraint attached to
the relevant clock net.

UCF Syntax

TIMESPEC “TSidentifier”=PERIOD “TNM_reference” period {HIGH | LOW}
[high_or_low_time]INPUT_JITTER;

where

• identifier is a reference identifier that has a unique name

• TNM_reference identifies the group of elements to which the period constraint applies.
This is typically the name of a TNM_NET that was attached to a clock net, but it can
be any TNM group or user group (TIMEGRP) that contains only synchronous
elements.

Figure 54-1: Paths for PERIOD Constraint

Interconnect
and Logic

Interconnect
and Logic

D

CLB1

R
Q D

CLB2

EC

Q

D0

D1

OUT0

OUT1

CLK

EN
X8533

PERIOD=100:HIGH:50
Constraints Guide www.xilinx.com PERIOD 235
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The following rules apply:

• The variable name period is the required clock period.

• The default units for period are nanoseconds, but the number can be followed by ps,
ns, us, or ms. The period can also be specified as a frequency value, using units of
MHz, GHz, or kHZ.

• Units may be entered with or without a leading space.

• Units are case-insensitive.

• The HIGH|LOW keyword indicates whether the first pulse in the period is high or
low, and the optional high_or_low_time is the polarity of the first pulse. This defines
the initial clock edge and is used in the OFFSET constraint.

• If an actual time is specified, it must be less than the period.

• If no high_or_low_time is specified the default duty cycle is 50%.

• The default units for high_or_low_time is ns, but the number can be followed by % or
by ps, ns, us, or ms to specify an actual time measurement.

• INPUT_JITTER is the random, peak-to-peak jitter on an input clock. The default units
are picoseconds.

Examples

Clock net sys_clk has the constraint tnm=master_clk attached to it and the following
constraint is attached to TIMESPEC.

UCF Syntax

TIMESPEC “TS_master”=PERIOD “master_clk” 50 HIGH 30;INPUT_JITTER 50

This period constraint applies to the net master_clk, and defines a clock period of 50
nanoseconds, with an initial 30 nanosecond high time, and INPUT_JITTER at 50 ps.

Another Method

Another method of defining a clock period is to attach the following constraint directly to
a net in the path that drives the register clock pins.

Schematic Syntax

PERIOD = period {HIGH|LOW} [high_or_low_time] INPUT_JITTER

UCF Syntax

NET “net_name” PERIOD = period {HIGH|LOW} [high_or_low_time]
INPUT_JITTER;

The following rules apply:

• period is the required clock period. The default units are nanoseconds, but the timing
number can be followed by ps, ns, us, or ms. The period can also be specified as a
frequency value, using units of MHz, GHz, or kHZ.

• Units may be entered with or without a leading space.

• Units are case-insensitive.

• The HIGH|LOW keyword indicates whether the first pulse in the period is high or
low, and the optional high_or_low_time is the duty cycle of the first pulse.

• If an actual time is specified, it must be less than the period.

• If no high or low time is specified the default duty cycle is 50%.
Constraints Guide www.xilinx.com PERIOD 236
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

• The default unit for high_or_low_time is ns, but the number can be followed by % or by
ps, ns, us or ms to specify an actual time measurement.

The PERIOD constraint is forward traced in exactly the same way a TNM would be and
attaches itself to all of the synchronous elements that the forward tracing reaches. If a more
complex form of tracing behavior is required (for example, where gated clocks are used in
the design), you must place the PERIOD on a particular net or use the preferred method
described in the next section.

Specifying Derived Clocks

The preferred method of defining a clock period uses an identifier, allowing another clock
period specification to reference it. To define the relationship in the case of a derived clock,
use the following syntax:

UCF Syntax

TIMESPEC "TSidentifier"=PERIOD "timegroup_name" "TSidentifier" [* or /]
factor PHASE [+ |-] phase_value [units];

where

• identifier is a reference identifier that has a unique name

• factor is a floating point number

Note: You can omit the [* or /] factor if the specification being defined has the same value as the
one being referenced (that is, they differ only in phase); this is the same as using "* 1".

• phase_value is a floating point number

• units are ps, ms, us, or ns. The default is ns.

The following rules apply:

• If an actual time is specified it must be less than the period.

• If no high_or_low_time is specified, the default duty cycle is 50%.

• The default units for high_or_low_time is ns, but the number can be followed by % or
by ps, ns, us, or ms to specify an actual time measurement.

Examples of a Primary Clock with Derived Clocks

Period for primary clock:

TIMESPEC “TS01” = PERIOD "clk0" 10.0 ns;

Period for clock phase-shifted forward by 180 degrees:

TIMESPEC “TS02” = PERIOD "clk180" TS01 PHASE + 5.0 ns;

Period for clock phase-shifted backward by 90 degrees:

TIMESPEC “TS03” = PERIOD "clk90" TS01 PHASE - 2.5 ns;

Period for clock doubled and phase-shifted forward by 180 degrees (which is 90 degrees
relative to TS01):

TIMESPEC “TS04” = PERIOD "clk180" TS01 / 2 PHASE + 2.5 nS;

PERIOD Specifications on CLKDLLs and DCMs

When a TNM or TNM_NET property traces into an input pin on a DLL or DCM, it will be
handled as described in the following paragraphs.
Constraints Guide www.xilinx.com PERIOD 237
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The checking and transformations described are performed by the logical TimeSpec
processing code, which is run during NGDBuild, or the translate process. (The checking
timing specifications status message indicates that the logical TimeSpec processing is being
run.) The modifications are saved in the built NGD, used by the Mapper and the Map
phase passed through the PCF file to the place and route (PAR) phase and TRACE.

However, note that the data saved in the built NGD is distinct from the original TimeSpec
user-applied properties, which are left unchanged by this process. Therefore, the
Constraints Editor will not see these new groups or specifications, but will see (and
possibly modify) the original user-applied ones.

Conditions for Transformation

When a TNM_NET property is traced into the CLKIN pin of a DLL or DCM, the TNM
group and its usage are examined. The TNM will be pushed through the CLKDLL or DCM
(as described below) only if the following conditions are met:

• The TNM group is used in exactly one PERIOD specification.

• The TNM group is not used in any FROM-TO or OFFSET specifications.

• The TNM group is not referenced in any user group definition.

If any of the above conditions are not met, the TNM will not be pushed through the
CLKDLL/DCM, and a warning message will be issued. This will not prevent the TNM
from tracing into other elements in the standard fashion, but if it traces nowhere else, and
is used in a specification, an error will result.

Definition of New PERIOD Specifications

If the CLK0 output on the CLKDLL or DCM is the only one being used (and neither
CLKIN_DIVIDE_BY_2 nor CLKOUT_PHASE_SHIFT=FIXED are used), the original
PERIOD specification will be simply transferred to that clock output.

Otherwise, for each clock output pin used on the CLKDLL or DCM, a new TNM group will
be created on the connected net, and a new PERIOD specification will be created for that
group. The following table shows how the new PERIOD specifications will be defined,
assuming an original PERIOD specification named TS_CLKIN.

Table 54-1: New PERIOD Specifications

Output Pin
New PERIOD Specification

Period Value Phase Shift Duty Cycle

CLK0

TS_CLKIN * 1

none

Copied from TS_CLKIN if
DUTY_CYCLE_
CORRECTION is FALSE.
Otherwise, 50%.

CLK90 PHASE +

(clk0_period * 1/4)

CLK180 PHASE +

(clk0_period * 1/2)

CLK270 PHASE +

(clk0_period * 3/4)

CLK2X

TS_CLKIN / 2

none

50%CLK2X180 PHASE +

(clk2X_period * 1/2)
Constraints Guide www.xilinx.com PERIOD 238
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The Period Value shown in this table assumes that the original specification, TS_CLKIN, is
expressed as a time. If TS_CLKIN is expressed as a frequency, the multiply or divide
operation will be reversed.

If the DCM attribute FIXED_PHASE_SHIFT or VARIABLE_PHASE_SHIFT is used, the
amount of phase specified is also included in the PHASE value.

PERIOD Propagation Rules
Applies to the signal to which it is attached.

PERIOD Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it. The following examples
are for the “simple method.”

CLKDV TS_CLKIN * clkdv_divide

where clkdv_divide is the value of
the CLKDV_DIVIDE property
(default 2.0)

none

50% except for non-integer
divides in high-frequency mode
(CLKDLLHF,

or DCM with
DLL_FREQUENCY_
MODE=HIGH):

CLKDV_DIVIDE

1.5 33.33% HIGH

2.5 40.00% HIGH

3.5 42.86% HIGH

4.5 44.44% HIGH

5.5 45.45% HIGH

6.5 46.15% HIGH

7.5 46.67% HIGH

CLKFX

TS_CLKIN / clkfx_factor

where clkfx_factor is the value of the

CLKFX_MULTIPLY
property (default 4.0)

divided by the value of the
CLKFX_DIVIDE

property (default 1.0).

none

CLKFX180

PHASE +

(clkfx_period * 1/2)

50%

Table 54-1: New PERIOD Specifications

Output Pin
New PERIOD Specification

Period Value Phase Shift Duty Cycle
Constraints Guide www.xilinx.com PERIOD 239
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Schematic

• Attach to a net. Following is an example of the syntax format.

• Attribute Name: PERIOD

• Attribute Values: period [units] [{HIGH|LOW} [high_or_low_time[hi_lo_units]]

VHDL

For XST, PERIOD applies only to a specific clock signal.

Before using PERIOD, declare it with the following syntax:

attribute period: string;

After PERIOD has been declared, specify the VHDL constraint as follows:

attribute period of signal_name : signal is “period [units]”;

• period is the required clock period

• units is an optional field to indicate the units for a clock period. The default is
nanoseconds (ns), but the timing number can be followed by ps, ns, or us to indicate
the intended units.

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

For XST, PERIOD applies only to a specific clock signal.

Specify as follows:

// synthesis attribute period [of] signal_name [is] “period [units]”;

• period is the required clock period

• units is an optional field to indicate the units for a clock period. The default is
nanoseconds (ns), but the timing number can be followed by ps, ns, or us to indicate
the intended units.

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

TIMESPEC PERIOD Method (Primary Method)

UCF syntax:

TIMESPEC “TSidentifier”=PERIOD “TNM_reference period” [units] [{HIGH |
LOW} [high_or_low_time [hi_lo_units]]]INPUT_JITTER value [units];

where

• identifier is a reference identifier that has a unique name

• TNM_reference is the identifier name that is attached to a clock net (or a net in the clock
path) using the TNM or TNM_NET constraint

When a TNM_NET constraint is traced into the CLKIN input of a DLL or DCM
component, new PERIOD specifications may be created at the DLL/DCM outputs. If new
PERIOD specifications are created, new TNM_NET groups to use in those specifications
are also created.
Constraints Guide www.xilinx.com PERIOD 240
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Each new TNM_NET group is named the same as the corresponding DLL/DCM output
net (outputnetname). The new PERIOD specification becomes "TS_outputnetname=PERIOD
outputnetname value units."

The new TNM_NET groups are then traced forward from the DLL/DCM output net to tag
all synchronous elements controlled by that clock signal. The new groups and
specifications are shown in the timing analysis reports.

Rules

The following rules apply:

• period is the required clock period.

• units is an optional field to indicate the units for a clock period. The default is
nanoseconds (ns), but the timing number can be followed by ps, ms, us, or % to
indicate the intended units.

• HIGH or LOW indicates whether the first pulse is to be High or Low.

• high_or_low_time is the optional High or Low time, depending on the preceding
keyword. If an actual time is specified, it must be less than the period. If no
high_or_low_time is specified, the default duty cycle is 50 percent.

• hi_lo_units is an optional field to indicate the units for the duty cycle. The default is
nanoseconds (ns), but the high_or_low_time number can be followed by ps, us, ms, or
% if the High or Low time is an actual time measurement.

The following statement assigns a clock period of 40 ns to the net named CLOCK, with the
first pulse being High and having a duration of 25 nanoseconds.

NET “CLOCK” PERIOD=40 HIGH 25;

NET PERIOD Method (Secondary Method)

NET “net_name” PERIOD=period [units] [{HIGH|LOW}
[high_or_low_time[hi_lo_units]]];

where

• period is the required clock period

• units is an optional field to indicate the units for a clock period. The default is
nanoseconds (ns), but the timing number can be followed by ps, ns, or us to indicate
the intended units.

• HIGH or LOW can be optionally specified to indicate whether the first pulse is to be
High or Low.

• hi_lo_units can be ns, ps, or us. The default is ns.

The following rules apply:

• high_or_low_time is the optional High or Low time, depending on the preceding
keyword.

• If an actual time is specified, it must be less than the period.

• If no high_or_low_time is specified, the default duty cycle is 50 percent.

• hi_lo_units is an optional field to indicate the units for the duty cycle.

• The default is nanoseconds (ns), but the high_or_low_time number can be followed by
ps, us, ms, or % if the High or Low time is an actual time measurement.
Constraints Guide www.xilinx.com PERIOD 241
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Global tab grid, double-click the Period column in the row with the desired clock
name and fill out the PERIOD dialog box.

XCF

Same as the UCF syntax.

Both the simple and preferred are supported with the following limitation: HIGH/LOW
values are not taken into account during timing estimation/optimization and only
propagated to the final netlist if WRITE_TIMING_CONSTRAINTS = yes.

PCF

“TSidentifier”=PERIOD perioditem periodvalue; INPUT_JITTER value

perioditem can be:

• NET name

• TIMEGRP name

periodvalue can be:

• TSidentifier PHASE [+ | -] time

• TSidentifier PHASE time

• TSidentifier PHASE [+ | -] time [LOW | HIGH] time

• TSidentifier PHASE time [LOW | HIGH] time

• TSidentifier PHASE [+ | -] time [LOW | HIGH] percent

• TSidentifier PHASE time [LOW | HIGH] percent

FPGA Editor

To set constraints, in the FPGA Editor main window, click Properties of Selected Items
from the Edit menu. To set PERIOD constraint, click Properties of Selected Items from the
Edit menu with a net selected. You can set the constraint from the Physical Constraints tab.
Constraints Guide www.xilinx.com PERIOD 242
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

PIN

PIN Architecture Support
The following table shows whether the constraint may be used with that device.

PIN Applicable Elements
Nets.

PIN Description
The PIN constraint in conjunction with LOC defines a net location.

The PIN/LOC UCF constraint has the following syntax:

PIN "module.pin" LOC="location";

This UCF constraint is used in creating design flows. This UCF constraint is translated into
a COMP/LOCATE constraint in the PCF file. This constraint has the following syntax in
the PCF file:

COMP "name" LOCATE = SITE "location";

This constraint specifies that the pseudo component that will be created for the pin on the
module should be located in the site location. Pseudo logic is created only when a net
connects from a pin on one module to a pin on another module.

PIN Propagation Rules
Not applicable.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

Virtex-4 Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com PIN 243
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

PIN Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF

PIN “module.pin” LOC=location;
Constraints Guide www.xilinx.com PIN 244
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

PRIORITY

PRIORITY Architecture Support
The following table shows whether the constraint may be used with that device.

PRIORITY Applicable Elements
TIMESPECs

PRIORITY Description
PRIORITY is an advanced timing constraint keyword. There may be situations where there
is a conflict between two timing constraints that cover the same path. The lower the
PRIORITY value, the higher the priority. This value does not affect which paths will be
place and routed first. It only affects which constraint will control the path when two
constraints of equal priority cover the same path.

The PRIORITY keyword cannot be used with the MAXDELAY or MAXSKEW constraint.

PRIORITY Propagation Rules
Not applicable.

PRIORITY Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com PRIORITY 245
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF

Defines the priority of a timing constraint using the following syntax.

normal_timespec_syntax PRIORITY integer;

where

• normal_timespec_syntax is a legal timing specification

• integer represents the priority (the smaller the number, the higher the priority)

The number can be positive, negative, or zero, and the value only has meaning when
compared with other PRIORITY values. The lower the value, the higher the priority.

TIMESPEC “TS01”=FROM “GROUPA” TO “GROUPB” 40 PRIORITY 4;

PCF

The same as UCF.
Constraints Guide www.xilinx.com PRIORITY 246
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

PROHIBIT

PROHIBIT Architecture Support
The following table shows whether the constraint may be used with that device.

PROHIBIT Applicable Elements
Sites

PROHIBIT Description
PROHIBIT is a basic placement constraint and a modular design constraint. It disallows
the use of a site within PAR, FPGA Editor, and the CPLD fitter.

Location Types for FPGA Devices

For an FPGA, use the following location types to define the physical location of an element.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes

Table 57-1: Location Types for FPGA Devices

Element
Type

Location Specification Meaning

IOB P12 IOB location (chip carrier)

A12 IOB location (pin grid)

T, B, L, R Applies to IOBs and indicates edge locations (bottom, left, top, right)
for Spartan-II, Spartan-IIE, Spartan-3, Virtex, Virtex-E, Virtex-II,
Virtex-II Pro, Virtex-II Pro X, and Virtex-4 devices
Constraints Guide www.xilinx.com PROHIBIT 247
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

You can use the wildcard character (*) to replace a single location with a range as shown in
the following examples.

LB, RB, LT, RT, BR, TR, BL,
TL

Applies to IOBs and indicates half edges (for example, left bottom,
right bottom) for Spartan-II, Spartan-IIE, Spartan-3, Virtex, Virtex-E,
Virtex-II, Virtex-II Pro, Virtex-II Pro X, and Virtex-4 devices

Bank 0, Bank 1, Bank 2,
Bank 3, Bank 4, Bank 5,
Bank 6, Bank 7

Applies to IOBs and indicates half edges (banks) for Spartan-II,
Spartan-IIE, Spartan-3, Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Virtex-II Pro X, andVirtex-4 devices

CLB CLB_R4C3 (or .S0 or .S1) CLB location for Spartan-II, Spartan-IIE, Virtex, and Virtex-E devices

CLB_R6C8.S0 (or .S1) Function generator or register slice for Spartan-II, Spartan-IIE,
Virtex, and Virtex-E devices

Slice SLICE_X22Y3 Slice location for Spartan-3, Virtex-II, Virtex-II Pro, Virtex-II Pro X,
and Virtex-4 devices

TBUF TBUF_R6C7 (or .0 or .1) TBUF location for Spartan-II, Spartan-IIE, Virtex, and Virtex-E

TBUF_X6Y7 TBUF location for Virtex-II, Virtex-II Pro, Virtex-II Pro X, and Virtex-
4 devices

block RAM RAMB4_R3C1 Block RAM location for Spartan-II, Spartan-IIE, Virtex, and Virtex-E
devices

RAMB16_X2Y56 Block RAM location for Spartan-3, Virtex-II, Virtex-II Pro, Virtex-II
Pro X, and Virtex-4 devices

Multiplier MULT18X18_X55Y82 Multiplier location for Spartan-3, Virtex-II, Virtex-II Pro, Virtex-II
Pro X, and Virtex-4 devices

Global
Clock

GCLKBUF0 (or 1, 2, or 3) Global clock buffer location for Spartan-II, Spartan-IIE, Virtex, and
Virtex-E devices

GCLKPAD0 (or 1, 2, or 3) Global clock pad location for Spartan-II, Spartan-IIE, Virtex, and
Virtex-E devices

BUFGMUX0P Global clock buffer location for Spartan-3, Virtex-II, Virtex-II Pro,
Virtex-II Pro X, and Virtex-4 devices

Delay
Locked
Loops

DLL0 (or 1, 2, or 3) Delay Locked Loop element location for Spartan-II, Spartan-IIE,
Virtex, and Virtex-E devices

Digital
Clock
Manager

DCM_X[A]Y[B] Digital Clock Manager for Spartan-3, Virtex-II, Virtex-II Pro, Virtex-
II Pro X, and Virtex-4

Table 57-1: Location Types for FPGA Devices

CLB_R*C5 Any CLB in column 5 of a Spartan-II, Spartan-IIE, Virtex, and
Virtex-E

SLICE_X*Y5 Any slice of a Spartan-3, Virtex-II, Virtex-II Pro, Virtex-4, or
Virtex-II Pro X device whose Y-coordinate is 5
Constraints Guide www.xilinx.com PROHIBIT 248
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The following are not supported:

• Dot extensions on ranges. For example, LOC=CLB_R0C0:CLB_R5C5.G.

• The wildcard character for Spartan-II, Spartan-IIE, Spartan-3, Virtex, Virtex-E, Virtex-
II, Virtex-II Pro, and Virtex-II Pro X global buffer or DLL locations.

Location Types for CPLD Devices

CPLD devices support only the location type pin_name

where

• pin_name is Pnn for numeric pin names or rc for row-column pin names

PROHIBIT Propagation Rules
It is illegal to attach PROHIBIT to a net, signal, entity, module, or macro.

PROHIBIT Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF

In a UCF file, PROHIBIT must be preceded by the keyword CONFIG.

Single Location

CONFIG PROHIBIT=location;

Multiple Single Locations

CONFIG PROHIBIT=location1, location2, ... ,locationn;

Range of Locations

CONFIG PROHIBIT=location1:location2;

where

• location is a legal location type for the part type

For more information, see “Location Types for FPGA Devices” and “Location Types for
CPLD Devices” in this chapter. For examples of using the location types, see the “LOC”
constraint.

CPLD devices do not support the "Range of locations" form of PROHIBIT.

The following statement prohibits use of the site P45.

CONFIG PROHIBIT=P45;

For CLB-based Row/Column/Slice Designations

The following statement prohibits use of the CLB located in Row 6, Column 8.

CONFIG PROHIBIT=CLB_R6C8;

The following statement prohibits use of the site TBUF_R5C2.2.

CONFIG PROHIBIT=TBUF_R5C2.2;
Constraints Guide www.xilinx.com PROHIBIT 249
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

For Slice-based XY Coordinate Designations

The following statement prohibits use of the slice at the SLICE_X6Y8 site.

CONFIG PROHIBIT=SLICE_X6Y8;

The following statement prohibits use of the TBUF at the TBUF_X6Y2 site.

CONFIG PROHIBIT=TBUF_X6Y2;

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Ports tab, click Prohibit I/O Locations and then fill out the Prohibit I/O Locations
dialog box.

PCF

For single or multiple single locations:

COMP “comp_name” PROHIBIT = [SOFT] “site_group”...”site_group”;

COMPGRP “group_name” PROHIBIT = [SOFT] “site_group”...”site_group”;

MACRO “name” PROHIBIT = [SOFT] “site_group”...”site_group”;

For a range of locations:

COMP “comp_name” PROHIBIT = [SOFT] “site_group”... “site_group”;

COMPGRP “group_name” PROHIBIT = [SOFT] “site_group”... “site_group”;

MACRO “name” PROHIBIT = [SOFT] “site_group”...”site_group”;

where

• site_group is one of the following

♦ SITE “site_name”

♦ SITEGRP “site_group_name”

• site_name is a component site (that is, a CLB or IOB location)

Floorplanner

The Floorplanner supports PROHIBIT. For more information, see the Prohibit command
section in the Floorplanner help.

PACE

The Pin Assignments Editor can be used to set PROHIBIT. For more information, see the
Prohibit Mode command section in the PACE help.

FPGA Editor

The FPGA Editor supports the PROHIBIT. For more information, see the Prohibit
Constraint topic in the FPGA Editor help. The constraint is written to the PCF file by the
Editor.
Constraints Guide www.xilinx.com PROHIBIT 250
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

PULLDOWN

PULLDOWN Architecture Support
The following table shows whether the constraint may be used with that device.

PULLDOWN Applicable Elements
Input, tri-state outputs, and bidirectional pad nets

PULLDOWN Description
PULLDOWN is a basic mapping constraint. It guarantees a logic Low level to allow 3-
stated nets to avoid floating when not being driven.

KEEPER, PULLUP, and PULLDOWN are only valid on pad NETs, not on INSTs of any
kind.

PULLDOWN Propagation Rules
PULLDOWN is a net constraint. Any attachment to a design element is illegal.

PULLDOWN Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com PULLDOWN 251
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Schematic

• Attach to a pad net

• Attribute Name: PULLDOWN

• Attribute Values: TRUE, FALSE

VHDL

Before using PULLDOWN, declare it with the following syntax:

attribute pulldown: string;

After PULLDOWN has been declared, specify the VHDL constraint as follows:

attribute pulldown of signal_name: signal is “yes”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute pulldown [of] signal_name [is] “yes”;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

The following statement configures the IO to use a PULLDOWN.

NET "pad_net_name" PULLDOWN;

XCF

BEGIN MODEL “entity_name”

 NET "signal_name" pulldown=true;

END;

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Ports tab grid with I/O Configuration Options checked, click the
PULLUP/PULLDOWN column in the row with the desired port name and choose
PULLDOWN from the drop-down list.
Constraints Guide www.xilinx.com PULLDOWN 252
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

PULLUP

PULLUP Architecture Support
The following table shows whether the constraint may be used with that device.

PULLUP Applicable Elements
Input, 3-state outputs, and bidirectional pad nets

PULLUP Description
PULLUP is a basic mapping constraint. It guarantees a logic High level to allow 3-stated
nets to avoid floating when not being driven.

KEEPER, PULLUP, and PULLDOWN are only valid on pad NETs, not on INSTs of any
kind.

For CoolRunner-II designs, the use of KEEPER and the use of PULLUP are mutually
exclusive across the whole device.

PULLUP Propagation Rules
PULLUP is a net constraint. Any attachment to a design element is illegal.

PULLUP Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 Yes a

a. Inputs only

CoolRunner-II Yes
Constraints Guide www.xilinx.com PULLUP 253
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Schematic

• Attach to a pad net

• Attribute Name: PULLUP

• Attribute Values: TRUE, FALSE

VHDL

Before using PULLUP, declare it with the following syntax:

attribute pullup: string;

After PULLUP has been declared, specify the VHDL constraint as follows:

attribute pullup of signal_name: signal is “TRUE”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute pullup [of] signal_name [is] “yes”;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

ABEL

XILINX PROPERTY 'PULLUP mysignal';

UCF and NCF

The following statement configures the IO to use a PULLUP.

NET "pad_net_name" PULLUP;

XCF

BEGIN MODEL “entity_name”

 NET "signal_name" pullup=true;

END;

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Ports tab grid with I/O Configuration Options checked, click the
PULLUP/PULLDOWN column in the row with the desired port name and choose
PULLUP from the drop-down list.
Constraints Guide www.xilinx.com PULLUP 254
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

PWR_MODE

PWR_MODE Architecture Support
The following table shows whether the constraint may be used with that device.

PWR_MODE Applicable Elements
• Nets

• Any instance

PWR_MODE Description
PWR_MODE is an advanced fitter constraint. It defines the mode, Low power or High
performance (standard power), of the macrocell that implements the tagged element.

If the tagged function is collapsed forward into its fanouts, PWR_MODE is not applied.

PWR_MODE Propagation Rules
When attached to a net, PWR_MODE attaches to all applicable elements that drive the net.

When attached to a design element, PWR_MODE propagates to all applicable elements in
the hierarchy within the design element.

PWR_MODE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex No

Virtex-E No

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 No

Spartan-II No

Spartan-IIE No

Spartan-3 No

Spartan-3E No

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com PWR_MODE 255
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Schematic

• Attach to a net or an instance

• Attribute Name: PWR_MODE

• Attribute Values: LOW, STD

VHDL

Before using PWR_MODE, declare it with the following syntax:

attribute pwr_mode: string;

After PWR_MODE has been declared, specify the VHDL constraint as follows:

attribute pwr_mode of {signal_name|component_name|label_name}:
{signal|component|label} is “{LOW|STD}”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute pwr_mode [of]
{module_name|instance_name|signal_name} [is] {LOW|STD};

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

ABEL

XILINX PROPERTY 'pwr_mode={low|std} mysignal';

UCF and NCF

The following statement specifies that the macrocell that implements the net $SIG_0 will
be in Low power mode.

NET “$1187/$SIG_0” PWR_MODE=LOW;

XCF

BEGIN MODEL “entity_name”

 NET "signal_name" PWR_MODE={LOW|STD};

 INST "instance_name" PWR_MODE={LOW|STD};

END;
Constraints Guide www.xilinx.com PWR_MODE 256
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

REG

REG Architecture Support
The following table shows whether the constraint may be used with that device.

REG Applicable Elements
Registers

REG Description
REG is a basic fitter constraint. It specifies how a register is to be implemented in the CPLD
macrocell.

REG Propagation Rules
When attached to a design element, REG propagates to all applicable elements in the
hierarchy within the design element.

REG Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a flip-flop instance or macro containing flip-flops

• Attribute Name: REG

• Attribute Values: CE, TFF

Virtex No

Virtex-E No

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 No

Spartan-II No

Spartan-IIE No

Spartan-3 No

Spartan-3E No

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com REG 257
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

VHDL

Before using REG, declare it with the following syntax:

attribute reg: string;

After REG has been declared, specify the VHDL constraint as follows:

attribute reg of signal_name: signal is “{CE|TFF}”;

For more information on CE and TFF, see “UCF and NCF” in this chapter.

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute reg [of] {signal_name|instance_name} [is]
{CE|TFF};

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

ABEL

XILINX PROPERTY 'reg={ce|tff} mysignal';

UCF and NCF

The basic UCF syntax is:

INST “instance_name” REG = {CE | TFF};

where

• CE, when applied to a flip-flop primitive with a CE input, forces the CE input to be
implemented using a clock enable product term in the macrocell. Normally the fitter
uses the register CE input only if all logic on the CE input can be implemented using
the single CE product term. Otherwise the fitter decomposes the CE input into the D
(or T) logic expression unless REG=CE is applied. CE product terms are not available
in XC9500 devices (REG=CE is ignored). In XC9500XL and XC9500XV devices, the CE
product term is available only for registers that do not use both the CLR and PRE
inputs.

• TFF indicates that the register is to be implemented as a T-type flip-flop in the CPLD
macrocell. If applied to a D-flip-flop primitive, the D-input expression is transformed
to T-input form and implemented with a T-flip-flop. Automatic transformation
between D and T flip-flops is normally performed by the CPLD fitter.

The following statement specifies that the CE pin input be implemented using the clock
enable product term of the XC9500XL or XC9500XV macrocell.

INST “Q1” REG=CE;

XCF

BEGIN MODEL “entity_name”

 NET "signal_name" REG={CE|TFF};

END;
Constraints Guide www.xilinx.com REG 258
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

RLOC

RLOC Architecture Support
The following table shows whether the constraint may be used with that device.

RLOC Applicable Elements
If “Yes” is shown next to the device name in the Architecture Support table, the constraint
may be used with that device in one or more of the following design elements, or
categories of design elements. Not all device families support all these elements. To see
which design elements can be used with which device families, see the Xilinx Libraries
Guides. For more information, see the device data sheet.

1. Registers

2. ROM

3. RAMS, RAMD

4. BUFT (Can be used only if the associated RPM has an RLOC_ORIGIN that causes the
RLOC values in the RPM to be changed to LOC values.)

5. LUTs, MUXF5, MUXF6, MUXCY, XORCY, MULT_AND, SRL16, SRL16E, MUXF7 (for
Spartan-3, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X only), MUXF8 (for
Spartan-3, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, and Virtex-4 only)

Virtex Yes a

a. except ROM

Virtex-E Yes

Spartan-II Yes b

b. except ROM

Spartan-IIE Yes

Spartan-3 Yes c

c. except BUFT

Spartan-3E Yes d

d. except BUFT

Virtex-II Yes e

e. except ROM

Virtex-II Pro Yes f

f. except ROM

Virtex-II Pro X Yes g

g. except ROM

Virtex-4 Yes h

h. except BUFT

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com RLOC 259
ISE 8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

6. Block RAMs

7. Multipliers

RLOC Description
Relative location (RLOC) is a basic mapping and placement constraint. It is also a synthesis
constraint. RLOC constraints group logic elements into discrete sets and allow you to
define the location of any element within the set relative to other elements in the set,
regardless of eventual placement in the overall design.

For Virtex, Virtex-E, Spartan-II, and Spartan-IIE devices, the RLOC constraint must include
the extension that defines in which of the two slices of a CLB the element will be placed
(.S0, .S1).

For Virtex-II, Virtex-II Pro, and Virtex-II Pro X, Spartan-3, and Spartan-3E devices, the
RLOC constraint is specified using the slice-based XY coordinate system.

Benefits and Limitations of RLOC Constraints

RLOC constraints allow you to place logic blocks relative to each other to increase speed
and use die resources efficiently. They provide an order and structure to related design
elements without requiring you to specify their absolute placement on the FPGA die. They
allow you to replace any existing hard macro with an equivalent that can be directly
simulated.

In the Unified Libraries, you can use RLOC constraints with BUFT- and CLB-related
primitives, that is, FMAP. You can also use them on non-primitive macro symbols. There
are some restrictions on the use of RLOC constraints on BUFT symbols. For more
information, see “Set Modifiers” in this chapter. You cannot use RLOC constraints with
decoders or clocks. LOC constraints, on the other hand, can be used on all primitives:
BUFTs, CLBs, IOBs, decoders, and clocks.

The following symbols (primitives) accept RLOCs.

• Registers

• ROM

• RAMS, RAMD

• BUFT

• LUTs, MUXCY, XORCY, MULT_AND, SRL16, SRL16E

Guidelines for Specifying Relative Locations

There are two different coordinate designations:

• Virtex, Virtex-E, Spartan-II, and Spartan-IIE devices use the CLB-based coordinate
system.

• Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, Spartan-3, and Spartan-3E devices use
the slice-based coordinate system.
Constraints Guide www.xilinx.com RLOC 260
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

CLB-based Row/Column/Slice Designations

For Virtex, Virtex-E, Spartan-II, and Spartan-IIE devices, the general syntax for assigning
elements to relative locations is

RLOC=[element]RmCn[.extension]

where

• m and n are relative row numbers and column numbers, respectively

• extension uses the LOC extension syntax and can take all the values that are available
with the absolute LOC syntax: S0, S1, 0, 1, 2, and 3 as appropriate for the architecture
and element the RLOC is attached to.

The extension is required for Virtex, Virtex-E, Spartan-II, and Spartan-IIE designs to
specify the spatial relationship of the objects in the RPM (.S0, .S1).

The row and column numbers can be any positive or negative integer including zero.
Absolute die locations, in contrast, cannot have zero as a row or column number. Because
row and column numbers in RLOC constraints define only the order and relationship
between design elements and not their absolute die locations, their numbering can include
zero or negative numbers. Even though you can use any integer in numbering rows and
columns for RLOC constraints, it is recommended that you use small integers for clarity
and ease of use.

It is not the absolute values of the row and column numbers that is important in RLOC
specifications but their relative values or differences. For example, if design element A has
an RLOC=R3C4 constraint and design element B has an RLOC=R6C7 constraint, the
absolute values of the row numbers (3 and 6) are not important in themselves. However,
the difference between them is important; in this case, 3 (6 -3) specifies that the location of
design element B is three rows down from the location of design element A.

To capture this information, a normalization process is used and column-wise the design
element B is 3 (7-4) columns on the right of element A. In the example just given,
normalization would reduce the RLOC on design element A to R0C0, and the RLOC on
design element B to R3C3.

In CLB-based programs, row/column rows are numbered in increasing order from top to
bottom, and columns are numbered in increasing order from left to right. RLOC
constraints follow this numbering convention.
Constraints Guide www.xilinx.com RLOC 261
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Figure 62-1 demonstrates the use of RLOC constraints. Figure 62-1 applies only to Virtex,
Virtex-E, Spartan-II, and Spartan-IIE devices.

Slice-based XY Coordinate Designations

For Virtex-II, Virtex-II Pro, and Virtex-II Pro X, Virtex-4, Spartan-3, and Spartan-3E devices,
the general syntax for assigning elements to relative locations is

RLOC=XmYn

where

• m and n are the relative X-axis (left/right) value and the relative Y-axis (up/down)
value, respectively

• the X and Y numbers can be any positive or negative integer including zero

Because the X and Y numbers in RLOC constraints define only the order and relationship
between design elements and not their absolute die locations, their numbering can include
negative numbers. Even though you can use any integer for RLOC constraints, it is
recommended that you use small integers for clarity and ease of use.

It is not the absolute values of the X and Y numbers that is important in RLOC
specifications but their relative values or differences. For example, if design element A has
an RLOC=X3Y4 constraint and design element B has an RLOC=X6Y7 constraint, the
absolute values of the X numbers (3 and 6) are not important in themselves. However, the
difference between them is important; in this case, 3 (6 -3) specifies that the location of
design element B is three slices away from the location of design element A.

To capture this information, a normalization process is used and y coordinate-wise,
element B is 3 (7-4) slices above element A. In the example just given, normalization would
reduce the RLOC on design element A to X0Y0, and the RLOC on design element B to
X3Y3.

In Virtex-II, Virtex-II Pro, and Virtex-II Pro X, Virtex-4, Spartan-3, and Spartan-3E devices,
slices are numbered on an XY grid beginning in the lower left corner of the chip. X ascends

Figure 62-1: RLOC Specifications for Eight Flip-Flop Primitives

A and B
RLOC = R0C0.S0

C and D
RLOC = R0C0.S1

X9831

A

B

C

D

E and F
RLOC = R1C0.S0

G and H
RLOC = R1C0.S1

E

F

G

H

Constraints Guide www.xilinx.com RLOC 262
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

in value horizontally to the right. Y ascends in value vertically up. RLOC constraints
follow the cartesian-based convention.

Figure 62-2 demonstrates the use of RLOC constraints. In (a) in Figure 62-2 four flip-flop
primitives named A, B, C, and D are assigned RLOC constraints as shown. These RLOC
constraints require each flip-flop to be placed in a different slice with the slices stacked in
the order shown: A below B, C, and D.

If you wish to place more than one of these flip-flop primitives per slice, you can specify
the RLOCs as shown in (b) in Figure 62-2. The arrangement in the figure requires that A
and B be placed in a single slice and that C and D be placed in another slice immediately to
the right of the AB slice. Figure 62-2 applies only to Virtex-II, Virtex-II Pro, and Virtex-II
Pro X, Virtex-4, Spartan-3, and Spartan-3E devices.

Figure 62-2: Different RLOC Specifications for Four Flip-flop Primitives

X9419

RLOC=X0Y6D

RLOC=X0Y4C RLOC=X1Y0B

RLOC=X0Y0

RLOC=X3Y0D

RLOC=X2Y0A C

RLOC=X0Y2B

RLOC=X0Y0A

(a) (b)
Constraints Guide www.xilinx.com RLOC 263
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

RLOC Sets

RLOC constraints give order and structure to related design elements. This section
describes RLOC sets, which are groups of related design elements to which RLOC
constraints have been applied. For example, the eight flip-flops in Figure 62-1 and the four
flip-flops in Figure 62-2 are related by RLOC constraints and form a set. Elements in a set
are related by RLOC constraints to other elements in the same set. Each member of a set
must have an RLOC constraint, which relates it to other elements in the same set. You can
create multiple sets, but a design element can belong to one set only.

Sets can be defined explicitly through the use of a set parameter or implicitly through the
structure of the design hierarchy.

Four distinct types of rules are associated with each set.

• Definition rules define the requirements for membership in a set.

• Linkage rules specify how elements can be linked to other elements to form a single
set.

• Modification rules dictate how to specify parameters that modify RLOC values of all
the members of the set.

• Naming rules specify the nomenclature of sets.

These rules are discussed in the sections that follow.

The following sections discuss three different set constraints: U_SET, H_SET, and HU_SET.
Elements must be tagged with both the RLOC constraint and one of these set constraints to
belong to a set.

U_SET

U_SET constraints enable you to group into a single set design elements with attached
RLOC constraints that are distributed throughout the design hierarchy. The letter U in the
name U_SET indicates that the set is user-defined.

U_SET constraints allow you to group elements, even though they are not directly related
by the design hierarchy. By attaching a U_SET constraint to design elements, you can
explicitly define the members of a set.

The design elements tagged with a U_SET constraint can exist anywhere in the design
hierarchy; they can be primitive or non-primitive symbols. When attached to non-
primitive symbols, the U_SET constraint propagates to all the primitive symbols with
RLOC constraints that are below it in the hierarchy.

The syntax of the U_SET constraint is:

U_SET=set_name

where

• set_name is the user-specified identifier of the set

All design elements with RLOC constraints tagged with the same U_SET constraint name
belong to the same set. Names therefore must be unique among all the sets in the design.

H_SET

In contrast to the U_SET constraint, which you explicitly define by tagging design
elements, the H_SET (hierarchy set) is defined implicitly through the design hierarchy. The
combination of the design hierarchy and the presence of RLOC constraints on elements
defines a hierarchical set, or H_SET set.
Constraints Guide www.xilinx.com RLOC 264
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

You are not able to use an H_SET constraint to tag the design elements to indicate their set
membership. The set is defined automatically by the design hierarchy.

All design elements with RLOC constraints at a single node of the design hierarchy are
considered to be in the same H_SET set unless they are tagged with another type of set
constraint such as RLOC_ORIGIN or RLOC_RANGE. If you explicitly tag any element
with an RLOC_ORIGIN, RLOC_RANGE, U_SET, or HU_SET constraint, it is removed
from an H_SET set.

Most designs contain only H_SET constraints, since they are the underlying mechanism for
relationally placed macros. The RLOC_ORIGIN or RLOC_RANGE constraints are
discussed further in “Set Modifiers”in this chapter.

NGDBuild recognizes the implicit H_SET set, derives its name, or identifier, attaches the
H_SET constraint to the correct members of the set, and writes them to the output file.

HU_SET

The HU_SET constraint is a variation of the implicit H_SET (hierarchy set). Like H_SET,
HU_SET is defined by the design hierarchy. However, you can use the HU_SET constraint
to assign a user-defined name to the HU_SET.

The syntax of the HU_SET constraint is:

HU_SET=set_name

where

• set_name is the identifier of the set. It must be unique among all the sets in the design

This user-defined name is the base name of the HU_SET set. Like the H_SET set, in which
the base name of “h_set” is prefixed by the hierarchical name of the lowest common
ancestor of the set elements, the user-defined base name of an HU_SET set is prefixed by
the hierarchical name of the lowest common ancestor of the set elements.

You must define the base names to ensure unique hierarchically qualified names for the
sets before the mapper resolves the design and attaches the hierarchical names as prefixes.

The HU_SET constraint defines the start of a new set. All design elements at the same node
that have the same user-defined value for the HU_SET constraint are members of the same
HU_SET set. Along with the HU_SET constraint, elements can also have an RLOC
constraint.

The presence of an RLOC constraint in an H_SET constraint links the element to all
elements tagged with RLOCs above and below in the hierarchy. However, in the case of an
HU_SET constraint, the presence of an RLOC constraint along with the HU_SET constraint
on a design element does not automatically link the element to other elements with RLOC
constraints at the same hierarchy level or above.
Constraints Guide www.xilinx.com RLOC 265
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Note: In Figure 62-3 and the other related figures shown in the subsequent sections, the italicized
text prefixed by => is added by NGDBuild during the design flattening process. You add all other text.

Figure 62-3 demonstrates a typical use of the implicit H_SET (hierarchy set). The figure
shows only the first “RLOC” portion of the constraint. In a real design, the RLOC
constraint must be specified completely with RLOC=RmCn or, for Spartan-3, Spartan-3E,
Virtex-II, Virtex-II Pro, Virtex-II Pro X, and Virtex-4 RLOC=XmYn. In this example, macro
A is originally designed with RLOC constraints on four flip-flops: A, B, C, and D. The
macro is then instantiated twice in the design: Inst1 and Inst2.

When the design is flattened, two different H_SET sets are recognized because two distinct
levels of hierarchy contain elements with RLOC constraints. NGDBuild creates and
attaches the appropriate H_SET constraint to the set members: H_SET=Inst1/h_set for the
macro instantiated in Inst1, and H_SET=Inst2/h_set for the macro instantiated in Inst2.
The design implementation programs place each of the two sets individually as a unit with
relative ordering within each set specified by the RLOC constraints. However, the two sets
are regarded to be completely independent of each other.

The name of the H_SET set is derived from the symbol or node in the hierarchy that
includes all the RLOC elements. In Figure 62-3, Inst1 is the node (instantiating macro) that
includes the four flip-flop elements with RLOCs shown on the left of the figure. Therefore,
the name of this H_SET set is the hierarchically qualified name of “Inst1” followed by
“h_set.”

Figure 62-3: Macro A Instantiated Twice

Design-top

RLOC
= >H_SET = Inst2/hsetA

X4294

B

C

D

Inst1 Inst2

M
ac

ro
 A

RLOC
= >H_SET = Inst2/hset

RLOC
= >H_SET = Inst2/hset

RLOC
= >H_SET = Inst2/hset

RLOC
= >H_SET = Inst1/hsetA

B

C

D

M
ac

ro
 A

RLOC
= >H_SET = Inst1/hset

RLOC
= >H_SET = Inst1/hset

RLOC
= >H_SET = Inst1/hset
Constraints Guide www.xilinx.com RLOC 266
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The Inst1 symbol is considered the “start” of the H_SET, which gives a convenient handle
to the entire H_SET and attaches constraints that modify the entire H_SET. Constraints that
modify sets are discussed in the “SAVE NET FLAG” constraint.

Figure 62-3, page 266 demonstrates the simplest use of a set that is defined and confined to
a single level of hierarchy. Through linkage and modification, you can also create an
H_SET set that is linked through two or more levels of hierarchy.

Linkage allows you to link elements through the hierarchy into a single set. On the other
hand, modification allows you to modify RLOC values of the members of a set through the
hierarchy.

RLOC Set Summary

The following table summarizes the RLOC set types and the constraints that identify
members of these sets.

RLOC Propagation Rules
RLOC is a design element constraint and any attachment to a net is illegal. When attached
to a design element, RLOC propagates to all applicable elements in the hierarchy within
the design element.

RLOC Syntax

For Architectures Using CLB-based Row/Column/Slice Specifications

This section applies to Virtex, and Virtex-E, Spartan-II, and Spartan-IIE devices only.

RLOC=RmCn.extension

where

• m and n are integers (positive, negative, or zero) representing relative row numbers
and column numbers, respectively

Table 62-1: Summary of Set Types

Type Definition Naming Linkage Modification

U_SET= name All elements with
the same user-
tagged U_SET
constraint value are
members of the
same U_SET set.

The name of the set
is the same as the
user-defined name
without any
hierarchical
qualification.

U_SET links
elements to all other
elements with the
same value for the
U_SET constraint.

U_SET is modified by
applying RLOC_ORIGIN
or RLOC_RANGE
constraints on, at most,
one of the U_SET
constraint-tagged
elements.

HU_SET=
name

All elements with
the same
hierarchically
qualified name are
members of the
same set.

The lowest common
ancestor of the
members is prefixed
to the user-defined
name to obtain the
name of the set.

HU_SET links to
other elements at the
same node with the
same HU_SET
constraint value. It
links to elements
with RLOC
constraints below.

The start of the set is made
up of the elements on the
same node that are tagged
with the same HU_SET
constraint value. An
RLOC_ORIGIN or an
RLOC_RANGE can be
applied to, at most, one of
these start elements of an
HU_SET set.
Constraints Guide www.xilinx.com RLOC 267
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

• extension uses the LOC extension syntax as appropriate. It can take all the values that
are available with the current absolute LOC syntax

For Virtex, Virtex-E, Spartan-II and Spartan-IIE, extension is required to define the spatial
relationships (.S0 is the right-most slice; .S1 is the left-most slice) of the objects in the RPM.

The RLOC value cannot specify a range or a list of several locations; it must specify a single
location. For more information, see “RLOC Description” in this chapter.

For Architectures Using a Slice-Based XY Coordinate System

This section applies to Spartan-3, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, and
Virtex-4 devices only.

RLOC=XmYn

where

• m and n are integers (positive, negative, or zero) representing relative X and Y
coordinates, respectively

Set Linkage

The example Figure 62-4, page 269 explains and illustrates the process of linking together
elements through the design hierarchy. Again, the complete RLOC specification,
RLOC=RmCn or RLOC=XmXn, is required for a real design.
Constraints Guide www.xilinx.com RLOC 268
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Note: In this and other illustrations in this section, the sets are shaded differently to distinguish one
set from another.

Figure 62-4: Three H_SET Sets

RLOC

= > H_SET = A/hset

X4295

Design-top

A

G

F

B

C D ERLOC RLOC

H

I

RLOC

= > H_SET = A/hset

RLOC

= > H_SET = A/hset

RLOC

= > H_SET = A/hset

RLOC

= > H_SET = A/hset

K

J

RLOC

= > H_SET = A/hset

L

RLOC

= > H_SET = A/hset

P

O

RLOC

= > H_SET = A/hset

RLOC

= > H_SET = A/D/L/hsetQ

RLOC

= > H_SET = A/D/L/hsetR

S

RLOC

= > H_SET = A/E/hset

N

M

RLOC

= > H_SET = A/E/hset
Constraints Guide www.xilinx.com RLOC 269
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

As noted previously, all design elements with RLOC constraints at a single node of the
design hierarchy are considered to be in the same H_SET set unless they are assigned
another type of set constraint, an RLOC_ORIGIN constraint, or an RLOC_RANGE
constraint. In Figure 62-4, page 269, RLOC constraints have been added on primitives and
non-primitives C, D, F, G, H, I, J, K, M, N, O, P, Q, and R. No RLOC constraints were placed
on B, E, L, or S. Macros C and D have an RLOC constraint at node A, so all the primitives
below C and D that have RLOCs are members of a single H_SET set.

Furthermore, the name of this H_SET set is “A/h_set” because it is at node A that the set
starts. The start of an H_SET set is the lowest common ancestor of all the RLOC-tagged
constraints that constitute the elements of that H_SET set.

Because element E does not have an RLOC constraint, it is not linked to the A/h_set set.
The RLOC-tagged elements M and N, which lie below element E, are therefore in their own
H_SET set. The start of that H_SET set is A/E, giving it the name “A/E/h_set.”

Similarly, the Q and R primitives are in their own H_SET set because they are not linked
through element L to any other design elements. The lowest common ancestor for their
H_SET set is L, which gives it the name “A/D/L/h_set.” After the flattening, NGDBuild
attaches H_SET=A/h_set to the F, G, H, O, P, J, and K primitives; H_SET=A/D/L/h_set to
the Q and R primitives; and H_SET=A/E/h_set to the M and N primitives.

Consider a situation in which a set is created at the top of the design. In Figure 62-4,
page 269, there would be no lowest common ancestor if macro A also had an RLOC
constraint, since A is at the top of the design and has no ancestor. In this case, the base
name “h_set” would have no hierarchically qualified prefix, and the name of the H_SET
set would simply be “h_set.”

Set Modification

The RLOC constraint assigns a primitive an RLOC value (the row and column numbers
with the optional extensions), specifies its membership in a set, and links together
elements at different levels of the hierarchy. In Figure 62-4, page 269, the RLOC constraint
on macros C and D links together all the objects with RLOC constraints below them. An
RLOC constraint is also used to modify the RLOC values of constraints below it in the
hierarchy. In other words, RLOC values of elements affect the RLOC values of all other
member elements of the same H_SET set that lie below the given element in the design
hierarchy.

The Effect of the Hierarchy on Set Modification

The following sections describe the effect of the hierarchy on set modification for the CLB-
based Row/Column/Slice designations and for the slice-based XY coordinate
designations (Spartan-3, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, and Virtex-4).

CLB-Based Row/Column/Slice Designations

When the design is flattened, the row and column numbers of an RLOC constraint on an
element are added to the row and column numbers of the RLOC constraints of the set
members below it in the hierarchy. This feature gives you the ability to modify existing
RLOC values in submodules and macros without changing the previously assigned RLOC
values on the primitive symbols.

This modification process also applies to the optional extension field. However, when
using extensions for modifications, you must ensure that inconsistent extensions are not
attached to the RLOC value of a design element that may conflict with RLOC extensions
placed on underlying elements.
Constraints Guide www.xilinx.com RLOC 270
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

For example, if an element has an RLOC constraint with the S0 extension, all the
underlying elements with RLOC constraints must either have the same extension, in this
case S0, or no extension at all; any underlying element with an RLOC constraint and an
extension different from S0, such as S1, is flagged as an error.

After resolving all the RLOC constraints, extensions that are not valid on primitives are
removed from those primitives. For example, if NGDBuild generates an S0 extension to be
applied on a primitive after propagating the RLOC constraints, it applies the extension if
and only if the primitive is a flip-flop. If the primitive is an element other than a flip-flop,
the extension is ignored. Only the extension is ignored in this case, not the entire RLOC
constraint.

Figure 62-5, page 272 illustrates the process of adding RLOC values down the hierarchy.
The row and column values between the parentheses show the addition function
performed by the mapper. The italicized text prefixed by => is added by MAP during the
design resolution process and replaces the original RLOC constraint that you added. For
Sn, the value n is either a 1 or a 0.
Constraints Guide www.xilinx.com RLOC 271
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The ability to modify RLOC values down the hierarchy is particularly valuable when
instantiating the same macro more than once. Typically, macros are designed with RLOC
constraints that are modified when the macro is instantiated. Figure 62-6, page 273 is a
variation of the sample design in Figure 62-3, page 266. The RLOC constraint on Inst1 and
Inst2 now link all the objects in one H_SET set.

Because the RLOC=R0C0 modifier on the Inst1 macro does not affect the objects below it,
the mapper adds only the H_SET tag to the objects and leaves the RLOC values as they are.

Figure 62-5: Adding RLOC Values Down the Hierarchy (CLB-based
Row/Column/Slice)

A

Design-top

RLOC = R2C3

RLOC = R0C0 (+R2C3)

= >RLOC = R2C3

E

B

RLOC = R0C0 (+R5C3.FFX)
= >RLOC = R5C3.FFXF

G

X4296

C

D

RLOC = R1C0 (+R2C3)

= >RLOC = R3C3

RLOC = R2C0 (+R2C3)

= >RLOC = R4C3

RLOC = R3C0.FFX (+R2C3)

= >RLOC = R5C3.FFX

XNFMerge adds
R5C3.FFX below to
create new RLOC

RLOC = R1C0 (+R5C3.FFX)
= >RLOC = R6C3.FFX

XNFMerge adds
R2C3 below to
create new RLOC
Constraints Guide www.xilinx.com RLOC 272
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

However, the RLOC=R0C1 modifier on the Inst2 macro causes MAP to change the RLOC
values on objects below it, as well as to add the H_SET tag, as shown in the italicized text.

Slice-Based XY Designations

When the design is flattened, the XY values of an RLOC constraint on an element are
added to the XY values of the RLOC constraints of the set members below it in the
hierarchy. This feature gives you the ability to modify existing RLOC values in
submodules and macros without changing the previously assigned RLOC values on the
primitive symbols.

Figure 62-7, page 274 illustrates the process of adding RLOC values down the hierarchy.
The row and column values between the parentheses show the addition function
performed by the mapper. The italicized text prefixed by => is added by MAP during the
design resolution process and replaces the original RLOC constraint that you added.

Figure 62-6: Modifying RLOC Values of Same Macro and Linking Together as One
Set (CLB-based Row/Column/Slice)

Design-top

RLOC = R0C1

RLOC = R0C0 (+R0C1)

= >H_SET = hsetA

X4297

B

C

add R0C1 to shift
the set 1 column
to the right

D

RLOC = R0C0

Inst1 Inst2

= >RLOC = R0C1

RLOC = R1C0 (+R0C1)

= >H_SET = hset
= >RLOC = R1C1

RLOC = R2C0 (+R0C1)

= >H_SET = hset
= >RLOC = R2C1

RLOC = R3C0 (+R0C1)

= >H_SET = hset
= >RLOC = R3C1

M
ac

ro
 A

RLOC = R0C0

= >H_SET = hsetA

B

C

D

M
ac

ro
 A

RLOC = R1C0

= >H_SET = hset

RLOC = R2C0

= >H_SET = hset

RLOC = R3C0

= >H_SET = hset

add R0C0—no
change
Constraints Guide www.xilinx.com RLOC 273
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The ability to modify RLOC values down the hierarchy is particularly valuable when
instantiating the same macro more than once. Typically, macros are designed with RLOC
constraints that are modified when the macro is instantiated. Figure 62-7, page 274 is a
variation of the sample design in Figure 62-8, page 275. The RLOC constraint on Inst1 and
Inst2 now link all the objects in one H_SET set.

Because the RLOC=X0Y0 modifier on the Inst1 macro does not affect the objects below it,
the mapper adds only the H_SET tag to the objects and leaves the RLOC values as they are.
However, the RLOC=X1Y0 modifier on the Inst2 macro causes MAP to change the RLOC
values on objects below it, as well as to add the H_SET tag, as shown in the italicized text.

Figure 62-7: Adding RLOC Values Down the Hierarchy Example
(Slice-based XY Designations)

X9420

A

Design-top

RLOC = X2Y3

RLOC = X0Y0 (+X2Y3)
= >RLOC = X2Y3

E

B

C

D

RLOC = X0Y1 (+X2Y3)
= >RLOC = X2Y4

RLOC = X0Y2 (+X2Y3)
= >RLOC = X2Y5

RLOC = X-1Y-1 (+X2Y3)
= >RLOC = X1Y2

NGDBuild adds
X2Y3 below to
create new RLOC
Constraints Guide www.xilinx.com RLOC 274
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Separating Elements from H_SET Sets

The HU_SET constraint is a variation of the implicit H_SET (hierarchy set). The HU_SET
constraint defines the start of a new set. Like H_SET, HU_SET is defined by the design
hierarchy. However, you can use the HU_SET constraint to assign a user-defined name to
the HU_SET.

Figure 62-9, page 276 demonstrates how HU_SET constraints designate elements as set
members, break links between elements tagged with RLOC constraints in the hierarchy to
separate them from H_SET sets, and generate names as identifiers of these sets.

Figure 62-8: Modifying RLOC Values of Same Macro and Linking Together as One
Set (Slice-based XY Designations)

X9452

Design-top

RLOC = X1Y0

RLOC = X0Y0 (+X1Y0)
= >H_SET = hsetA

B

C

add X1Y0 to shift the
set 1 slice to the right

D

RLOC = X0Y0

Inst1 Inst2

= >RLOC = X1Y0

RLOC = X0Y1 (+X1Y0)
= >H_SET = hset
= >RLOC = X1Y1

RLOC = X0Y2 (+X1Y0)
= >H_SET = hset
= >RLOC = X1Y2

RLOC = X0Y3 (+X1Y0)
= >H_SET = hset
= >RLOC = X1Y3

M
ac

ro
 A

RLOC = X0X0
= >H_SET = hsetA

B

C

D

M
ac

ro
 A

RLOC = X0Y1
= >H_SET = hset

RLOC = X0Y2
= >H_SET = hset

RLOC = X0Y3
= >H_SET = hset

add X0Y0-no
change
Constraints Guide www.xilinx.com RLOC 275
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The user-defined HU_SET constraint on E separates its underlying design elements,
namely H, I, J, K, L, and M from the implicit H_SET=A/h_set that contains primitive

Figure 62-9: HU_SET Constraint Linking and Separating Elements from H_SET
Sets

RLOC

= > H_SET = A/hset

X4298

Design-top

A

C

B

D

RLOC

= > H_SET = A/hset

RLOC E HU_SET = bar

RLOC

= > H_SET = A/hset

G

F

RLOC

= > H_SET = A/hset

RLOC

= > HU_SET = A/bar

I

H

J

RLOC

= > HU_SET = A/bar

RLOC K HU_SET = bar

RLOC

= > HU_SET = A/bar
L RLOC

= > HU_SET = A/E/bar
M

Constraints Guide www.xilinx.com RLOC 276
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

members B, C, F, and G. The HU_SET set that is defined at E includes H, I, and L (through
the element J).

The mapper hierarchically qualifies the name value “bar” on element E to be A/bar, since
A is the lowest common ancestor for all the elements of the HU_SET set, and attaches it to
the set member primitives H, I, and L. An HU_SET constraint on K starts another set that
includes M, which receives the HU_SET=A/E/bar constraint after processing by the
mapper.

In Figure 62-9, page 276, the same name field is used for the two HU_SET constraints, but
because they are attached to symbols at different levels of the hierarchy, they define two
different sets.

Figure 62-10, page 277 shows how HU_SET constraints link elements in the same node
together by naming them with the same identifier. Because of the same name, “bar,” on
two elements, D and E, the elements tagged with RLOC constraints below D and E become
part of the same HU_SET.

Figure 62-10: Linking Two HU_SET Sets

A

Design-top

RLOC

= > H_SET = A/hset

RLOC

HU_SET = barD E

C

B

RLOC

= > HU_SET = A/bar

RLOC

= > HU_SET = A/bar

G

F RLOC

= > HU_SET = A/bar

RLOC

= > HU_SET = A/bar

H

I

X4299

= > H_SET = A/hset

HU_SET = bar
Constraints Guide www.xilinx.com RLOC 277
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Set Modifiers

A modifier, as its name suggests, modifies the RLOC constraints associated with design
elements. Since it modifies the RLOC constraints of all the members of a set, it must be
applied in a way that propagates it to all the members of the set easily and intuitively. For
this reason, the RLOC modifiers of a set are placed at the start of that set. The following set
modifiers apply to RLOC constraints.

• RLOC

The RLOC constraint associated with a design element modifies the values of other
RLOC constraints below the element in the hierarchy of the set. Regardless of the set
type, RLOC values (row, column, extension or XY values) on an element always
propagate down the hierarchy and are added at lower levels of the hierarchy to RLOC
constraints on elements in the same set.

• “RLOC_ORIGIN”

• “RLOC_RANGE”

Using RLOCs with Xilinx Macros

Xilinx-supplied flip-flop macros include an RLOC=R0C0 constraint on the underlying
primitive, which allows you to attach an RLOC to the macro symbol. (For Spartan-3,
Spartan-3E, Virtex-II, Virtex-II Pro, and Virtex-II Pro X, and Virtex-4 the macros include an
RLOC=X0Y0 constraint.) This symbol links the underlying primitive to the set that
contains the macro symbol.

Simply attach an appropriate RLOC constraint to the instantiation of the actual Xilinx flip-
flop macro. The mapper adds the RLOC value that you specified to the underlying
primitive so that it has the desired value.

For example, in Figure 62-11, page 279, the RLOC = R1C1 constraint is attached to the
instantiation (Inst1) of an example macro. It is added to the R0C0 value of the RLOC
constraint on the flip-flop within the macro to obtain the new RLOC values. This functions
the same for Spartan-3, Spartan-3E, Virtex-II, Virtex-II Pro, and Virtex-II Pro X macros
except that the RLOC constraint uses XY designations.
Constraints Guide www.xilinx.com RLOC 278
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

For Spartan-3, Spartan-3E, Virtex-II, Virtex-II Pro, and Virtex-II Pro X devices, if the
RLOC=X1Y1 constraint is attached to Inst1 of a macro, the X0Y0 value of the RLOC
constraint on the flip-flop within the macro would be used to obtain the new RLOC values.

If you do not put an RLOC constraint on the flip-flop macro symbol, the underlying
primitive symbol is the lone member of a set. The mapper removes RLOC constraints from
a primitive that is the only member of a set or from a macro that has no RLOC objects
below it.

LOC and RLOC Propagation through Design Flattening

NGDBuild continues to propagate LOC constraints down the design hierarchy. It adds this
constraint to appropriate objects that are not members of a set. While RLOC constraint
propagation is limited to sets, the LOC constraint is applied from its start point all the way
down the hierarchy.

When the design is flattened, the row and column numbers of an RLOC constraint on an
element are added to the row and column numbers of the RLOC constraints of the set
members below it in the hierarchy. This feature gives you the ability to modify existing
RLOC values in submodules and macros without changing the previously assigned RLOC
values on the primitive symbols.

Specifying RLOC constraints to describe the spatial relationship of the set members to
themselves allows the members of the set to float anywhere on the die as a unit. You can,
however, fix the exact die location of the set members. The RLOC_ORIGIN constraint
allows you to change the RLOC values into absolute LOC constraints that respect the
structure of the set.

Figure 62-11: Typical Use of a Xilinx Macro

FD

RLOC=R0C0

QCE

D
R
C

FD

RLOC = R0C0 (+R1C1)

= > RLOC = R1C1

RLOC = R1C1

Inst 1

Propagate R1C1

FDRE Macro

F
D

R
E

X4304
Constraints Guide www.xilinx.com RLOC 279
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The design resolution program, NGDBuild, translates the RLOC_ORIGIN constraint into
LOC constraints. The row and column values of the RLOC_ORIGIN are added
individually to the members of the set after all RLOC modifications have been made to
their row and column values by addition through the hierarchy. The final values are then
turned into LOC constraints on individual primitives.

Fixing Members of a Set at Exact Die Locations

As noted in the previous section, you can fix the members of a set at exact die locations
with the RLOC_ORIGIN constraint. You must use the RLOC_ORIGIN constraint with sets
that include BUFT symbols. However, for sets that do not include BUFT symbols, you can
limit the members of a set to a certain range on the die.

In this case, the set could “float” as a unit within the range until a final placement. Since
every member of the set must fit within the range, it is important that you specify a range
that defines an area large enough to respect the spatial structure of the set.

CLB-Based Row/Column/Slice Designations

The syntax of this constraint is:

RLOC_RANGE=Rm1Cn1:Rm2Cn2

where

• the relative row numbers (m1, m2) and column numbers (n1, n2) can be:

♦ non-zero positive numbers

♦ the wildcard (*) character

This syntax allows for three kinds of range specifications as follows.

• Rr1Cc1:Rr2Cc2
A rectangular region enclosed by rows r1, r2, and columns c1, c2

• R*Cc1:R*Cc2
A region enclosed by the columns c1 and c2 (any row number)

• Rr1C*:Rr2C*
A region enclosed by the rows r1 and r2 (any column number)

For the second and third kinds of specifications with wildcards, applying the wildcard
character (*) differently on either side of the separator colon creates an error. For example,
specifying R*C1:R2C* is an error since the wildcard asterisk is applied to rows on one side
and to columns on the other side of the separator colon.

Slice-Based XY Designations

The syntax of this constraint is the following:

RLOC_RANGE=Xm1Yn1:Xm2Yn2

where

• the relative X values (m1, m2) and Y values (n1, n2) can be:

♦ non-zero positive numbers

♦ the wildcard (*) character

This syntax allows for three kinds of range specifications:

• Xm1Yn1:Xm2Yn2
A rectangular region bounded by the corners Xm1Yn1 and Xm2Yn2
Constraints Guide www.xilinx.com RLOC 280
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

• X*Yn1:X*Ym2
The region on the Y-axis between n1 and n2 (any X value)

• Xm1Y*:Xm2Y*
A region on the X-axis between m1 and m2 (any Y value)

For the second and third kinds of specifications with wildcards, applying the wildcard
character (*) differently on either side of the separator colon creates an error. For example,
specifying X*Y1:X2Y* is an error since the wildcard asterisk is applied to the X value on one
side and to the Y value on the other side of the separator colon.

Specifying a Range

To specify a range, use the following syntax, which is equivalent to placing an
RLOC_RANGE constraint on the schematic.

• For CLB-based Row/Column/Slice Designations

set_name RLOC_RANGE=Rm1Cn1:Rm2Cn2

The range identifies a rectangular area. You can substitute a wildcard (*) character for
either the row number or the column number of both corners of the range.

• For Slice-based XY Designations

set_name RLOC_RANGE=Xm1Yn1:Xm2Yn2

The range identifies a rectangular area. You can substitute a wildcard (*) character for
either the X value or the Y value of both corners of the range.

The bounding rectangle applies to all elements in a relationally placed macro, not just to
the origin of the set.

The values of the RLOC_RANGE constraint are not simply added to the RLOC values of
the elements. In fact, the RLOC_RANGE constraint does not change the values of the
RLOC constraints on underlying elements. It is an additional constraint that is attached
automatically by the mapper to every member of a set.

The RLOC_RANGE constraint is attached to design elements in exactly the same way as
the RLOC_ORIGIN constraint. The values of the RLOC_RANGE constraint, like
RLOC_ORIGIN values, must be non-zero positive numbers since they directly correspond
to die locations.

If a particular RLOC set is constrained by an RLOC_ORIGIN or an RLOC_RANGE
constraint in the design netlist and is also constrained in the UCF file, the UCF file
constraint overrides the netlist constraint.

Toggling the Status of RLOC Constraints

Another important set modifier is the USE_RLOC constraint. It turns the RLOC constraints
on and off for a specific element or section of a set. USE_RLOC can be either TRUE or
FALSE.

The application of the USE_RLOC constraint is strictly based on hierarchy. A USE_RLOC
constraint attached to an element applies to all its underlying elements that are members of
the same set. If it is attached to a symbol that defines the start of a set, the constraint is
applied to all the underlying member elements, which represent the entire set.

However, if it is applied to an element below the start of the set (for example, E in
Figure 62-12, page 282), only the members of the set (H and I) below the specified element
are affected. You can also attach the USE_RLOC constraint directly to a primitive symbol
so that it affects only that symbol.
Constraints Guide www.xilinx.com RLOC 281
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

When the USE_RLOC=FALSE constraint is applied, the RLOC and set constraints are
removed from the affected symbols in the NCD file. This process is different than that
followed for the RLOC_ORIGIN constraint. For RLOC_ORIGIN, the mapper generates
and outputs a LOC constraint in addition to all the set and RLOC constraints in the PCF
file. The mapper does not retain the original constraints in the presence of a
USE_RLOC=FALSE constraint because these cannot be turned on again in later programs.

Figure 62-12, page 282 illustrates the use of the USE_RLOC constraint to mask an entire set
as well as portions of a set.

Applying the USE_RLOC constraint on U_SET sets is a special case because of the lack of
hierarchy in the U_SET set. Because the USE_RLOC constraint propagates strictly in a
hierarchical manner, the members of a U_SET set that are in different parts of the design
hierarchy must be tagged separately with USE_RLOC constraints; no single USE_RLOC
constraint is propagated to all the members of the set that lie in different parts of the
hierarchy.

Figure 62-12: Using the USE_RLOC Constraint to Control RLOC Application on
H_SET and HU_SET Sets

A

Design-top

USE_RLOC = FALSE

RLOC = R0C0

= > H SET = A/hset

RLOC = R1C0

= > H SET = A/hset

HU_SET = bar

Parameters removed

Parameters removed

RLOC = R0C1
HU_SET = bar

USE_RLOC = FALSE
D E

C

B

RLOC = R0C0

= > HU_SET = A/bar

RLOC = R1C0

= HU_SET = A/bar

G

F RLOC = R0C0

= > HU_SET = A/bar

RLOC = R1C0

= > HU_SET = A/bar

Parameters
removed

Parameters
removed

H

I

X4302

propagate
USE_RLOC
and remove
set parameters
below

apply
USE_RLOC
to H_SET
Constraints Guide www.xilinx.com RLOC 282
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

If you create a U_SET set through an instantiating macro, you can attach the USE_RLOC
constraint to the instantiating macro to allow it to propagate hierarchically to all the
members of the set.

You can create this instantiating macro by placing a U_SET constraint on a macro and
letting the mapper propagate that constraint to every symbol with an RLOC constraint
below it in the hierarchy.

Figure 62-13, page 283 illustrates an example of the use of the USE_RLOC=FALSE
constraint. The USE_RLOC=FALSE on primitive E removes it from the U_SET set, and
USE_RLOC=FALSE on element F propagates to primitive G and removes it from the
U_SET set.

While propagating the USE_RLOC constraint, the mapper ignores underlying USE_RLOC
constraints if it encounters elements higher in the hierarchy that already have USE_RLOC
constraints. For example, if the mapper encounters an underlying element with a
USE_RLOC=TRUE constraint during the propagation of a USE_RLOC=FALSE constraint,
it ignores the newly encountered TRUE constraint.

Choosing an RLOC Origin when Using Hierarchy Sets

To specify a single origin for an RLOC set, use the following syntax, which is equivalent to
placing an RLOC_ORIGIN constraint on the schematic.

• For CLB-based Row/Column/Slice Designations

set_name RLOC_ORIGIN=RmCn

where

♦ set_name can be the name of any type of RLOC set: a U_SET, an HU_SET, or a
system-generated H_SET

Figure 62-13: Using the USE_RLOC Constraint to Control RLOC Application on U_SET Sets

Design-top

X4303

G

A

U_SET = bar
RLOC = R0C0C

D

E
U_SET = bar

RLOC = R2C0

B

U_SET = bar
RLOC = R1C0

USE_RLOC = FALSE

F
U_SET = bar

USE_RLOC = FALSE

U_SET = bar

RLOC = R3C0

propagate USE_RLOC
and remove set parameters
below

Parameters
removed

Parameters
removed
Constraints Guide www.xilinx.com RLOC 283
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

♦ The origin itself is expressed as a row number and a column number representing
the location of the elements at RLOC=R0C0

• For Slice-based XY Designations

set_name RLOC_ORIGIN=XmYn

where

♦ set_name can be the name of any type of RLOC set: a U_SET, an HU_SET, or a
system-generated H_SET

♦ The origin itself is expressed as an X and Y value representing the location of the
elements at RLOC=X0Y0

When RLOC_ORIGIN is used in conjunction with an implicit H_SET (hierarchy set), it
must be placed on the element that is the start of the H_SET set, that is, on the lowest
common ancestor of all the members of the set.

If you apply RLOC_ORIGIN to an HU_SET constraint, place it on the element at the start
of the HU_SET set, that is, on an element with the HU_SET constraint.

However, since there could be several elements linked together with the HU_SET
constraint at the same node, the RLOC_ORIGIN constraint can be applied to only one of
these elements to prevent more than one RLOC_ORIGIN constraint from being applied to
the HU_SET set.

Similarly, when used with a U_SET constraint, the RLOC_ORIGIN constraint can be
placed on only one element with the U_SET constraint. If you attach the RLOC_ORIGIN
constraint to an element that has only an RLOC constraint, the membership of that element
in any set is removed, and the element is considered the start of a new H_SET set with the
specified RLOC_ORIGIN constraint attached to the newly created set.

In Figure 62-14, page 285, the elements B, C, D, F, and G are members of an H_SET set with
the name A/h_set. This figure is the same as Figure 62-5, page 272 except for the presence
of an RLOC_ORIGIN constraint at the start of the H_SET set (at A).

The RLOC_ORIGIN values are added to the resultant RLOC values at each of the member
elements to obtain the values that are then converted by the mapper to LOC constraints.
For example, the RLOC value of F, given by adding the RLOC value at E (R0C1) and that at
F (R0C0), is added to the RLOC_ORIGIN value (R2C3) to obtain the value of (R2C4), which
is then converted to a LOC constraint, LOC = CLB_R2C4.
Constraints Guide www.xilinx.com RLOC 284
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Figure 62-15, page 286 shows an example of an RLOC_ORIGIN constraint modifying an
HU_SET constraint. The start of the HU_SET A/bar is given by element D or E. The
RLOC_ORIGIN attached to E, therefore, applies to this HU_SET set. On the other hand, the
RLOC_ORIGIN at A, which is the start of the H_SET set A/h_set, applies to elements B
and C, which are members of the H_SET set.

Figure 62-14: Using an RLOC_ORIGIN Constraint to Modify an H_SET Set

RLOC = R0C0 (+R2C3)

RLOC = R0C0 (+R0C1 + R2C3)

X6950

RLOC = R1C0 (+R2C3)

RLOC = R2C0 (+R2C3)

A

Design-top

RLOC_ORIGIN = R2C3

= >LOC = CLB_R2C3

RLOC = R0C1E

B

= >LOC = CLB_R2C4
F

G

Mapper adds ROC1 and
RLOC_ORIGIN
(R2C3) below to get final
LOC constraint

RLOC = R1C0 (+R0C1 + R2C3)

= >LOC = CLB_R3C4

= >LOC = CLB_R3C3C

= >LOC = CLB_R4C3D

Mapper adds RLOC_ORIGIN
(R2C3) below to get final
LOC constraint
Constraints Guide www.xilinx.com RLOC 285
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

RLOC Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to an instance

• Attribute Name: RLOC

• Attribute Values: See “RLOC Syntax” in this chapter.

Figure 62-15: Using an RLOC_ORIGIN to Modify H_SET and HU_SET Sets

A

Design-top

RLOC_ORIGIN = R1C2

RLOC = R0C0 (+R1C2)
= > H_SET = A/hset

RLOC = R1C0 (+R1C2)

= > LOC = CLB_R2C2

HU_SET = bar RLOC_ORIGIN = R3C3
HU_SET = bar

RLOC = R0C1
D E

C

B

RLOC = R0C0 (+R3C3)
= > HU_SET = A/bar

RLOC = R1C0 (+R3C3)
= > HU_SET = A/bar

G

F RLOC = R0C0 (+R0C1 + R3C3)
= > HU_SET = A/bar

RLOC = R1C0 (+R0C1 + R3C3)
= > HU_SET = A/bar

H

I

X9614

add RLOC_ORIGIN
and RLOC below

add RLOC_ORIGIN
to H_SET

= > LOC = CLB_R1C2

= > H_SET = A/hset

= > LOC = CLB_R3C3

= > LOC = CLB_R4C3 = > LOC = CLB_R4C4

= > LOC = CLB_R3C4

add RLOC_ORIGIN
to HU_SET
Constraints Guide www.xilinx.com RLOC 286
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

VHDL

Before using RLOC, declare it with the following syntax:

attribute rloc: string;

After RLOC has been declared, specify the VHDL constraint as follows for Virtex, Virtex-E,
Spartan-II, and Spartan-IIE:

attribute rloc of {component_name|entity_name|label_name}:
{component|entity|label} is “[element]RmCn[.extension]”;

After RLOC has been declared, specify the VHDL constraint as follows for Spartan-3,
Spartan-3E, Virtex-II, Virtex-II Pro, and Virtex-II Pro X, and Virtex-4:

attribute rloc of {component_name|entity_name|label_name}:
{component|entity|label} is “[element]XmYn[.extension]”;

For descriptions of valid values, see “Guidelines for Specifying Relative Locations” in this
chapter.

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

The following code sample shows how to use RLOCs with a VHDL generate statement.
The code is a simple example showing how to auto-generate the RLOCs for several
instantiated FDEs. This methodology can be used with virtually any primitive.

LEN:for i in 0 to bits-1 generate
constant row :natural:=((width-1)/2)-(i/2);
constant column:natural:=0;
constant slice:natural:=0;
constant rloc_str : string := "R" & itoa(row) & "C" & itoa(column) &

".S" & itoa(slice);
attribute RLOC of U1: label is rloc_str;

begin
U1: FDE port map (

Q => dd(j),
D => ff_d,
C => clk,
CE =>lcl_en(en_idx));

end generate LEN;

Verilog

Specify as follows for Virtex and Spartan-II:

 // synthesis attribute rloc [of] {module_name|instance_name} [is]
[element]RmCn[.extension];

Specify as follows for Spartan-3, Spartan-3E, Virtex-II, Virtex-II Pro,
Virtex-II Pro X, and Virtex-4:

 // synthesis attribute rloc [of] {module_name|instance_name} [is]
[element]XmYn[.extension];

For descriptions of valid value, see “Guidelines for Specifying Relative Locations” in this
chapter.

For more information about Verilog syntax, see“Specifying Constraints in Verilog” in this
chapter.
Constraints Guide www.xilinx.com RLOC 287
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF

For Virtex, Virtex-E, Spartan-II, and Spartan-IIE devices, the following statement specifies
that an instantiation of FF1 be placed in the CLB at row 4, column 4.

INST “/Virtex/design/FF1” RLOC=R4C4;

For Virtex, Virtex-E, Spartan-II, and Spartan-IIE devices, the following statement specifies
that an instantiation of elemA be placed in the X flip-flop in the CLB at row 0, column 1.

INST “/$1I87/elemA” RLOC=r0cl.S0;

For Spartan-3, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, and Virtex-4 devices, the
following statement specifies that an instantiation of FF1 be placed in a slice that is +4 X
coordinates and +4 Y coordinates relative to the origin slice.

INST “/V2/design/FF1” RLOC=X4Y4;

XCF

For Virtex, Virtex-E, Spartan-II, and Spartan-IIE devices:

BEGIN MODEL “entity_name”

 INST "instance_name" rloc=[element]RmCn[.extension];

END;

For Virtex-II, Virtex-II Pro, Virtex-II Pro X, and Virtex-4 devices:

BEGIN MODEL “entity_name”

 INST "instance_name" rloc=[element]XmYn[.extension];

END;.

Floorplanner

D rag logic to locations on the Floorplan view. To write out RLOCs, save the constraints to
an NCF file via the Write RPM to NCF... command on the File pulldown menu. For more
information, see “Write RPM to NCF Command” in the Floorplanner help.
Constraints Guide www.xilinx.com RLOC 288
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

RLOC_ORIGIN

RLOC_ORIGIN Architecture Support
The following table shows whether the constraint may be used with that device.

RLOC_ORIGIN Applicable Elements
Instances or macros that are members of sets.

RLOC_ORIGIN Propagation Rules
RLOC_ORIGIN is a macro constraint and any attachment to a net is illegal.

RLOC_ORIGIN Description
RLOC_ORIGIN is a placement constraint. It fixes the members of a set at exact die
locations. RLOC_ORIGIN must specify a single location, not a range or a list of several
locations. For more information, see “Set Modifiers” in the “RLOC” constraint.

RLOC_ORIGIN is required for a set that includes BUFT symbols. RLOC_ORIGIN cannot
be attached to a BUFT instance.

RLOC_ORIGIN Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com RLOC_ORIGIN 289
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Schematic

• Attach to an instance that is a member of a set

• Attribute Name: RLOC_ORIGIN

• Attribute Values: See “UCF and NCF” in this chapter.

VHDL

Before using RLOC_ORIGIN, declare it with the following syntax:

attribute rloc_origin: string;

After RLOC_ORIGIN has been declared, specify the VHDL constraint as follows:

attribute rloc_origin of {component_name|entity_name|label_name}:
{component|entity|label} is “value”;

For Virtex, Virtex-E, Spartan-II, and Spartan-II E devices, value is RmCn.

For Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X devices, value is XmYn.

For a description of valid values, see “UCF and NCF” in this chapter.

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute rloc_origin [of] {module_name|instance_name}
[is] value;

For Virtex, Virtex-E, Spartan-II, and Spartan-IIE devices, value is RmCn.

For Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X devices, value is XmYn.

For a description of valid values, see “UCF and NCF” in this chapter.

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

RLOC_ORIGIN Syntax for Architectures Using CLB-based Row/Column/Slice
Specifications

RLOC_ORIGIN=RmCn

where

• m and n are positive or negative integers (including zero) representing relative row
and column numbers, respectively

The following statement specifies that any RLOC statement applied to FF1 uses the CLB at
R4C4 as its reference point. For example, if RLOC=R0C2 for FF1, then the instantiation of
FF1 is placed in the CLB that occupies row 4 (R0 + R4), column 6 (C2 + C4).

INST “/archive/designs/FF1” RLOC_ORIGIN=R4C4;
Constraints Guide www.xilinx.com RLOC_ORIGIN 290
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

RLOC_ORIGIN Syntax for Architectures Using Slice-based XY Coordinates

This section applies to Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X devices only.

RLOC_ORIGIN=XmYn

where

• m and n are positive or negative integers (including zero) representing relative X and
Y coordinates, respectively

The following statement specifies that an instantiation of FF1, which is a member of a set,
be placed in the slice at X4Y4 relative to FF1. For example, if RLOC=X0Y2 for FF1, then the
instantiation of FF1 is placed in the slice that is 0 rows to the right of X4 and 2 rows up from
Y4 (X4Y6).

INST “/archive/designs/FF1” RLOC_ORIGIN=X4Y4;.

Floorplanner

See “Write RPM to UCF Command” in the Floorplanner help.
Constraints Guide www.xilinx.com RLOC_ORIGIN 291
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

RLOC_RANGE

RLOC_RANGE Architecture Support
The following table shows whether the constraint may be used with that device.

RLOC_RANGE Applicable Elements
Instances or macros that are members of sets.

RLOC_RANGE Description
RLOC_RANGE is a placement constraint. It is similar to RLOC_ORIGIN except that it
limits the members of a set to a certain range on the die. The range or list of locations is
meant to apply to all applicable elements with RLOCs, not just to the origin of the set.

RLOC_RANGE Propagation Rules
RLOC_RANGE is a macro constraint and any attachment to a net is illegal.

RLOC_RANGE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to an instance that is a member of a set

• Attribute Name: RLOC_RANGE

• Attribute Values: See “UCF and NCF” in this chapter.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com RLOC_RANGE 292
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

VHDL

Before using RLOC_RANGE, declare it with the following syntax:

attribute rloc_range: string;

After RLOC_RANGE has been declared, specify the VHDL constraint as follows:

attribute rloc_range of {component_name|entity_name|label_name}:
{component|entity|label} is “value”;

For Virtex, Virtex-E, Spartan-II, and Spartan-IIE, value is Rm1Cn1:Rm2Cn2.

For Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X, value is Xm1Yn1:Xm2Yn2.

For a description of valid values, see “UCF and NCF” in this chapter.

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute rloc_range [of] {module_name|instance_name}
[is] value;

For Virtex, Virtex-E, Spartan-II, and Spartan-IIE devices, value is Rm1Cn1:Rm2Cn2.

For Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X devices, value is
Xm1Yn1:Xm2Yn2.

For a description of valid values, see “UCF and NCF” in this chapter.

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

For Architectures using CLB-based Row/Column/Slice Specifications

RLOC_RANGE=Rm1Cn1:Rm2Cn2

where

• the relative row numbers (m1 and m2) and column numbers (n1 and n2) can be
positive integers (including zero)

• the wildcard (*) character

This syntax allows three kinds of range specifications, which are defined in “Set
Modifiers.”

The following statement specifies that an instantiation of the macro MACRO4 be placed
within a region that is enclosed by the rows R4-R10 and the columns C4-C10.

INST “/archive/designs/MACRO4” RLOC_RANGE=R4C4:R10C10;
Constraints Guide www.xilinx.com RLOC_RANGE 293
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

For Architectures Using Slice-based XY Specifications

This section is applicable to Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X devices
only.

RLOC_RANGE=Xm1Yn1:Xm2Yn2

where

• the relative X values (m1 and m2) and Y values (n1 and n2) can be:

♦ positive integers (including zero)

♦ the wildcard (*) character

This syntax allows three kinds of range specifications, which are defined in “Set
Modifiers.”

The following statement specifies that an instantiation of the macro MACRO4 be placed
relative to other members of the set within a region that is bounded by X4Y4 in the lower
left corner and by X10Y10 in the upper right corner.

INST “/archive/designs/MACRO4” RLOC_RANGE=X4Y4:X10Y10;

XCF

MODEL “entity_name” rloc_range=value;

BEGIN MODEL “entity_name”

 INST "instance_name" rloc_range=value;

END;

PCF

RLOC_RANGE translates to a LOCATE constraint that has a range of sites. For example,
locate CLB_R1C1:CLB_R10C2
Constraints Guide www.xilinx.com RLOC_RANGE 294
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

SAVE NET FLAG

SAVE NET FLAG Architecture Support
The following table shows whether the constraint may be used with that device.

SAVE NET FLAG Applicable Elements
Nets or signals

SAVE NET FLAG Description
SAVE NET FLAG is a basic mapping constraint. Attaching SAVE NET FLAG to nets or
signals affects the mapping, placement, and routing of the design by preventing the
removal of unconnected signals.

The flag prevents the removal of loadless or driverless signals. For loadless signals, the S
constraint acts as a dummy OBUF load connected to the signal. For driverless signals the S
constraint acts as a dummy IBUF driver connected to the signal.

If you do not have the S constraint on a net, any signal that cannot be observed or
controlled via a path to an I/O primitive is removed.

The S constraint may prevent the trimming of logic connected to the signal.

SAVE NET FLAG can be abbreviated S NET FLAG.

SAVE NET FLAG Propagation Rules
SAVE NET FLAG is a net or signal constraint. Any attachment to a design element is
illegal.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com SAVE NET FLAG 295
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

SAVE NET FLAG prevents the removal of unconnected signals. If you do not have the S
constraint on a net, any signal not connected to logic or an I/O primitive is removed.

SAVE NET FLAG Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a net or signal

• Attribute Name: S

• Attribute Values: TRUE, FALSE

VHDL

Before using SAVE, declare it with the following syntax:

attribute s: string;

After SAVE has been declared, specify the VHDL constraint as follows:

attribute s of signal_name: signal is “yes”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute s [of] signal_name [is] “yes”;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

The following statement specifies that the net or signal named $SIG_9 will not be removed.

NET “$SIG_9” S;

XCF

BEGIN MODEL “entity_name”

 NET "signal_name" s=true;

END;
Constraints Guide www.xilinx.com SAVE NET FLAG 296
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

SCHMITT_TRIGGER

SCHMITT_TRIGGER Architecture Support
The following table shows whether the constraint may be used with that device.

SCHMITT_TRIGGER Applicable Elements
Applies to all input pads and pad nets.

SCHMITT_TRIGGER Description
This constraint causes the attached input pad to be configured with Schmitt Trigger
(hysteresis). This constraint applies to any input pad in the design.

SCHMITT_TRIGGER Propagation Rules
The constraint is a net or signal constraint. Any attachment to a macro, entity, or module is
illegal.

SCHMITT_TRIGGER Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a net

• Attribute Name: SCHMITT_TRIGGER

• Attribute Values: TRUE, FALSE

Virtex No

Virtex-E No

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 No

Spartan-II No

Spartan-IIE No

Spartan-3 No

Spartan-3E No

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II Yes
Constraints Guide www.xilinx.com SCHMITT_TRIGGER 297
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

VHDL

Before using SCHMITT_TRIGGER, declare it with the following syntax:

attribute SCHMITT_TRIGGER: string;

After SCHMITT_TRIGGER has been declared, specify the VHDL constraint as follows:

attribute SCHMITT_TRIGGER of signal_name: signal is “true”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

// synthesis attribute SCHMITT_TRIGGER [of] signal_name [is] “true”;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

ABEL

XILINX PROPERTY 'SCHMITT_TRIGGER mysignal';

UCF and NCF

NET “mysignal” SCHMITT_TRIGGER;

XCF

BEGIN MODEL “entity_name”

 NET "signal_name" SCHMITT_TRIGGER=true;

END;
Constraints Guide www.xilinx.com SCHMITT_TRIGGER 298
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

SIM_COLLISION_CHECK

SIM_COLLISION_CHECK Architecture Support
The following table shows whether the constraint may be used with that device.

SIM_COLLISION_CHECK Applicable Elements
Block RAM primitive elements

SIM_COLLISION_CHECK Description
This constraint is used to specify simulation model behavior when a read/write collision
occurs on a memory location of Block RAM.

Allowed values: {AL, NONE, WARNING_ONLY, GENERATE_X_ONLY} If there is a
read/write collision on a memory location in the V2/V2P/V4 block RAM memory.

• WARNING_ONLY generates a WARNING message during simulation.

• GENERATE_X_ONLY generates X’s on the outputs during simulation.

• ALL generates both a “WARNING message and X’s on the output during simulation.

• NONE ignores collisions leading to unpredictable results during simulation.

SIM_COLLISION_CHECK Propagation Rules
It is illegal to attach SIM_COLLISION_CHECK to a net or signal.

SIM_COLLISION_CHECK Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex No

Virtex-E No

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II No

Spartan-IIE No

Spartan-3 No

Spartan-3E No

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner II No
Constraints Guide www.xilinx.com SIM_COLLISION_CHECK 299
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Schematic

• Attached to a block RAM primitive

• Attribute Name: SIM_COLLISION_CHECK

• Attribute Values: WARNING_ONLY, GENERATE_X_ONLY, ALL, NONE

VHDL

Before using SIM_COLLISION_CHECK, declare it with the following syntax:

attribute sim_collision_check: string;

After SIM_COLLISION_CHECK has been declared, specify the VHDL constraint as
follows:

attribute sim_collision_check of {component_name|label_name}:
{component|label} is “sim_collision_check_value”;

For a description of the SIM_COLLISION_CHECK values, see “UCF and NCF” in this
chapter.

Verilog

Specify as follows:

 // synthesis attribute sim_collision_check [of]
{module_name}|instance_name} [is] “sim_collision_check_value”;

For a description of the B_INPUT values, see “UCF and NCF” in this chapter.

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

The following statement set the SIM_COLLISION_CHECK constraint for an instantiation
of an I/O primitive element y2.

INST “$1187/y2 SIM_COLLISION_CHECK={WARNING_ONLY, GENERATE_X_ONLY,
ALL, NONE);
Constraints Guide www.xilinx.com SIM_COLLISION_CHECK 300
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

SLEW

SLEW Architecture Support
The following table shows whether the constraint may be used with that device.

SLEW Applicable Elements
Output primitives, output pads, bidirectional pads

You can also attach SLEW to the net connected to the pad component in a UCF file.
NGDBuild transfers SLEW from the net to the pad instance in the NGD file so that it can be
processed by the mapper. Use the following syntax:

NET “net_name” slew={FAST|SLOW};

SLEW Description
SLEW has two possible arguments: “FAST” and “SLOW”.

FAST increases the speed of an IOB output. FAST produces a faster output but may
increase noise and power consumption. For more information, see the “FAST” constraint.

SLOW stipulates that the slew rate limited control should be enabled. For more
information, see the “SLOW” constraint.

SLEW Propagation Rules
SLEW is illegal when attached to a net except when the net is connected to a pad. In this
case, SLEW is treated as attached to the pad instance.

When attached to a design element, SLEW propagates to all applicable elements in the
hierarchy within the design element.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com SLEW 301
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

SLEW Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a valid instance

• Attribute Name: SLEW

• Attribute Values: FAST, SLOW

VHDL

Before using SLEW, declare it with the following syntax:

attribute slew : string;

After SLEW has been declared, specify the VHDL constraint as follows:

attribute slew of {entity_name|signal_name}: {entity|signal} is
“{FAST|SLOW}”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify SLEW as follows:

 // synthesis attribute slew [of] object_list [is] {FAST|SLOW}

where

• object_list is a comma separated list of specific names of modules and signals

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

The following statement establishes a slew rate for an instantiation of the element y2.

INST “$1I87/y2” SLEW={FAST|SLOW};

The following statement establishes a slew rate for the pad to which net1 is connected.

NET “net1” SLEW={FAST|SLOW};
Constraints Guide www.xilinx.com SLEW 302
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

XCF

MODEL “entity_name” slew={FAST|SLOW};

BEGIN MODEL “entity_name”

 NET "signal_name" slew={FAST|SLOW};

END;

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

You can select a SLEW rate (FAST or SLOW) for any output pad signal in the Ports tab (I/O
Configuration Options).
Constraints Guide www.xilinx.com SLEW 303
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

SLOW

SLOW Architecture Support
The following table shows whether the constraint may be used with that device.

SLOW Applicable Elements
Output primitives, output pads, bidirectional pads

You can also attach SLOW to the net connected to the pad component in a UCF file.
NGDBuild transfers SLOW from the net to the pad instance in the NGD file so that it can be
processed by the mapper. Use the following UCF syntax:

NET “net_name” SLOW;

SLOW Description
SLOW is a basic fitter constraint. It stipulates that the slew rate limited control should be
enabled.

SLOW Propagation Rules
SLOW is illegal when attached to a net except when the net is connected to a pad. In this
case, SLOW is treated as attached to the pad instance.

When attached to a design element, SLOW propagates to all applicable elements in the
hierarchy within the design element.

Virtex No

Virtex-E No

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 No

Spartan-II No

Spartan-IIE No

Spartan-3 No

Spartan-3E No

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com SLOW 304
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

SLOW Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a valid instance

• Attribute Name: SLOW

• Attribute Values: TRUE, FALSE

VHDL

Before using SLOW, declare it with the following syntax:

attribute slow : string

After SLOW has been declared, specify the VHDL constraint as follows:

attribute slow of {signal_name|entity_name}: {signal|entity} is “true”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute slow [of] {module_name|signal_name} [is]
“true”;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

ABEL

XILINX PROPERTY 'SLOW mysignal';

UCF and NCF

The following statement establishes a slow slew rate for an instantiation of the element y2.

INST “$1I87/y2” SLOW;

The following statement establishes a slow slew rate for the pad to which net1 is
connected.

NET “net1” SLOW;

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Ports tab grid with I/O Configuration Options checked, click the FAST/SLOW
column in the row with the desired output port name and choose SLOW from the drop-
down list.
Constraints Guide www.xilinx.com SLOW 305
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

SYSTEM_JITTER

SYSTEM_JITTER Architecture Support
The following table shows whether the constraint may be used with that device.

SYSTEM_JITTER Applicable Elements
Applies globally to the entire design.

SYSTEM_JITTER Description
This constraint specifies the system jitter of the design. System jitter depends on various
design conditions -- for example, the number of flip-flops changing at one time and the
number of I/Os changing. SYSTEM_JITTER applies to all of the clocks within a design. It
will be combined with the INPUT_JITTER keyword on the PERIOD constraint to generate
the Clock Uncertainty value that is shown in the timing report.

SYSTEM_JITTER Propagation Rules
Not applicable.

SYSTEM_JITTER Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a valid instance

• Attribute Name: SYSTEM_JITTER

Virtex No

Virtex-E No

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 Yes

Spartan-II No

Spartan-IIE No

Spartan-3 No

Spartan-3E No

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com SYSTEM_JITTER 306
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

VHDL

Before using SYSTEM_JITTER, declare it with the following syntax:

attribute SYSTEM_JITTER: string;

After SYSTEM_JITTER has been declared, specify the VHDL constraint as follows:

attribute SYSTEM_JITTER of
{component_name|signal_name|entity_name|label_name}:
{component|signal|entity|label} is “value ns”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute SYSTEM_JITTER [of]
{module_name|instance_name|signal_name} [is] value ns;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

The basic UCF syntax is:

SYSTEM_JITTER= value ns;

where

• value is a numerical value. The default is ns.

XCF

MODEL “entity_name” SYSTEM_JITTER = value ns;
Constraints Guide www.xilinx.com SYSTEM_JITTER 307
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

TEMPERATURE

TEMPERATURE Architecture Support
The following table shows whether the constraint may be used with that device.

Availability depends on the release of characterization data.

TEMPERATURE Applicable Elements
Global

TEMPERATURE Description
TEMPERATURE is an advanced timing constraint. It allows the specification of the
operating junction temperature. TEMPERATURE provides a means of prorating device
delay characteristics based on the specified temperature. Prorating is a scaling operation
on existing speed file delays and is applied globally to all delays.

Each architecture has its own specific range of valid operating temperatures. If the entered
temperature does not fall within the supported range, TEMPERATURE is ignored and an
architecture-specific worst-case value is used instead. Also note that the error message for
this condition does not appear until static timing.

TEMPERATURE Propagation Rules
It is illegal to attach TEMPERATURE to a net.

Virtex Yes

Virtex-E Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com TEMPERATURE 308
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

TEMPERATURE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF

TEMPERATURE=value [C |F| K];

where

• value is a real number specifying the temperature

• C, K, and F are the temperature units

♦ F is degrees Fahrenheit

♦ K is degrees Kelvin

♦ C is degrees Celsius, the default

The following statement specifies that the analysis for everything relating to speed file
delays assumes a junction temperature of 25 degrees Celsius.

TEMPERATURE=25 C;

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Misc tab, click Specify next to Temperature and fill out the temperature dialog box.
Constraints Guide www.xilinx.com TEMPERATURE 309
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

TIG

TIG Architecture Support
The following table shows whether the constraint may be used with that device.

TIG Applicable Elements
Nets, pins, instances

TIG Description
TIG (Timing IGnore) is a basic timing constraint and a synthesis constraint. It causes paths
that fan forward from the point of application (of TIG) to be treated as if they do not exist
(for the purposes of the timing model) during implementation.

You may apply a TIG relative to a specific timing specification.

The value of TIG may be any of the following:

• Empty (global TIG that blocks all paths)

• A single TSid to block

• A comma separated list of TSids to block, for example

NET “RESET” TIG=TS_fast, TS_even_faster;

XST fully supports TIG constraint except the case, where TIG is used with FROM_TO
constraint.

TIG Propagation Rules
If TIG is attached to a net, primitive pin, or macro pin, all paths that fan forward from the
point of application of the constraint are treated as if they do not exist for the purposes of

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com TIG 310
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

timing analysis during implementation. In the following figure, NET C is ignored.
However, note that the lower path of NET B that runs through the two OR gates would not
be ignored.

The following constraint would be attached to a net to inform the timing analysis tools that
it should ignore paths through the net for specification TS43:

Schematic syntax

TIG = TS43

UCF syntax

NET “net_name” TIG = TS43;

You cannot perform path analysis in the presence of combinatorial loops. Therefore, the
timing tools ignore certain connections to break combinatorial loops. You can use the TIG
constraint to direct the timing tools to ignore specified nets or load pins, consequently
controlling how loops are broken.

Figure 72-1: TIG Example

D Q

D Q

D Q

D Q

TIG

Ignored Paths

NET C

NET B

NET A

X8529
Constraints Guide www.xilinx.com TIG 311
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

TIG Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a net or pin.

• Attribute Name: TIG

• Attribute Values: value

UCF and NCF

The basic UCF syntax is:

NET “net_name” TIG;

PIN “ff_inst.RST” TIG=TS_1;

INST “instance_name” TIG=TS_2;

TIG=TSidentifier1,..., TSidentifiern

where

• identifier refers to a timing specification that should be ignored

When attached to an instance, TIG is pushed to the output pins of that instance. When
attached to a net, TIG pushes to the drive pin of the net. When attached to a pin, TIG
applies to the pin.

The following statement specifies that the timing specifications TS_fast and
TS_even_faster will be ignored on all paths fanning forward from the net RESET.

 NET “RESET” TIG=TS_fast, TS_even_faster;

XCF

Same as the UCF syntax.

XST fully supports TIG constraint except the case, where TIG is used with FROM_TO
constraint. TIG can be applied to the nets, situated in the CORE files (EDIF, NGC) as well.

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Advanced tab, click Specify next to “False Paths (FROM TO TIG)” and fill out the
FROM/THRU/TO dialog box or click Specify next to “False Paths by Net (NET TIG)” and
fill out the Timing Ignore dialog box.
Constraints Guide www.xilinx.com TIG 312
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

PCF

item TIG;

item TIG = ;

item TIG = TSidentifier;

where

• item is:

♦ PIN name

♦ PATH name

♦ path specification

♦ NET name

♦ TIMEGRP name

♦ BEL name

♦ COMP name

♦ MACRO name
Constraints Guide www.xilinx.com TIG 313
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

TIMEGRP

TIMEGRP Architecture Support
The following table shows whether the constraint may be used with that device.

TIMEGRP Applicable Elements
Design elements or nets

TIMEGRP Description
TIMEGRP is a basic grouping constraint. In addition to naming groups using the TNM
identifier, you can also define groups in terms of other groups. You can create a group that
is a combination of existing groups by defining a TIMEGRP constraint.

You can place TIMEGRP constraints in a constraints file (UCF and NCF).

You can use TIMEGRP attributes to create groups using the following methods.

• “Combining Multiple Groups into One”

• “Creating Groups by Exclusion”

• “Defining Flip-Flop Subgroups by Clock Sense”

Combining Multiple Groups into One

You can define a group by combining other groups. The following syntax example
illustrates the simple combining of two groups:

UCF syntax

TIMEGRP “big_group”=”small_group” “medium_group”;

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com TIMEGRP 314
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

In this syntax example, small_group and medium_group are existing groups defined using a
TNM or TIMEGRP attribute.

A circular definition, as shown below, causes an error when you run your design through
NGDBuild:

UCF syntax:

TIMEGRP “many_ffs”=”ffs1” “ffs2”;
TIMEGRP “ffs1”=”many_ffs” “ffs3”;

Creating Groups by Exclusion

You can define a group that includes all elements of one group except the elements that
belong to another group, as illustrated by the following syntax examples:

UCF syntax

TIMEGRP “group1”=”group2” EXCEPT “group3”;

where

• group1 represents the group being defined. It contains all of the elements in group2
except those that are also in group3.

• group2 and group3 can be a:

♦ valid TNM

♦ predefined group

♦ TIMEGRP attribute

As illustrated by the following example, you can specify multiple groups to include or
exclude when creating the new group.

UCF syntax

TIMEGRP “group1”=”group2” “group3” EXCEPT “group4” “group5”;

The example defines a group1 that includes the members of group2 and group3, except for
those members that are part of group4 or group5. All of the groups before the keyword
EXCEPT are included, and all of the groups after the keyword are excluded.

Defining Flip-Flop Subgroups by Clock Sense

You can create subgroups using the keywords RISING and FALLING to group flip-flops
triggered by rising and falling edges.

UCF syntax

TIMEGRP “group1”=RISING ffs;

TIMEGRP “group2”=RISING “ffs_group”;

TIMEGRP “group3”=FALLING ffs;

TIMEGRP “group4”=FALLING “ffs_group”;

group1 to group4 are new groups being defined. The ffs_group must be a group that includes
only flip-flops.

Keywords, such as EXCEPT, RISING, and FALLING, appear in the documentation in
upper case; however, you can enter them in either lower or upper case. You cannot enter
them in a combination of lower and upper case.
Constraints Guide www.xilinx.com TIMEGRP 315
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The following example defines a group of flip-flops that switch on the falling edge of the
clock.

UCF syntax:

TIMEGRP “falling_ffs”=FALLING ffs;

Defining Latch Subgroups by Gate Sense

Groups of type LATCHES (no matter how these groups are defined) can be easily
separated into transparent high and transparent low subgroups. The TRANSHI and
TRANSLO keywords are provided for this purpose and are used in TIMEGRP statements
like the RISING and FALLING keywords for flip-flop groups.

UCF syntax:

TIMEGRP “lowgroup”=TRANSLO “latchgroup”;

TIMEGRP “highgroup”=TRANSHI “latchgroup”;

Creating Groups by Pattern Matching

When creating groups, you can use wildcard characters to define groups of symbols whose
associated net names match a specific pattern. This is typically used in schematic designs
where net names are specified, not instance names. Synthesis plans typically use
INST/TNM syntax. For more information, see the “TNM” constraint.

How to Use Wildcards to Specify Net Names

The wildcard characters, asterisk (*) and question mark (?), enable you to select a group of
symbols whose output net names match a specific string or pattern. The asterisk (*)
represents any string of zero or more characters. The question mark (?) indicates a single
character.

For example, DATA* indicates any net name that begins with “DATA,” such as DATA,
DATA1, DATA22, and DATABASE. The string NUMBER? specifies any net names that
begin with ‘‘NUMBER” and end with one single character, for example, NUMBER1 or
NUMBERS, but not NUMBER or NUMBER12.

You can also specify more than one wildcard character. For example, *AT? specifies any net
names that begin with any series of characters followed by ‘‘AT” and end with any one
character such as BAT1, CAT2, and THAT5. If you specify *AT*, you would match BAT11,
CAT26, and THAT50.

Pattern Matching Syntax

The syntax for creating a group using pattern matching is:

UCF syntax

TIMEGRP “group_name”=predefined_group(“pattern”);

where

• predefined_group can be one of the following predefined groups only: FFS, LATCHES,
PADS, RAMS, CPUS, HSIOS, DSPS, BRAM_PORTA, BRAM_PORTB, or MULTS. For
information on the definition of these groups, see “UCF and NCF” in the
“TNM_NET” constraint.

• pattern is any string of characters used in conjunction with one or more wildcard
characters.
Constraints Guide www.xilinx.com TIMEGRP 316
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

When specifying a net name, you must use its full hierarchical path name so PAR can find
the net in the flattened design.

For FFS, RAMs, LATCHES, PADS, CPUS, DSPS, HSIOS, and MULTS, specify the output
net name. For pads, specify the external net name.

Example

The following example illustrates creating a group that includes the flip-flops that source
nets whose names begin with $1I3/FRED.

UCF syntax

TIMEGRP “group1”=ffs(“$1I3/FRED*”);

Example

The following example illustrates a group that excludes certain flip-flops whose output net
names match the specified pattern.

UCF syntax

TIMEGRP “this_group”=ffs EXCEPT ffs(“a*”);

In this example, this_group includes all flip-flops except those whose output net names
begin with the letter “a.”

Example

The following example defines a group named “some_latches”.

UCF syntax

TIMEGRP “some_latches”=latches(“$113/xyz*”);

The group some_latches contains all input latches whose output net names start with
“$1I3/xyz.”

Additional Pattern Matching Details

In addition to using pattern matching when you create timing groups, you can specify a
predefined group qualified by a pattern any place you specify a predefined group. The
syntax below illustrates how pattern matching can be used within a timing specification.

UCF syntax

TIMESPEC “TSidentifier”=FROM predefined_group(“pattern”) TO
predefined_group
(“pattern”) value;

Patterns Separated by Colon

Instead of specifying one pattern, you can specify a list of patterns separated by a colon:

UCF syntax

TIMEGRP “some_ffs”=ffs(“a*:b?:c*d”);

The group some_ffs contains flip-flops whose output net names adhere to one of the
following rules.

• Start with the letter “a”

• Contain two characters; the first character is “b”

• Start with “c” and end with “d”
Constraints Guide www.xilinx.com TIMEGRP 317
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Defining Area Groups Using Timing Groups

For more information, see “Defining From Timing Groups” in the “AREA_GROUP”
constraint.

TIMEGRP Propagation Rules
Applies to all elements or nets within the group.

TIMEGRP Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF

TIMEGRP “newgroup”=”existing_grp1” “existing_grp2” [“existing_grp3” .
. .];

where

• newgroup is a newly created group that consists of:

♦ existing groups created via TNMs

♦ predefined groups

♦ other TIMEGRP attributes

UCF syntax:

TIMEGRP “GROUP1” = “gr2” “GROUP3”;
TIMEGRP “GROUP3” = FFS except “grp5”;

XCF

XST supports TIMEGRP with the following limitations:

• Groups Creation by Exclusion is not supported

• When a group is defined on the basis of another user group with pattern matching;

 TIMEGRP TG1 = FFS (machine*); # Supported

 TIMEGRP TG2 = TG1 (machine_clk1*); # Not supported

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Advanced tab, click Create next to “Group elements by element output net name”
and fill out the Time Group dialog box.

PCF

TIMEGRP name;

TIMEGRP name = list of elements;
Constraints Guide www.xilinx.com TIMEGRP 318
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

TIMESPEC

TIMESPEC Architecture Support
The following table shows whether the constraint may be used with that device.

TIMESPEC Applicable Elements
TS identifiers

TIMESPEC Description
TIMESPEC is a basic timing related constraint. TIMESPEC serves as a placeholder for
timing specifications, which are called TS attribute definitions. Every TS attribute begins
with the letters ‘‘TS” and ends with a unique identifier that can consist of letters, numbers,
or the underscore character (_).

TIMESPEC Propagation Rules
Not applicable.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com TIMESPEC 319
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

TIMESPEC Syntax

UCF Syntax

A TS attribute defines the allowable delay for paths in your design. The basic syntax for a
TS attribute is:

TIMESPEC "TSidentifier"=PERIOD "timegroup_name" value [units];

where

• TSidentifier is a unique name for the TS attribute

• value is a numerical value

• units can be ms, us, ps, ns

TIMESPEC "TSidentifier"=PERIOD "timegroup_name" "TSidentifier" [* or /]
factor PHASE [+ |-] phase_value [units];

Syntax Rules

The following syntax rules apply

Value Parameter

The value parameter defines the maximum delay for the attribute. Nanoseconds are the
default units for specifying delay time in TS attributes. You can also specify delay using
other units, such as picoseconds or megahertz.

Keywords

Keywords, such as FROM, TO, and TS appear in the documentation in upper case.
However, you can enter them in the TIMESPEC primitive in either upper or lower case.
The characters in the keywords must be all upper case or all lower case. Examples of
acceptable keywords are:

• FROM

• PERIOD

• TO

• from

• to

Examples of unacceptable keywords are:

• From

• To

• fRoM

• tO

TSidentifier Name

If a TSidentifier name is referenced in a property value, it must be entered in upper case
letters. For example, the TSID1 in the second constraint below must be entered in upper
case letters to match the TSID1 name in the first constraint.

TIMESPEC “TSID1” = FROM “gr1” TO “gr2” 50;
TIMESPEC “TSMAIN” = FROM “here” TO “there” TSID1 /2
Constraints Guide www.xilinx.com TIMESPEC 320
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Separators

A colon may be used as a separator instead of a space in all timing specifications.

TIMESPEC FROM-TO Syntax
Within TIMESPEC, you use the following UCF syntax to specify timing requirements
between specific end points.

TIMESPEC “TSidentifier”=FROM “source_group” TO “dest_group” value
units;

TIMESPEC “TSidentifier”=FROM “source_group” value units;

TIMESPEC “TSidentifier”=TO “dest_group” value units;

Unspecified FROM or TO, as in the second and third syntax statements, implies all points.

Note: Although you can use a FROM or TO statement to imply all points, you cannot use an
unspecified THRU statement by itself to imply all points.

The From-To statements are TS attributes that reside in the TIMESPEC primitive. The
parameters source_group and dest_group must be one of the following:

• Predefined groups

• Previously created TNM identifiers

• Groups defined in TIMEGRP symbols

• TPSYNC groups

Predefined groups consist of FFS, LATCHES, RAMS, PADS, CPUS, DSPS, HSIOS,
BRAMS_PORTA, BRAMS_PORTB, and MULTS. These groups are defined in the section
entitled “UCF and NCF,” in the discussion of TNM_NET, and are discussed in “Grouping
Constraints” of the Constraints Type chapter.

Keywords, such as FROM, TO, and TS appear in the documentation in upper case.
However, you use them TIMESPEC in either upper or lower case. You cannot enter them in
a combination of lower and upper case.

The value parameter defines the maximum delay for the attribute. Nanoseconds are the
default units for specifying delay time in TS attributes. You can also specify delay using
other units, such as picoseconds or megahertz.

TIMESPEC Examples of FROM-TO TS Attributes
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF

TIMESPEC “TS_master”=PERIOD “master_clk” 50 HIGH 30;

TIMESPEC “TS_THIS”=FROM FFS TO RAMS 35;

TIMESPEC “TS_THAT”=FROM PADS TO LATCHES 35;

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints. In the help index for the
Constraints Editor, double-click “TIMESPEC.”
Constraints Guide www.xilinx.com TIMESPEC 321
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

TNM

TNM Architecture Support
The following table shows whether the constraint may be used with that device.

TNM Applicable Elements
You can attach TNM constraints to a net, an element pin, a primitive, or a macro.

 You can attach the TNM constraint to the net connected to the pad component in a UCF
file. NGDBuild transfers the constraint from the net to the pad instance in the NGD file so
that it can be processed by the mapper. Use the following UCF syntax:

NET “net_name” TNM=”property_value”;

TNM Description
TNM is a basic grouping constraint. Use TNM (Timing Name) to identify the elements that
make up a group which you can then use in a timing specification.

TNM tags specific FFS, RAMs, LATCHES, PADS, CPUS, HSIOS, and MULTS as members
of a group to simplify the application of timing specifications to the group.

The RISING and FALLING keywords may also be used with TNMs.

TNM Propagation Rules
When attached to a net or signal, TNM propagates to all synchronous elements driven by
that net. No special propagation is required.

When attached to a design element, TNM propagates to all applicable elements in the
hierarchy within the design element.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com TNM 322
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The following rules apply to TNMs.

• TNMs applied to pad nets will not propagate forward through IBUFs. The TNM is
applied to the external pad. This case includes the net attached to the D input of an
IFD. See “TNM_NET” if you want the TNM to trace forward from an input pad net.

• TNMs applied to an IBUF instance are illegal.

• TNMs applied to the output pin of an IBUF will propagate the TNM to the next
appropriate element.

• TNMs applied to an IBUF element stay attached to that element.

• TNMs applied to a clock-pad-net will not propagate forward through the clock buffer.

• When TNM is applied to a macro, all the elements in the macro will have that timing
name.

Special rules apply when using TNM with the PERIOD constraint for Virtex, Virtex-II,
Spartan-II CLKDLLs and CLKDLLHFs, and related architectures.

Placing TNMs on Nets

You can place TNM on any net in the design. The constraint indicates that the TNM value
should be attached to all valid elements fed by all paths that fan forward from the tagged
net. Forward tracing stops at FFS, RAMS, LATCHES, PADS, CPUS, HSIOS, and MULTS.
TNMs do not propagate across IBUFs if they are attached to the input pad net.

Placing TNMs on Macro or Primitive Pins

You can place TNM on any macro or component pin in the design if the design entry
package allows placement of constraints on macro or primitive pins. The constraint
indicates that the TNM value should be attached to all valid elements fed by all paths that
fan forward from the tagged pin. Forward tracing stops at FFS, RAMS, LATCHES, PADS,
CPUS, HSIOS, and MULTS. The following illustration shows the valid elements for a TNM
attached to the schematic of a macro pin.
Constraints Guide www.xilinx.com TNM 323
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The syntax for the UCF file is:

PIN “pin_name” TNM=”FLOPS”;

Placing TNMs on Primitive Symbols

You can group individual logic primitives explicitly by flagging each symbol, as illustrated
by the following figure.

Figure 75-1: TNM Placed on a Macro Pin

EN
D Q

EN

D Q
I

0

DI DO

ADDRS
WE

DI DO

ADDRS
WE

D

X8528

TNM=FFS:FLOPS

MEM

WE
A0
A1
A2
A3

O

FLOPS

DI DO

FLOPS

Figure 75-2: TNM on Primitive Symbols

D

TNM=FLOPS

TNM=FLOPS

Q

D Q

D Q

LOGIC

LOGIC

X8532

CLK
Constraints Guide www.xilinx.com TNM 324
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

In the figure, the flip-flops tagged with the TNM form a group called “‘FLOPS.” The
untagged flip-flop on the right side of the drawing is not part of the group.

Place only one TNM on each symbol, driver pin, or macro driver pin.

Schematic syntax:

TNM=FLOPS;

UCF syntax

INST “instance_name” TNM=FLOPS;

Placing TNMs on Macro Symbols

A macro is an element that performs some general purpose higher level function. It
typically has a lower level design that consists of primitives, other macros, or both,
connected together to implement the higher level function. An example of a macro
function is a 16-bit counter.

A TNM constraint attached to a macro indicates that all elements inside the macro (at all
levels of hierarchy below the tagged macro) are part of the named group.

When a macro contains more than one symbol type and you want to group only a single
type, use the TNM identifier in conjunction with one of the predefined groups: FFS, RAMS,
LATCHES, PADS, CPUS, HSIOS, DSPS, BRAM_PORTA, BRAM_PORTB, and MULTS as
indicated by the following syntax examples.

UCF syntax:

INST “instance_name” TNM=FFS identifier;

INST “instance_name” TNM=RAMS identifier;

INST “instance_name” TNM=LATCHES identifier;

INST “instance_name” TNM=PADS identifier;

INST “instance_name” TNM=CPUS identifier;

INST “instance_name” TNM=HSIOS identifier;

INST “instance_name” TNM=MULTS identifier;

If multiple symbols of the same type are contained in the same hierarchical block, you can
simply flag that hierarchical symbol, as illustrated by the following figure. In the figure, all
flip-flops included in the macro are tagged with the TNM ‘‘FLOPS.” By tagging the macro
symbol, you need not tag each underlying symbol individually.
Constraints Guide www.xilinx.com TNM 325
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Placing TNMs on Nets or Pins to Group Flip-Flops and Latches

You can easily group flip-flops, latches, or both by flagging a common input net, typically
either a clock net or an enable net. If you attach a TNM to a net or driver pin, that TNM
applies to all flip-flops and input latches that are reached through the net or pin. That is,
that path is traced forward, through any number of gates or buffers, until it reaches a flip-
flop or input latch. That element is added to the specified TNM group.

The following figure illustrates the use of a TNM on a net that traces forward to create a
group of flip-flops.

Figure 75-3: TNM on Macro Symbol

EN
D Q

EN

D Q
I

O

DI DO

ADDRS

TNM=FFS:FLOPS;RAMS:MEM

WE

DI DO

ADDRS
WE

Q5
Q4
Q3
Q2
Q1
Q0
EN

POS
PH0
PH1
PH2
PH3
NEG

X4678
Constraints Guide www.xilinx.com TNM 326
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

In the figure, the constraint TNM=FLOPS traces forward to the first two flip-flops, which
form a group called FLOPS. The bottom flip-flop is not part of the group FLOPS.

The following figure illustrates placing a TNM on a clock net, which traces forward to all
three flip-flops and forms the group Q_FLOPS.

The TNM parameter on nets or pins is allowed to have a qualifier.

Figure 75-4: TNM on Net Used to Group Flip-Flops

Figure 75-5: TNM on Clock Pin Used to Group Flip-Flops

AND

FD Q

O

Pxx

X8553

FD Q

FD Q

Pxx

Pxx O

O

O

D1 D

C

D

C

D

C

IBUF
TNM=FLOPS

IBUF

GCLK

O

O

O CLK

XNOR

INV

INV

CLKNI

IPAD

IPAD

IPAD
I ICLKIN

I

I AIN0

BIN0

I

I

A0

B0

1

2

1

2

OBUF

OBUF

OBUF

I O
OPAD

OPAD

OPAD

I O

I O

BIT00

BIT01

BIT02

O

O

O

BIT0

BIT1

BIT2

D3

D2

Pxx

Pxx

Pxx

D Q

Q1

D Q

CLOCK

TNM=Q_FLOPS

D Q
D1

D3

D2 Q2

Q3

X8531
Constraints Guide www.xilinx.com TNM 327
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

For example, on schematics:

TNM=FFS data;

TNM=RAMS fifo;

TNM=LATCHES capture;

In UCF files

{NET | PIN} “net_or_pin_name” TNM=FFS data;

{NET | PIN} “net_or_pin_name” TNM=RAMS fifo;

{NET | PIN} “net_or_pin_name” TNM=LATCHES capture;

A qualified TNM is traced forward until it reaches the first storage element (FFS, RAMS,
LATCHES, PADS, CPUS, HSIOS, and MULTS). If that type of storage element matches the
qualifier, the storage element is given that TNM value. Whether or not there is a match, the
TNM is not traced through that storage element.

TNM parameters on nets or pins are never traced through a storage element (FFS, RAMS,
LATCHES, PADS, CPUS, HSIOS, and MULTS).

TNM Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a net or a macro

• Attribute Name: TNM

• Attribute Values: identifier

For a discussion of identifier, see “UCF and NCF” in this chapter.

ABEL

XILINX PROPERTY 'TNM=identifier mysignal';

UCF and NCF

{NET | PIN} “net_or_pin_name” TNM=[predefined_group:] identifier;

where

predefined_group can be

• all of the members of a predefined group using the keywords FFS, RAMS, LATCHES,
PADS, CPUS, HSIOS, and MULTS as follows:

♦ FFS refers to all CLB and IOB flip-flops. (Flip-flops built from function generators
are not included.)

♦ RAMS refers to all RAMs for architectures with RAMS. This includes LUT RAMS
and BLOCK RAMS.

♦ PADS refers to all I/O pads.

♦ LATCHES refers to all CLB or IOB latches. (Latches built from function generators
are not included.)

♦ MULTS group the Spartan-3 and Virtex-II registered multiplier.
Constraints Guide www.xilinx.com TNM 328
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

♦ CPUS group the Virtex-II Pro or Virtex-II Pro X processor.

♦ HSIOS to group the Virtex-II Pro or Virtex-II Pro X gigabit transceiver.

• a subset of elements in a group predefined by name matching using the following
syntax:

predefined_group (name_qualifier1... name_qualifiern)

where

• identifier can be any combination of letters, numbers, or underscores

Do not use the reserved words FFS, RAMS, LATCHES, PADS, CPUS, HSIOS, MULTS,
RISING, FALLING, TRANSHI, TRANSLO, or EXCEPT as identifiers.

The constraints in the table below are also reserved words and should not be used as
identifiers.

You can specify as many groups of end points as are necessary to describe the performance
requirements of your design. However, to simplify the specification process and reduce the
place and route time, use as few groups as possible.

Reserved Words (Constraints)

ADD FAST NODELAY

ALU FBKINV OPT

ASSIGN FILE OSC

BEL F_SET RES

BLKNM HBLKNM RLOC

CAP HU_SET RLOC_ORIGIN

CLKDV_DIVIDE H_SET RLOC_RANGE

CLBNM INIT SCHNM

CMOS INIT OX SLOW

CYMODE INTERNAL STARTUP_WAIT

DECODE IOB SYSTEM

DEF IOSTANDARD TNM

DIVIDE1_BY LIBVER TRIM

DIVIDE2_BY LOC TS

DOUBLE LOWPWR TTL

DRIVE MAP TYPE

DUTY_CYCLE_
CORRECTION

MEDFAST USE_RLOC

MEDSLOW U_SET

MINIM
Constraints Guide www.xilinx.com TNM 329
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

XCF

See “UCF and NCF” in this chapter.

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Advanced tab, click Create next to “Group elements by instance name” or Create
next to “Group elements by hierarchy” and fill out the Time Name dialog box.
Constraints Guide www.xilinx.com TNM 330
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

TNM_NET

TNM_NET Architecture Support
The following table shows whether the constraint may be used with that device.

TNM_NET Applicable Elements
Nets

TNM_NET Description
TNM_NET is a basic grouping constraint. TNM_NET (timing name for nets) identifies the
elements that make up a group, which can then be used in a timing specification.
TNM_NET is essentially equivalent to TNM on a net except for input pad nets.

Special rules apply when using TNM_NET with the PERIOD constraint for DLL/DCMs.
For more information, see “PERIOD Specifications on CLKDLLs and DCMs” in the
“PERIOD” constraint.

A TNM_NET is a property that you normally use in conjunction with an HDL design to tag
a specific net. All downstream synchronous elements and pads tagged with the TNM_NET
identifier are considered a group.

TNM_NET (Timing Name - Net) tags specific synchronous elements, pads, and latches as
members of a group to simplify the application of timing specifications to the group.
NGDBuild never transfers a TNM_NET constraint from the attached net to an input pad,
as it does with the TNM constraint.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com TNM_NET 331
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

TNM_NET Rules
The following rules apply to TNM_NET:

• TNM_NETs applied to pad nets propagate forward through the IBUF or OBUF and
any other combinatorial logic to synchronous logic or pads.

• TNM_NETs applied to a clock-pad-net propagate forward through the clock buffer.

• Special rules apply when using TNM_NET with the PERIOD constraint for Virtex,
Spartan-II, Virtex-II Pro, Virtex-II Pro X, and Virtex-4 DLL and DCMs.

Use TNM_NET to define certain types of nets that cannot be adequately described by the
TNM constraint.

For example, consider the following design.

Figure 76-1: TNM Associated with the IPAD

In the preceding design, a TNM associated with the IPAD symbol includes only the PAD
symbol as a member in a timing analysis group. For example, the following UCF file entry
creates a time group that includes the IPAD symbol only.

NET “PADCLK” TNM= “PADGRP”; (UCF file example)

However, using TNM to define a time group for the net PADCLK creates an empty time
group.

NET “PADCLK” TNM=FFS(*) “FFGRP”;(UCF file example)

All properties that apply to a pad are transferred from the net to the PAD symbol. Since the
TNM is transferred from the net to the PAD symbol, the qualifier, “FFS(*)” does not match
the PAD symbol.

To overcome this obstacle for schematic designs using TNM, you can create a time group
for the INTCLK net.

NET “INTCLK” TNM=FFS(*) FFGRP;(UCF file example)

C
INTCLK

BUFG

PADCLK

FFA

C

FFB

X8437

IPAD
Constraints Guide www.xilinx.com TNM_NET 332
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

However, for HDL designs, the only meaningful net names are the ones connected directly
to pads. Then, use TNM_NET to create the FFGRP time group.

NET PADCLK TNM_NET=FFS(*) FFGRP;(UCF file example)

NGDBuild does not transfer a TNM_NET constraint from a net to an IPAD as it does with
TNM.

You can use TNM_NET in NCF or UCF files as a property attached to a net in an input
netlist (EDIF or NGC). TNM_NET is not supported in PCF files.

You can use TNM_NET only with nets. If TNM_NET is used with any other object such as
a pin or symbol, a warning is generated and the TNM_NET definition is ignored.

TNM_NET Propagation Rules
It is illegal to attach TNM_NET to a design element.

TNM_NET Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a net.

• Attribute Name: TNM_NET

• Attribute Values: identifier

For a discussion of identifier, see “UCF and NCF” in this chapter.

UCF and NCF

NET “net_name” TNM_NET=[predefined_group:]identifier;

where

predefined_group can be:

• all of the members of a predefined group using the keywords FFS, RAMS, PADS,
MULTS, HSIOS, CPUS, DSPS, BRAMS_PORTA, BRAMS_PORTB or LATCHES as
follows:

♦ FFS refers to all CLB and IOB flip-flops. (Flip-flops built from function generators
are not included.)

♦ RAMS refers to all RAMs for architectures with RAMS. This includes LUT RAMS
and BLOCK RAMS.

♦ PADS refers to all I/O pads.

♦ MULTS group the Spartan-3 and Virtex-II registered multiplier.

♦ CPUS group the Virtex-II Pro or Virtex-II Pro X processor.

♦ DSPS is used to group DSP elements like the Virtex-4 DSP48.

♦ HSIOS group the Virtex-II Pro or Virtex-II Pro X gigabit transceiver.

♦ LATCHES refers to all CLB or IOB latches. (Latches built from function generators
are not included.)
Constraints Guide www.xilinx.com TNM_NET 333
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

• a subset of elements in a group predefined by a name using the following syntax:

predefined_group (name_qualifier1... name_qualifiern)

where

• identifier can be any combination of letters, numbers, or underscores

Do not use reserved words, such as FFS, RAMS, PADS, MULTS, HSIOS, CPUS, or
LATCHES for TNM_NET identifiers.

The following statement identifies all flip-flops fanning out from the PADCLK net as a
member of the timing group GRP1.

NET “PADCLK” TNM_NET=FFS(*) ”GRP1”;

XCF

XST supports TNM_NET with the following limitation: only a single pattern supported for
predefined groups.

The following command syntax is supported:

NET “PADCLK” TNM_NET=FFS(*) ”GRP1”;

The following command syntax is not supported:

NET “PADCLK” TNM_NET = FFS(machine/*:xcounter/*) TG1;

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Advanced tab, click Create next to “Group elements associated by Nets” and fill out
the Time Name dialog box.
Constraints Guide www.xilinx.com TNM_NET 334
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

TPSYNC

TPSYNC Architecture Support
The following table shows whether the constraint may be used with that device.

TPSYNC Applicable Elements
Nets, instances, pins

TPSYNC Description
TPSYNC is an advanced grouping constraint and a modular design constraint. It flags a
particular point or a set of points with an identifier for reference in subsequent timing
specifications. You can use the same identifier on several points, in which case timing
analysis treats the points as a group.

When the timing of a design must be designed from or to a point that is not a synchronous
element or I/O pad, the following rules apply if a TPSYNC timing point is attached to a
net, macro pin, output or input pin of a primitive, or an instance.

• A net: the source of the net is identified as a potential source or destination for timing
specifications.

• A macro pin: all of the sources inside the macro that drive the pin to which the
constraint is attached are identified as potential sources or destinations for timing
specifications. If the macro pin is an input pin (that is, if there are no sources for the
pin in the macro), then all of the load pins in the macro are flagged as synchronous
points.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com TPSYNC 335
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

 In the following diagram, POINTY applies to the inverter.

Figure 77-1: TPSYNCs Attached to Macro Pins

• The output pin of a primitive — the primitive’s output is flagged as a potential source
or destination for timing specifications.

• The input pin of a primitive — the primitive’s input is flagged as a potential source or
destination for timing specifications.

• An instance — the output of that element is identified as a potential source or
destination for timing specifications.

• A primitive symbol—Attached to a primitive symbol, TPSYNC identifies the outputs
of that element as a potential source or destination for timing specifications. See the
following figure.

Figure 77-2: TPSYNC Attached to a Primitive Symbol

D Q

Q1

D Q

CLOCK

D Q
D1

D3

D2 Q2

Q3

X8551

TPSYNC=POINTX

TPSYNC=POINTY

TPSYNC=POINTX

X8552
Constraints Guide www.xilinx.com TPSYNC 336
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The use of a TPSYNC timing point to define a synchronous point in a design implies that
the flagged point cannot be merged into a function generator. For example, consider the
following diagram.

Figure 77-3: Working with Two Gates

In this example, because of the TPSYNC definition, the two gates cannot be merged into a
single function generator.

TPSYNC Propagation Rules
See “TPSYNC Description.”

TPSYNC Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attached to a net, instance, or pin

• Attribute Name: TPSYNC

• Attribute Values: identifier

where

• identifier is a name that is used in timing specifications in the same way that groups
are used

UCF and NCF

NET “net_name” TPSYNC=identifier;

INST “instance_name” TPSYNC=identifier;

PIN “pin_name” TPSYNC=identifier;

TPSYNC=FOO

Function
Generator

Function
Generator

X8758
Constraints Guide www.xilinx.com TPSYNC 337
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

where

• identifier is a name that is used in timing specifications in the same way that groups
are used

All flagged points are used as a source or destination or both for the specification where
the TPSYNC identifier is used.

The name for the identifier must be unique to any identifier used for a TNM or TNM_NET
grouping constraint.

The following statement identifies latch as a potential source or destination for timing
specifications for the net logic_latch.

NET “logic_latch” TPSYNC=latch;

TPSYNC for Modular Designs
The NET/TPSYNC UCF constraint has the following syntax:

NET "net_name" TPSYNC="group_name";

This constraint specifies that either all drivers or loads on the net net_name should be saved
and added to the timegroup group_name. The synchronization names on these drivers or
loads can then be referenced in other timing specifications such as OFFSET or FROM/TO
constraints. This constraint will be translated into a TIMEGRP/PIN constraint in the PCF
file. This constraint has the following syntax:

TIMEGRP "group_name"=PIN "pseudo_comp";

The pseudo_comp argument is the component created by the mapper to represent the
dangling endpoint of the port net net_name. Within the modular design flow the
NET/TPSYNC constraint is used with the OFFSET/OUT or OFFSET/IN constraint to
specify the timing to or from a module port.

For nets, the behavior is true only if the named net is

a. Connected to the port of an active module (in active module implementation
mode), and

b. Is not connected to any logic in the context design.

Only if these requirements are met will the port's pseudo logic be put into the named
group. If (a) is not met, the net's driver will be put into the TPSYNC group, which is the
usual behavior of TPSYNC. If (b) is not met, the mapper will discard the TPSYNC on that
net, with a warning.

TPSYNC can also be used for the "pad group" in the OFFSET constraint. Following are
some examples of TPSYNC use:

NET "module_input1" TPSYNC="MODULE_IN"; // two module ports

NET "module_input2" TPSYNC="MODULE_IN"; // in one group

NET "module_output" TPSYNC="MODULE_OUT";

TIMEGRP "MODULE_IN" OFFSET=IN 5 nS BEFORE "CLK"; // setup to module input

TIMEGRP "MODULE_OUT" OFFSET=OUT 5 nS AFTER "CLK; // clock to module output

TIMESPEC TS1=FROM MODULE_IN TO MODULE_OUT 7 nS; // or combinatorial path
Constraints Guide www.xilinx.com TPSYNC 338
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

TPTHRU

TPTHRU Architecture Support
The following table shows whether the constraint may be used with that device.

TPTHRU Applicable Elements
• Nets

• Pins

• Instances

TPTHRU Description
TPTHRU is an advanced grouping constraint. It flags a particular point or a set of points
with an identifier for reference in subsequent timing specifications. If you use the same
identifier on several points, timing analysis treats the points as a group. For more
information, see the “TIMESPEC” constraint.

Use the TPTHRU constraint when it is necessary to define intermediate points on a path to
which a specification applies. For more information, see the “TSidentifier” constraint.

TPTHRU Propagation Rules
Not applicable.

TPTHRU Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com TPTHRU 339
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Schematic

• Attach to a net, instance, or pin

• Attribute Name: TPTHRU

• Attribute Values: identifier

For a discussion of identifier, see “UCF and NCF” in this chapter.

UCF and NCF

The basic UCF syntax is as follows:

NET “net_name” TPTHRU=identifier;

INST “instance_name” TPTHRU=identifier;

PIN “instance_name.pin_name” TPTHRU=”thru_group_name”;

where

• identifier is a name used in timing specifications for further qualifying timing paths
within a design

The name for the identifier must be different from any identifier used for a TNM
constraint.

Using TPTHRU in a FROM TO Constraint

It is sometimes convenient to define intermediate points on a path to which a specification
applies. This defines the maximum allowable delay and has the syntax shown in the
following sections.

UCF Syntax with TIMESPEC

TIMESPEC “TSidentifier”=FROM “source_group” THRU “thru_point” [THRU
“thru_point”] TO “dest_group” allowable_delay [units];

TIMESPEC “TSidentifier”=FROM “source_group” THRU “thru_point” [THRU
“thru_point”] allowable_delay [units];

where

• identifier is an ASCII string made up of the characters A..Z, a..z, 0..9, and underscore
(_)

• source_group and dest_group are user-defined groups, predefined groups or TPSYNCs

• thru_point is an intermediate point used to qualify the path, defined using a TPTHRU
constraint

• allowable_delay is the timing requirement

• units is an optional field to indicate the units for the allowable delay. Default units are
nanoseconds, but the timing number can be followed by ps, ns, us, ms, GHz, MHz, or
KHz to indicate the intended units.

The example shows how to use the TPTHRU constraint with the THRU constraint on a
schematic. The UCF syntax is as follows.

INST “FLOPA” TNM=”A”;

INST “FLOPB” TNM=”B”;

NET “MYNET” TPTHRU=”ABC”;

TIMESPEC “TSpath1”=FROM “A” THRU “ABC” TO “B” 30;
Constraints Guide www.xilinx.com TPTHRU 340
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The following schematic shows the placement of the TPTHRU constraint and the resultant
path that is defined.

The following statement identifies the net on_the_way as an intermediate point on a path
to which the timing specification named “here” applies.

NET “on_the_way” TPTHRU=”here”;

Note: The following NCF construct is not supported.

TIMESPECT “TS_1”=THRU “Thru_grp” 30.0

XCF

Not yet supported.

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Advanced tab, click Create next to “Timing THRU Points (TPTHRU)” and then fill
out the Timing THRU Point dialog box.

PCF

PATH "name"=FROM "source" THRU "thru_pt1" ...THRU "thru_ptn" TO
"destination";

You are not required to have a FROM, THRU, and TO. You can have almost any
combination (such as FROM-TO, FROM-THRU-TO, THRU-TO, TO, FROM, FROM-
THRU-THRU-THRU-TO, and FROM-THRU). There is no restriction on the number of
THRU points. The source, thru points, and destination can be a net, bel, comp, macro, pin,
or timegroup.
Constraints Guide www.xilinx.com TPTHRU 341
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

TSidentifier

TSidentifier Architecture Support
The following table shows whether the constraint may be used with that device.

TSidentifier Applicable Elements
TIMESPEC keywords

TSidentifier Description
TSidentifier is a basic timing constraint. TSidentifier properties beginning with the letters
“TS” are used with the TIMESPEC keyword in a UCF file. The value of TSidentifier
corresponds to a specific timing specification that can then be applied to paths in the
design.

TSidentifier Propagation Rules
It is illegal to attach TSidentifier to a net, signal, or design element.

All the following syntax definitions use a space as a separator. The use of a colon (:) as a
separator is optional.

TSidentifier Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV Yes

CoolRunner XPLA3 Yes

CoolRunner-II Yes
Constraints Guide www.xilinx.com TSidentifier 342
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF

Defining a Maximum Allowable Delay

TIMESPEC “TSidentifier”=[MAXDELAY] FROM “source_group” TO “dest_group”
allowable_delay [units];

or

TIMESPEC “TSidentifier”=FROM “source_group” TO “dest_group”
allowable_delay [units];

Defining Intermediate Points (UCF)

TIMESPEC “TSidentifier”=FROM “source_group” THRU “thru_point” [THRU
“thru_point1”... “thru_pointn”] TO “dest_group” allowable_delay
[units];

where

• identifier is an ASCII string made up of the characters A-Z, a-z, 0-9, and _

• source_group and dest_group are user-defined or predefined groups

• thru_point is an intermediate point used to qualify the path, defined using a TPTHRU
constraint

• allowable_delay is the timing requirement value

• units is an optional field to indicate the units for the allowable delay. The default units
are nanoseconds (ns), but the timing number can be followed by ps, ns, us, ms, GHz,
MHz, or kHz to indicate the intended units.

Defining a Linked Specification

This allows you to link the timing number used in one specification to another
specification.

TIMESPEC “TSidentifier”=FROM “source_group” TO “dest_group”
another_TSid[/ | *] number;

where

• identifier is an ASCII string made up of the characters A-Z, a-z, 0-9, and _

• source_group and dest_group are user-defined or predefined groups

• another_Tsid is the name of another timespec

• number is a floating point number

Defining a Clock Period

This allows more complex derivative relationships to be defined as well as a simple clock
period.

TIMESPEC “TSidentifier”=PERIOD “TNM_reference” value [units] [{HIGH |
LOW} [high_or_low_time [hi_lo_units]]];INPUT_JITTER

where

• identifier is a reference identifier with a unique name

• TNM_reference is the identifier name attached to a clock net (or a net in the clock path)
using a TNM constraint

• value is the required clock period
Constraints Guide www.xilinx.com TSidentifier 343
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

• units is an optional field to indicate the units for the allowable delay. The default units
are nanoseconds (ns), but the timing number can be followed by us, ms, ps, ns, GHz,
MHz, or kHz to indicate the intended units

• HIGH or LOW can be optionally specified to indicate whether the first pulse is to be
High or Low

• high_or_low_time is the optional High or Low time, depending on the preceding
keyword. If an actual time is specified, it must be less than the period. If no High or
Low time is specified, the default duty cycle is 50 percent.

• hi_lo_units is an optional field to indicate the units for the duty cycle. The default is
nanoseconds (ns), but the High or Low time number can be followed by ps, us, ms, ns
or % if the High or Low time is an actual time measurement.

Specifying Derived Clocks

TIMESPEC “TSidentifier”=PERIOD “TNM_reference”
“another_PERIOD_identifier” [/ | *] number [{HIGH | LOW}
[high_or_low_time [hi_lo_units]]];INPUT_JITTER

where

• TNM_reference is the identifier name attached to a clock net (or a net in the clock path)
using a TNM constraint

• another_PERIOD_identifier is the name of the identifier used on another period
specification

• number is a floating point number

• HIGH or LOW can be optionally specified to indicate whether the first pulse is to be
High or Low

• high_or_low_time is the optional High or Low time, depending on the preceding
keyword. If an actual time is specified, it must be less than the period. If no High or
Low time is specified, the default duty cycle is 50 percent.

• hi_lo_units is an optional field to indicate the units for the duty cycle. The default is
nanoseconds (ns), but the High or Low time number can be followed by ps, us, ms, or
% if the High or Low time is an actual time measurement.

Ignoring Paths

Note: This form is not supported for CPLD devices.

There are situations in which a path that exercises a certain net should be ignored because
all paths through the net, instance, or instance pin are not important from a timing
specification point of view.

TIMESPEC “TSidentifier”=FROM “source_group” TO “dest_group” TIG;

or

TIMESPEC “TSidentifier”=FROM “source_group” THRU “thru_point” [THRU
“thru_point1”... “thru_pointn”]TO “dest_group” TIG;

where

• identifier is an ASCII string made up of the characters A-Z, a-z 0-9, and _

• source_group and dest_group are user-defined or predefined groups

• thru_point is an intermediate point used to qualify the path, defined using a TPTHRU
constraint
Constraints Guide www.xilinx.com TSidentifier 344
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

The following statement says that the timing specification TS_35 calls for a maximum
allowable delay of 50 ns between the groups “here” and “there”.

TIMESPEC “TS_35”=FROM “here” TO “there” 50;

The following statement says that the timing specification TS_70 calls for a 25 ns clock
period for clock_a, with the first pulse being High for a duration of 15 ns.

TIMESPEC “TS_70”=PERIOD “clock_a” 25 high 15;

For more information, see “Logical Constraints” and “Physical Constraints” in Chapter 2,
“Constraint Types.”

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

You can enter clock period timing constraints in the Global tab. Input setup time and clock-
to-output delay can be entered for specific pads in the Ports tab, or for all pads related to a
given clock in the Global tab. Combinatorial pad-to-pad delays can be entered in the
Advanced tab, or for all pad-to-pad paths in the Global tab.

PCF

The same as the UCF syntax without the TIMESPEC keyword.

FPGA Editor

To set constraints, in the FPGA Editor main window, click Properties of Selected Items
from the Edit menu. With a component, net, path, or pin selected, you can set a TSid from
the Physical Constraints tab. .
Constraints Guide www.xilinx.com TSidentifier 345
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

U_SET

U_SET Architecture Support
The following table shows whether the constraint may be used with that device.

U_SET Applicable Elements
If “Yes” is shown next to the device name in the Architecture Support table, the constraint
may be used with that device in one or more of the following design elements, or
categories of design elements. Not all device families support all these elements. To see
which design elements can be used with which device families, see the Xilinx Libraries
Guides. For more information, see the device data sheet.

1. Registers

2. FMAP

3. Macro Instance

4. ROM

5. RAMS, RAMD

6. BUFT

7. MULT18X18S

8. RAMB4_Sm_Sn, RAMB4_Sn

9. RAMB16_Sm_Sn, RAMB16_Sn

10. RAMB16

11. DSP48

Virtex Yes

Virtex-E Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com U_SET 346
ISE 8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

U_SET Description
U_SET is an advanced mapping constraint. It groups design elements with attached RLOC
constraints that are distributed throughout the design hierarchy into a single set. The
elements that are members of a U_SET can cross the design hierarchy. You can arbitrarily
select objects without regard to the design hierarchy and tag them as members of a U_SET.
For more information, see “U_SET” in this chapter.

U_SET Propagation Rules
U_SET is a macro constraint and any attachment to a net is illegal.

U_SET Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a valid instance

• Attribute Name: U_SET

• Attribute Values: name

where

• name is the identifier of the set

VHDL

Before using U_SET, declare it with the following syntax:

attribute u_set: string;

After U_SET has been declared, specify the VHDL constraint as follows:

attribute u_set of {component_name|label_name}: {component|label} is
“name”;

where

• name is the identifier of the set

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute u_set [of] {module_name|instance_name} [is]
name;

where

• name is the identifier of the set

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.
Constraints Guide www.xilinx.com U_SET 347
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF

The basic UCF syntax is:

INST “instance_name” U_SET=name;

where

• name is the identifier of the set

This name is absolute. It is not prefixed by a hierarchical qualifier.

The following statement specifies that the design element ELEM_1 be in a set called
JET_SET.

INST “$1I3245/ELEM_1” U_SET=JET_SET;

XCF

BEGIN MODEL “entity_name”

 INST "instance_name" U_SET=uset_name;

END;
Constraints Guide www.xilinx.com U_SET 348
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

USE_RLOC

USE_RLOC Architecture Support
The following table shows whether the constraint may be used with that device.

USE_RLOC Applicable Elements
Instances or macros that are members of sets.

USE_RLOC Description
USE_RLOC is an advanced mapping and placement constraint. It turns RLOC on or off for
a specific element or section of a set. For more information about USE_RLOC, see
“Toggling the Status of RLOC Constraints” in the “RLOC” constraint.

USE_RLOC Propagation Rules
It is illegal to attach USE_RLOC to a net. When attached to a design element, U_SET
propagates to all applicable elements in the hierarchy within the design element.

USE_RLOC Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com USE_RLOC 349
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

Schematic

• Attach to a member of a set

• Attribute Name: USE_RLOC

• Attribute Values: TRUE, FALSE

VHDL

Before using USE_RLOC, declare it with the following syntax:

attribute use_rloc: string;

After USE_RLOC has been declared, specify the VHDL constraint as follows:

attribute use_rloc of entity_name: entity is “true”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute use_rloc [of] module_name [is] “true”;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

The basic UCF syntax is:

INST “instance_name” USE_RLOC={TRUE|FALSE};

where

• TRUE turns on the RLOC constraint for a specific element

• FALSE turns it off

The default is TRUE.

XCF

MODEL “entity_name” use_rloc={true|false};
Constraints Guide www.xilinx.com USE_RLOC 350
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

USELOWSKEWLINES

USELOWSKEWLINES Architecture Support
The following table shows whether the constraint may be used with that device.

USELOWSKEWLINES Applicable Elements
Nets

USELOWSKEWLINES Description
USELOWSKEWLINES is a PAR routing constraint.

The Spartan-II, Spartan-IIE, Virtex, and Virtex-E devices have 24 horizontal low skew
resources which are intended to drive slower secondary clocks and may be used for high
fanout nets. These 24 horizontal resources connect to the 12 vertical longlines in the
column. The USELOWSKEWLINES constraint specifies the use of low skew routing
resources for any net. You can use these resources for both internally generated and
externally generated signals. Externally generated signals are those driven by IOBs.

USELOWSKEWLINES on a net directs PAR to route the net on one of the low skew
resources. When this constraint is used, the timing tool automatically accounts for and
reports skew on register-to-register paths that utilize those low skew resources.

Specify USELOWSKEWLINES only when all four primary global clocks have been used.

USELOWSKEWLINES Propagation Rules
Applies to attached net.

Virtex Yes

Virtex-E Yes

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 No

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 No

Spartan-3E No

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com USELOWSKEWLINES 351
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

USELOWSKEWLINES Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to an output net

• Attribute Name: USELOWSKEWLINES

• Attribute Values: TRUE, FALSE

VHDL

Before using USELOWSKEWLINES, declare it with the following syntax:

attribute uselowskewlines: string;

After USELOWSKEWLINES has been declared, specify the VHDL constraint as follows:

attribute uselowskewlines of signal_name : signal is “yes”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute uselowskewlines [of] signal_name [is] yes;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

This statement forces net $1I87/1N6745 to be routed on one of the device’s low skew
resources.

NET “$1I87/$1N6745” USELOWSKEWLINES;

XCF

BEGIN MODEL “entity_name”

NET “signal_name” uselowskewlines={yes|true};

END;

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Misc tab, click Identify next to “Nets to use low Skew resources”. Complete the Low
Skew Resource dialog box.

PCF

Same as the UCF syntax.
Constraints Guide www.xilinx.com USELOWSKEWLINES 352
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

VOLTAGE

VOLTAGE Architecture Support
The following table shows whether the constraint may be used with that device.

Availability depends on the release of characterization data.

VOLTAGE Applicable Elements
Global

VOLTAGE Description
VOLTAGE is an advanced timing constraint. It allows the specification of the operating
voltage, which provides a means of prorating delay characteristics based on the specified
voltage. Prorating is a scaling operation on existing speed file delays and is applied
globally to all delays.

Each architecture has its own specific range of supported voltages. If the entered voltage
does not fall within the supported range, the constraint is ignored and an architecture-
specific default value is used instead. Also note that the error message for this condition
appears during static timing.

VOLTAGE Propagation Rules
It is illegal to attach VOLTAGE to a net, signal, or design element.

Virtex Yes

Virtex-E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com VOLTAGE 353
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

VOLTAGE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF

VOLTAGE=value [V];

where

• value is real number specifying the voltage

• V indicates volts, the default voltage unit

The following statement specifies that the analysis for everything relating to speed file
delays assumes an operating power of 5 volts.

VOLTAGE=5;

Constraints Editor

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Misc tab, click Specify next to “Voltage” and then fill out the Voltage dialog box.

PCF

The same as the UCF syntax.
Constraints Guide www.xilinx.com VOLTAGE 354
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

VREF

VREF Architecture Support
CoolRunner-II devices with 128 macrocells and larger.

The following table shows whether the constraint may be used with that device.

VREF Applicable Elements
Global.

VREF Description
VREF applies to the design as a global attribute (not directly applicable to any element in
the design). The constraint configures listed pins as VREF supply pins to be used in
conjunction with other I/O pins designated with one of the SSTL or HSTL I/O Standards.

Because VREF is selectable on any I/O in CoolRunner-II designs, this constraint allows
you to select which pins will be VREF pins. Make sure you double-check pin assignment in
the report (RPT) file. If you do not specify any VREF pins for the differential I/O standards,
HSTL and SSTL, or if you do not specify sufficient VREF pins within the required
proximity of differential I/O pins, the fitter will automatically assign sufficient VREF.

VREF Propagation Rules
Configures listed pins as VREF supply pins to be used in conjunction with other I/O pins
designated with one of the SSTL or HSTL I/O Standards.

Virtex No

Virtex-E No

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 No

Spartan-II No

Spartan-IIE No

Spartan-3 No

Spartan-3E No

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II Yes a

a. CoolRunner-II devices with 128 macrocells
and larger
Constraints Guide www.xilinx.com VREF 355
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

VREF Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

VREF=value_list (on CONFIG symbol)

The legal values are:

• Pnn

where

♦ nn is a numeric pin number

• rc

where

♦ r=alphabetic row

♦ c=numeric column

UCF and NCF

CONFIG VREF=value_list;

The legal values are:

• Pnn

where

♦ nn is a numeric pin number

• rc

where

♦ r=alphabetic row

c=numeric column

CONFIG VREF=P12,P13;
Constraints Guide www.xilinx.com VREF 356
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

WIREAND

WIREAND Architecture Support
The following table shows whether the constraint may be used with that device.

WIREAND Applicable Elements
Any net.

WIREAND Description
WIREAND is an advanced fitter constraint. It forces a tagged node to be implemented as a
wired AND function in the interconnect (UIM and Fastconnect).

WIREAND Propagation Rules
WIREAND is a net constraint. Any attachment to a design element is illegal.

WIREAND Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a net

• Attribute Name: WIREAND

• Attribute Values: TRUE, FALSE

Virtex No

Virtex-E No

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 No

Spartan-II No

Spartan-IIE No

Spartan-3 No

Spartan-3E No

XC9500, XC9500XL, XC9500XV Yes a

a. XC9500 only

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com WIREAND 357
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

VHDL

Before using WIREAND, declare it with the following syntax:

attribute wireand: string;

After WIREAND has been declared, specify the VHDL constraint as follows:

attribute wireand of signal_name : signal is “yes”;

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute wireand [of] signal_name [is] “yes”;

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

The following statement specifies that the net named SIG_11 be implemented as a wired
AND when optimized.

NET “$I16789/SIG_11” WIREAND;
Constraints Guide www.xilinx.com WIREAND 358
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

XBLKNM

XBLKNM Architecture Support
The following table shows whether the constraint may be used with that device.

XBLKNM Applicable Elements
If “Yes” is shown next to the device name in the Architecture Support table, the constraint
may be used with that device in one or more of the following design elements, or
categories of design elements. Not all device families support all these elements. To see
which design elements can be used with which device families, see the Xilinx Libraries
Guides. For more information, see the device data sheet.

1. Flip-flop and latch primitives

2. Any I/O element or pad

3. FMAP

4. BUFT

5. ROM primitive

6. RAMS and RAMD primitives

7. Carry logic primitives

XBLKNM Description
XBLKNM is an advanced mapping constraint. It assigns block names to qualifying
primitives and logic elements. If the same XBLKNM attribute is assigned to more than one
instance, the software attempts to pack logic with the same block name into one or more
CLBs. Conversely, two symbols with different XBLKNM names are not mapped into the
same block. Placing the same XBLKNMs on instances that do not fit within one block
creates an error.

Virtex Yes

Virtex-E Yes

Spartan-II Yes

Spartan-IIE Yes

Spartan-3 Yes

Spartan-3E Yes

Virtex-II Yes

Virtex-II Pro Yes

Virtex-II Pro X Yes

Virtex-4 Yes

XC9500, XC9500XL, XC9500XV No

CoolRunner XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com XBLKNM 359
ISE 8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

Specifying identical XBLKNM attributes on FMAP symbols tells the software to group the
associated function generators into a single CLB. Using XBLKNM, you can partition a
complete CLB without constraining the CLB to a physical location on the device.

Hierarchical paths are not prefixed to XBLKNM attributes, so XBLKNM attributes for
different CLBs must be unique throughout the entire design.

The BLKNM attribute allows any elements except those with a different BLKNM to be
mapped into the same physical component. XBLKNM, however, allows only elements
with the same XBLKNM to be mapped into the same physical component. Elements
without an XBLKNM cannot be not mapped into the same physical component as those
with an XBLKNM.

XBLKNM Propagation Rules
Applies to the design element to which it is attached.

XBLKNM Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a valid instance

• Attribute Name: XBLKNM

• Attribute Values: block_name

where

• block_name is a valid block name for that type of symbol

VHDL

Before using XBLKNM, declare it with the following syntax:

attribute xblknm: string;

After XBLKNM has been declared, specify the VHDL constraint as follows:

attribute xblknm of {component_name|label_name}: {component|label} is
“block_name”;

where

• block_name is a valid block name for that type of symbol

For more information on the basic VHDL syntax, see “Specifying Constraints in VHDL” in
Chapter 3.

Verilog

Specify as follows:

 // synthesis attribute xblknm [of] {module_name|instance_name} [is]
block_name;

where

• block_name is a valid block name for that type of symbol
Constraints Guide www.xilinx.com XBLKNM 360
ISE 8.1i

http://www.xilinx.com

Xilinx Constraints
R

For more information on the basic Verilog syntax, see “Specifying Constraints in Verilog”
in Chapter 3.

UCF and NCF

The basic UCF syntax is:

INST “instance_name” XBLKNM=block_name;

where

• block_name is a valid block name for that type of symbol

The following statement assigns an instantiation of an element named flip_flop2 to a block
named U1358.

INST “$1I87/flip_flop2” XBLKNM=U1358;

XCF

BEGIN MODEL “entity_name”

 INST "instance_name" xblknm=xblknm_name;

END;
Constraints Guide www.xilinx.com XBLKNM 361
ISE 8.1i

http://www.xilinx.com

	Software Manuals
	Constraints Guide
	About This Guide
	Guide Contents
	Additional Resources
	Conventions

	Table of Contents
	Introduction
	What’s New
	XST Constraints Removed
	Component Attributes Removed
	New Definitions
	Constraint Types and Supported Architectures

	Constraint Types
	Attributes and Constraints
	CPLD Fitter
	Grouping Constraints
	Logical Constraints
	Physical Constraints
	Mapping Directives
	Modular Design Constraints
	Placement Constraints
	Routing Directives
	Synthesis Constraints
	Timing Constraints

	Entry Strategies for Xilinx Constraints
	Constraints Entry Table
	Schematic Designs
	Specifying Constraints in VHDL
	Specifying Constraints in Verilog
	ABEL
	UCF
	PCF Files
	NCF
	Constraints Editor
	Project Navigator
	Floorplanner
	Pinout & Area Constraints Editor (PACE)
	FPGA Editor
	Constraints Priority

	Timing Constraint Strategies
	FPGA Timing Constraint Strategies
	Static Timing Analysis
	Synchronous Timing
	Directed Routing

	Third-Party Constraints
	Third-Party Constraints Removed

	Xilinx Constraints
	Constraint Information
	Alphabetized List of Xilinx Constraints
	AREA_GROUP
	ASYNC_REG
	BLKNM
	BEL
	BUFG (CPLD)
	COLLAPSE
	COMPGRP
	CONFIG
	CONFIG_MODE
	COOL_CLK
	DATA_GATE
	DCI_VALUE
	Directed Routing
	DISABLE
	DRIVE
	DROP_SPEC
	ENABLE
	FAST
	FEEDBACK
	FILE
	FLOAT
	FROM-THRU-TO
	FROM-TO
	HBLKNM
	HU_SET
	IFD_DELAY_VALUE
	IBUF_DELAY_VALUE
	INREG
	IOB
	IOBDELAY
	IOSTANDARD
	KEEP
	KEEP_HIERARCHY
	KEEPER
	LOC
	LOCATE
	LOCK_PINS
	MAP
	MAXDELAY
	MAXPT
	MAXSKEW
	NODELAY
	NOREDUCE
	OFFSET
	OPEN_DRAIN
	OPT_EFFORT
	OPTIMIZE
	PERIOD
	PIN
	PRIORITY
	PROHIBIT
	PULLDOWN
	PULLUP
	PWR_MODE
	REG
	RLOC
	RLOC_ORIGIN
	RLOC_RANGE
	SAVE NET FLAG
	SCHMITT_TRIGGER
	SIM_COLLISION_CHECK
	SLEW
	SLOW
	SYSTEM_JITTER
	TEMPERATURE
	TIG
	TIMEGRP
	TIMESPEC
	TNM
	TNM_NET
	TPSYNC
	TPTHRU
	TSidentifier
	U_SET
	USE_RLOC
	USELOWSKEWLINES
	VOLTAGE
	VREF
	WIREAND
	XBLKNM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

