CSE372 Digital Systems Organization and Design Lab

Unit 6: P37X Pipelined

CSE 372 (Martin): P37X Pipelined

Non-Pipelined Processor Lab

- Any comments or problems?
- Any problems getting it to work on the board?
 - No? Restricted Verilog has been successful!
- Was it harder or easier than you expected?
- Reminder: final demo by Friday
- Next lab:
 - Use what you have learned...

Agenda for Today

- Discuss Lab 3 and Lab 4
 - Pipelined design
- Discuss video device and standards
 - Slides from UNC
- The Evils of Clock Gating
 - Slides from UC-Berkeley
- Discuss rest of semester

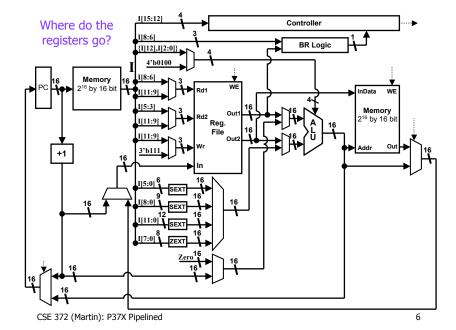
CSE 372 (Martin): P37X Pipelined

2

Final Lab: Pipelined Processor

- Familiar 5-stage pipeline
 - Fetch, Decode, Execute, Memory, Writeback
- Fully bypassed
- One-cycle "load use" penalty
 - A dependent instruction right after the load
- Branch handling
 - Resolved in "execute" stage, two-cycle penalty
 - Initially: just stall after branches
 - Final: use simple branch predictor to efficiently execute branches
- Performance counters
 - Cycle counter
 - Instruction counter, branch stall counter, load stall counters

1


First Step: Design Document

- The pipelined datapath design is up to you
 - (as is how to test it)
- Design document
 - Describe the datapath
 - Where are the pipeline registers
 - List or table of which signals are latched in which stages
 - Include a diagram (or diagrams) of the datapath
 - Schematics for any new components (e.g., branch predictor)
 - Include testing strategy
- Note:
 - Memories already have implicit registering of output values
 - No need for "global write enable" pseudo multi-cycle tricks

CSE 372 (Martin): P37X Pipelined

5

7

Bypassing, Stalling, and Flushing

- Bypassing
 - Which value to use in a given stage?
 - Control logic looks at "recent past"
 - Look at instruction in later stage
- Stalling
 - Dependent instruction after load
 - How?
- Flushing
 - Speculatively execute instructions after branch
 - Using the prediction
 - If wrong, need to cancel two instructions
 - Fetch and Decode
 - Again, how?

CSE 372 (Martin): P37X Pipelined

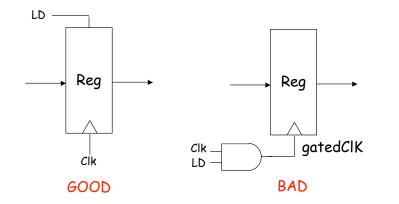
Branch Predictor

- Predict the "next PC" for an instruction
 - Predict during Fetch: PC in, next-PC prediction out
 - Train at Execute: PC in, actual next-PC in, write enable in
- Two memory arrays
 - "Tag" array
 - "Next PC" array
 - If the tag matches, return "Next PC"
 - Else, return PC+1
- Detect mispredict via comparing PC
 - If wrong, train predictor
 - Write PC into tag array, write "actual next PC" into "next PC" array

Honor Points

- Better branch predictor
 - Two-bit saturating counters, lots of others
- High-frequency design
 - Tune design to get fastest clock possible
 - Deeper pipeline two-cycle "Fetch" and "Memory" stages
 - Add data and/or instruction cache
- Add some instructions
 - Conditional move, hardware divide, 16-bit floating point
- Add new devices (audio in/out, flash memory)
- Write some software
 - Text on video support, compiler for P37X, etc.
- Superscalar (two instructions per cycle)
- Any of your ideas (talk to me first)

CSE 372 (Martin): P37X Pipelined


Video Device

- How does our video device actually work?
- Frame buffer
 - RAM that holds the current image on the screen
 - Hardware walks over frame buffer to generate analog signal
 - In LC-3 and P37x, we puts this frame buffer right in memory
 - Most systems today have dedicated frame buffers
- In some classes, they make you build the video circuit, too
 Switch to slides from UNC

CSE 372 (Martin): P37X Pipelined

10

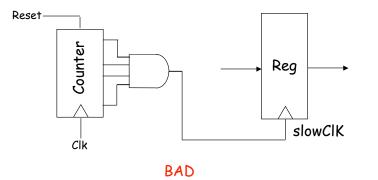
Why Gating of Clocks is Bad!

Do NOT Mess With Clock Signals!

CSE 372 (Martin): P37X Pipelined

From UC Berkeley CS 150 - Fall 2005 11

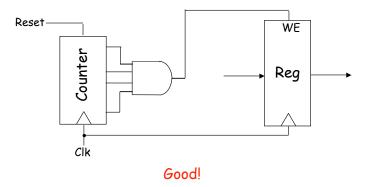
9


Why Gating of Clocks is Bad!

Runt pulse plays HAVOC with register internals!

Do NOT Mess With Clock Signals!

Gating of Clocks: Bad



Do NOT Mess With Clock Signals!

CSE 372 (Martin): P37X Pipelined

From UC Berkeley CS 150 - Fall 2005 13

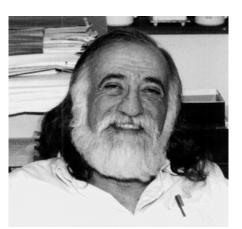
Non-Gating of Clocks: Good

Do NOT Mess With Clock Signals!

CSE 372 (Martin): P37X Pipelined

From UC Berkeley CS 150 - Fall 2005 14

Remainder of Course


- Only three class periods after today
- Next week: exam
 - Swap CSE371 lecture into Monday slot
 - CSE372 exam on Tuesday or Thursday
- Following week: Saul Gorn Memorial Lecture
- Last week: wrapup, course evaluations, etc.
 - Any other topics you want to hear about

CSE372 Exam

- Written exam 20% of course grade
 - Nothing actually on the computer
- One page (two sides) page of notes
 - Anything you want
- Topics
 - Basic Verilog
 - Schematic to Verilog
 - Verilog to Schematic
 - FPGAs and design flows
 - The "design process"
 - Synthesis
 - Questions on labs

Saul Gorn Memorial Lecture

- Prof. Yale Patt
 - Author of CSE240
 textbook
 - Prolific computer architecture researcher
 - "Interesting" guy
- Monday April 10th, 3pm
- Possible CSE371 exam question on the lecture

CSE 372 (Martin): P37X Pipelined

17