
CSE 372 (Martin): Pipelining hints 1

CSE372
Digital Systems Organization and Design

 Lab

Prof. Milo Martin

Unit 7: Hints on Pipelining & Wrapup

CSE 372 (Martin): Pipelining hints 2

Agenda

• Ramblings on design & testing

• Discuss pipelining issues

• Some (hopefully) helpful hints

• BlockRAM troubles

• Discuss where CSE371/372 should go in the future

• Course evaluations

CSE 372 (Martin): Pipelining hints 3

Optimism

• “We’re almost done, we just have to test it.”

• From Fred Brooks’ The Mythical Man-Month:

CSE 372 (Martin): Pipelining hints 4

Testing and Testbenches

• “Good Enough”

• On an exam, 95% is a good score

• In “design”, 95% correct isn’t good enough

• Different mentality

• Testbenches are not just academic artifacts for grading

• Real systems use “unit tests” and randomized testing to find bugs

• Testing is integral to any development project

• For a three-week (almost four) project, how much of that should
be testing?

CSE 372 (Martin): Pipelining hints 5

More Fred Brooks

CSE 372 (Martin): Pipelining hints 6

More Fred Brooks

CSE 372 (Martin): Pipelining hints 7

Design

• Design matters

• Getting this working isn’t just “implementation”, it requires design

• A strong design makes lots of difference

• This project is too difficult to brute force

• Can’t take the CSE371 slides too literally

• Design to explain pipelining, not an actual implementation

• Few discussed implementation of bypassing and stalling in
design document

CSE 372 (Martin): Pipelining hints 8

Bypassing and Stalling

• Fully decode instruction vs latching it each cycle

• Think about how the CSE371 homework abstracted this issue

• For each instruction:

• Determine what register it writes

• 3-bit register ID, 1-bit “write enable” valid bit

• Determine what register it reads

• Two x (3-bit register ID, 1-bit “read enable” valid bit)

• Does it write memory? (just the “write enable”)

• Does it read memory?

• Once you have this, bypassing and stalling should be
mostly opcode and instruction independent

CSE 372 (Martin): Pipelining hints 9

Some Tricky Bypassing Cases

• LDR r2 ! [r1+10]
STR r2 " [r3+5]

• JSR LABEL
LABEL: ADD R0 ! R7, R0

• Note: be sure to “next-PC” predict all sorts of control
transfer instructions

• In fact, just predict “all” instructions, should work just fine

CSE 372 (Martin): Pipelining hints 10

PC
Memory

216 by 16 bit

Reg.

File

A
L
U

SEXT

SEXT

 16 16

 16

 16

 16

 16

 16

 16

 I[5:0]

 I[7:0]
 8

 6

Controller

+1

 Rd1

 Rd2

 Wr

 WE

 Out1

 In

 Out2

 I

Memory

216 by 16 bit

 16

 WE

ZEXT

 16

 I[11:0]
 12

SEXT

 16

 I[8:0]
 9

 InData

 Addr

 4

 16

4

 16

 16

 I[8:6]

 3’b111

 Zero

 16

 I[11:9]

 I[5:3]

 I[11:9]

 I[8:6]

 I[15:12]

 I[11:9]

 3

 3

 3
 Out

 16

 16
 16

 16

BR Logic

 4’b0100

 {I[12],I[2:0]}
 4

 3

 16

 16

 1

 Tricky Bypass:

R7 := PC+1

CSE 372 (Martin): Pipelining hints 11

Nullifying Instructions

• How to squash an instruction?

• Approach #1: mux in a NOOP encoding

• Approach #2: set an explicit “not valid” bit

• Approach #3: set all “read enables” and “write enables” to zero

• My suggestion: some combination of approach #2 and #3

• Goes along with not tracking the actual instruction encoding
everywhere

• Note: need to track type of stall or squash for performance
counters anyway…

CSE 372 (Martin): Pipelining hints 12

Block RAM Troubles

• Our 128KByte memory must use Xilinx “block RAMs”

• Wouldn’t fit on the FPGA otherwise

• Xilinx blockRAMs are synchronous read

• Unlike our asynchronous read register file

• Hard, real-world constraint; we need to work around this

 Memory Reg Memory Reg

 Output Registered Input Registered
 Vs.

CSE 372 (Martin): Pipelining hints 13

Block RAM Partial Solutions

• Approach #1: Use the global write enable (GWE)

• Use it to make the BlockRAMs look asynchronous

• Add explicit pipelined registers where needed

• Approach #2: Stay the course

• Keep with assumption that BRAMs are input registered

• Handle some of the tricky stall cases by changing read address

• Approach #3: Add read enable to BRAM

• Like approach #2, but simplifies stall logic (See TAs for code)

• Approach #4: Assume output registered BRAMs

• Unfortunately, hard to do bypassing into Memory stage

CSE 372 (Martin): Pipelining hints 14

Register File Bypass

• Our register file hands writes differently than book

• Solution: add one more local bypass

• Can be done totally internal to register file

• Why aren’t we using both negative & positive clock edges

• Can really complicate on-board functionality

• Risk avoidance

• Disallowed by some standard cell ASIC design flows

• Should work, but who really knows

CSE 372 (Martin): Pipelining hints 15

Course Recap

• We’ve talked about digital logic design
• Verilog

• Design flows

• FPGAs and hardware devices

• We’ve talked about design
• Breaking a task into parts

• The process of design

• Hands on experience

• Learning by doing

• Recall: last year, no CSE372 lectures

• They were on their own

CSE 372 (Martin): Pipelining hints 16

CSE372 in the Future

• What should be do next year?

• Same as this year (1.0/0.5 credit split with separate lab lecture)

• Combine CSE371/CSE372 into a single class

• Remove some of the material

• Keep project

• Abandon project altogether (no, in my opinion)

• Split into two 1.0 courses in different semesters

• Your thoughts?

