
Chapter 9

TRAP Routines and

Subroutines

Based on slides © McGraw-Hill

Additional material © 2004/2005/2006 Lewis/Martin

9-2CSE 240

System Calls

Some ops. require specialized knowledge and protection
• Abstract I/O device registers and how to use them

Programmers don’t want to know this!

• Protection for shared I/O resources - isolate programs from OS

• Reuse of common code

Solution: service routines or system calls
• Low-level, privileged operations performed by operating system

1. User program invokes system call

2. Operating system code:
• Saves registers

• Performs operation

• Restores registers

3. Returns control to user program

9-3CSE 240

LC-3 TRAP Mechanism

Provides set of service routines

• Part of operating system -- routines start at arbitrary addresses
(by convention system code is x0200 through x2FFF)

• Up to 256 routines

Requires table of starting addresses

• Stored in memory (x0000 through x00FF)

• Used to associate code with trap number

• Called System Control Block or Trap Vector Table

Uses TRAP instruction

• Used by program to transfer control to operating system (w/ privileges)

• 8-bit trap vector names one of the 256 service routines

Uses “RTT” instruction

• Returns control to the user program (w/o privileges)

• Execution resumes immediately after the TRAP instruction

9-4CSE 240

TRAP Instruction

Trap vector

• Identifies which system call to invoke

• Serves as index into table of service routine addresses

!LC-3: table stored in memory at 0x0000 – 0x00FF

! 8-bit trap vector zero-extended to form 16-bit address

• Enters privileged mode

Where to go

• Lookup starting address from table; place in PC

Enabling return

• Save address of next instruction (current PC) in R7

How to return

• Place address in R7 in PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 trapvect8TRAP

9-5CSE 240

TRAP

010001xx17---1111TRAP

!"#$%&'()*I[5]I[15:12]Instr

ControlOpcode

*)(' & % $ # "!

9-6CSE 240

RET
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0RET

Register File

R7

R6

R5

R4

R3

R2

R1

R0

001101000011000

JMP R7

1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0IR

16

0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1PC

0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0

1 0
16

"
16

(special case of JMP)

9-7CSE 240

RTT
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1RTT

Register File

R7

R6

R5

R4

R3

R2

R1

R0

001101000011000

JMP R7

1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1IR

16

0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1PC

0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0

1 0
16

"
16 ...and exit priv. mode

(special case of JMPT)

9-8CSE 240

TRAP Mechanism Operation

1. Lookup starting address

2. Transfer to service routine

3. Return

1100 000 111 000001

9-9CSE 240

TRAP Routine Template (From HW6)
DRAW_BLOCK:

 ; Register Saving

 ST R0, DB_R0

 ST R1, DB_R1

 …

 ST R6, DB_R6

 ST R7, DB_R7 ; return address

 ; *** Code ***

 ; Register Restoring

 LD R0, DB_R0

 LD R1, DB_R1

 ….

 LD R6, DB_R6

 LD R7, DB_R7 ; return address

 RTT

; Register Saves

DB_R0: .FILL x0

DB_R1: .FILL x0

DB_R2: .FILL x0

DB_R3: .FILL x0

DB_R4: .FILL x0

DB_R5: .FILL x0

DB_R6: .FILL x0

DB_R7: .FILL x0

TRAP routine interface:

• Reads input registers

• Writes output registers

• Value in R7 is destroyed

• All other registers preserved

• Condition codes not preserved

TRAP x40

9-10CSE 240

Example: Character Output Service Routine (OUT)
.ORIG x0430 ; Syscall x21 address

Out: ST R1, SaveR1 ; Save R1

; Write character
TryWrite: LDI R1, DSR ; Get status

BRzp TryWrite ; Bit 15 says not ready?

WriteIt: STI R0, DDR ; Write char

; Return from TRAP
Return: LD R1, SaveR1 ; Restore R1

RTT ; Return from trap

DSR .FILL xFE04
DDR .FILL xFE06
SaveR1 .FILL 0

.END

stored in table,
location x21

9-11CSE 240

Caution Using TRAPs

LEA R3, Block ; Init. to first loc.
LD R6, ASCII ; Char->digit template
LD R7, COUNT ; Init. to 10

AGAIN TRAP x23 ; Get char
ADD R0, R0, R6 ; Convert to number
STR R0, R3, #0 ; Store number
ADD R3, R3, #1 ; Incr pointer
ADD R7, R7, -1 ; Decr counter
BRp AGAIN ; More?
BRnzp NEXT_TASK

ASCII .FILL xFFD0 ; Negative of x0030
COUNT .FILL #10
Block .BLKW #10 What’s wrong with this code?

9-12CSE 240

Saving and Restoring Registers
Called routine ! “callee-save”

• Before start, save registers that will be altered

(except output regs)

• Before return, restore those same registers

(again, except output regs)

• Values are saved by storing them in memory

Calling routine ! “caller-save”

• If register value needed later, save register destroyed by own

instructions or by called routines (if known)

!Save R7 before TRAP

• Or avoid using those registers altogether

LC-3: By convention, callee-saved when possible

• Other ISAs use a more efficient combination of caller- and callee-save

9-13CSE 240

Privilege

Goal: Isolation

• OS performs I/O (in traps)

• Application can’t perform I/O directly

How is this enforced?

Privilege: Processor modes

• Privileged (supervisor)

• Unprivileged (user)

• Encoded in 15th bit of processor status register (PSR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P N Z P

9-14CSE 240

Supervisor Mode Versus User Mode

Supervisor mode

• Program has access to resources not available to user programs

• LC-3: memory (including memory-mapped I/O devices)

User mode in LC-3

• Memory access is limited by memory protection register (MPR)

• Each MPR bit corresponds to 4K memory segment

• 1 indicates that users can access memory in this segment
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0

Cannot access >= xC000

Cannot access x0 to x2FFF

Can access x3000 to xBFFF

9-15CSE 240

MPR

Note: MPR not in book!

Set (only) by OS

• OS decides policy, HW enforces it

Prevents user from. . .

• Updating trap table

• Changing OS code (i.e., trap handlers)

• Accessing video memory

• Accessing memory-mapped I/O registers (e.g., DDR, DSR)

• Could be different for each application

9-16CSE 240

Managing Privilege

What sets privilege bit in PSR?

• TRAP instruction

What clears privilege bit?

• JMPT/RTT (Note: not in book!)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 BaseR 0 0 0 0 0 1JMPT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1RTT

9-17CSE 240

Subroutines

A subroutine is a program fragment that. . .
• Resides in user space (i.e, not in OS)

• Performs a well-defined task

• Is invoked (called) by a user program

• Returns control to the calling program when finished

Like a TRAP routine, but not part of the OS
• Not concerned with protecting hardware resources

• No special privilege required

Virtues
• Reuse code without re-typing it (and debugging it!)

• Divide task into parts (or among multiple programmers)

• Use vendor-supplied library of useful routines

9-18CSE 240

JSR

Just like JMP (but PC is saved in R7)

Why not just use TRAP?

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 PCoffset11JSR

ALU

AB
ADD

"

BR 512

0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0IR

SEXT

9

16

0000001000000000

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1PC

16

1 0

16

16

0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1

16

Register File

R7

R6

R5

R4

R3

R2

R1

R0

0100000000011001
16

#

Note: This is PC
of next

instruction

9-19CSE 240

JSRR

Virtues of JSRR?

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 BaseR 0 0 0 0 0 0JSRR

this zero means “register mode”

Register File

R7

R6

R5

R4

R3

R2

R1

R0

0100010000011001

000001000011000

JSRR R5

0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0IR

16

0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1PC

0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0

1 0
16

#
16

16

"

Note: This is PC of
next instruction

9-20CSE 240

Subroutine Template
SUB_NAME:

 ; Register Saving

 ST R0, SUB_R0

 ST R1, SUB_R1

 …

 ST R6, SUB_R6

 ST R7, SUB_R7 ; return address

 ; *** Code ***

 ; Register Restoring

 LD R0, SUB_R0

 LD R1, SUB_R1

 ….

 LD R6, SUB_R6

 LD R7, SUB_R7 ; return address

 RET

; Register Saves

SUB_R0: .FILL x0

SUB_R1: .FILL x0

SUB_R2: .FILL x0

SUB_R3: .FILL x0

SUB_R4: .FILL x0

SUB_R5: .FILL x0

SUB_R6: .FILL x0

SUB_R7: .FILL x0

Subroutine interface:

• Reads input registers

• Writes output registers

• Value in R7 is destroyed

• All other registers preserved

• Condition codes not preserved

JSR SUB_NAME

Note: we’ll add support for recursion later

9-21CSE 240

Example: Negate the value in R0

TwosComp NOT R0, R0 ; flip bits

ADD R0, R0, #1 ; add one

RET ; return to caller

To call from a program

; need to compute R4 = R1 - R3
ADD R0, R3, #0 ; copy R3 to R0

JSR TwosComp ; negate

ADD R4, R1, R0 ; add to R1

...

Note: TwosComp overwrites R0

9-22CSE 240

Using Subroutines

Programmer must know

• Address: or at least a label that will be bound to its address

• Function: what it does

!NOTE: The programmer does not need to know how the

subroutine works, but what changes are visible in the

machine’s state after the routine has run

• Arguments: what they are and where they are placed

• Return values: what they are and where they are placed

9-23CSE 240

Passing Information To Subroutines

Argument(s)

• Value passed in to a subroutine is called an argument

• This is a value needed by the subroutine to do its job

• Examples

!TwosComp: R0 is number to be negated

!OUT: R0 is character to be printed

!PUTS: R0 is address of string to be printed

How?

• In registers (simple, fast, but limited number)

• In memory (many, but awkward, expensive)

• Both

9-24CSE 240

Getting Values From Subroutines

Return Values

• A value passed out of a subroutine is called a return value

• This is the value that you called the subroutine to compute

• Examples

!TwosComp: negated value is returned in R0

!GETC: character read from the keyboard is returned in R0

How?

• Registers, memory, or both

• Single return value in register most common

9-25CSE 240

Saving and Restore Registers

Like service routines, must save and restore registers

• Who saves what is part of the calling convention

Generally use “callee-save” strategy, except for ret vals

• Same as trap service routines

• Save anything that subroutine alters internally that shouldn’t be

visible when the subroutine returns

• Restore incoming arguments to original values (unless

overwritten by return value)

Remember

• You MUST save R7 if you call any other subroutine or trap

• Otherwise, you won’t be able to return!

9-26CSE 240

Local Variables

Goal: keep values in register (simple and efficient)

More variables than register?

• Keep values in memory (load from memory to compute on them)

Example

.ORIG x3000

Foo: . . .

LD R3, Val1

ADD R3, R3, #1

ST R3, Val1

. . .

Val1: .FILL #0
. . .

.END

What prevents another subroutine
from accessing your local variables?

9-27CSE 240

Global Variables

Just like local variables (labeled memory)

Problem: LD only supports 9-bit offsets (-256 to 255)

Solution: Keep references near subroutine, use indirect addressing

Example:

.ORIG x3000

Foo: . . .

LDI R3, Val1Ref

ADD R3, R3, #1

STI R3, Val1Ref

. . .

Val1Ref: .FILL Val1

. . .

Val1: .FILL #0
. . .

.END

Note: Can be more than one
reference to single datum

Note: All labels
must be unique!

Alternative: reserve register to always

point to start of “globals” 9-28CSE 240

Example

(1) Write a subroutine FirstChar to. . .

Find first occurrence of particular character (in R0) in a string

(pointed to by R1); return pointer to character or to end of string

(NULL) in R5

(2) Use FirstChar to write CountChar, which. . .

Counts number of occurrences of particular character (in R0) in a

string (pointed to by R1); return count in R5

Strategy

• Write second subroutine first, without knowing the

implementation of FirstChar!

9-29CSE 240

CountChar Algorithm (using FirstChar)

save regs
R4 <- 0

call FirstChar

R3 <- M[R5]

R3=0?

R4 <- R4 + 1
R1 <- R5 + 1

R5 <- R4
restore regs

return

no

yes

save R7,

since we’re using JSR

R0 Character

R1 Str. Ptr.
R3 Char in mem
R4 Count

9-30CSE 240

CountChar Implementation
; CountChar: subroutine to count occurrences of a char
CountChar:

ST R1, CCR1 ; save regs
ST R3, CCR3
ST R4, CCR4
ST R7, CCR7 ; JSR alters R7
AND R4, R4, #0 ; initialize count to zero

CC1: JSR FirstChar ; find next occurrence (ptr in R1)
LDR R3, R5, #0 ; see if char or null
BRz CC2 ; if null, no more chars
ADD R4, R4, #1 ; increment count
ADD R1, R5, #1 ; point to next char in string
BRnzp CC1

CC2: ADD R5, R4, #0 ; move return val (count) to R5
LD R1, CCR1 ; restore regs

 LD R3, CCR3
LD R4, CCR4
LD R7, CCR7
RET ; and return

R0 Character
R1 Str. Ptr.
R3 Char in mem
R4 Count

9-31CSE 240

FirstChar Algorithm

save regs

R5 <- R1

R3 <- M[R5]

R3=0?

R3=R0?

R5 <- R5 + 1

restore
regs

return

no

no

yes

yes

R0 Character
R1 Str. Ptr.
R3 Char in mem
R4 -Character
R5 Str. Prt.

9-32CSE 240

FirstChar Implementation
; FirstChar: subroutine to find first occurrence of a char

FirstChar:
ST R3, FCR3 ; save registers

ST R4, FCR4 ; save original char

NOT R4, R0 ; negate R0 for comparisons

ADD R4, R4, #1
ADD R5, R1, #0 ; initialize ptr to beginning of string

FC1: LDR R3, R5, #0 ; read character

BRz FC2 ; if null, we’re done

ADD R3, R3, R4 ; see if matches input char

BRz FC2 ; if yes, we’re done

ADD R5, R5, #1 ; increment pointer

BRnzp FC1
FC2: LD R3, FCR3 ; restore registers

LD R4, FCR4 ;
RET ; and return

R0 Character
R1 Str. Ptr.
R3 Char in mem
R4 -Character
R5 Str. Prt.

What if we
used CCR3?

9-33CSE 240

Library Routines
Call subroutines in other object files (or library)

• Assembler/linker must support EXTERNAL symbols

• Extra “linking” step will fill in value of SQAddr

. . .

.EXTERNAL SQRT

. . .
LD R2, SQAddr ; load SQRT addr

JSRR R2
...

SQAddr .FILL SQRT

Using JSRR, because SQRT likely not “nearby”

9-34CSE 240

Problems?

What’s the problem with. . . recursion?

Main: . . .
JSR Foo

Next: . . .

Foo: ST R7, SaveR7
AND R0, R0, #0
. . .
JSR Foo

After:. . .
LD R7, SaveR7
Ret

SaveR7:.FILL #0

• First call to Foo
(SaveR7 contains address of Next)

• Second call to Foo
(SaveR7 contains address of After)

• First return from Foo
(returns to After)

• Second return from Foo
(returns to After again!!!)

9-35CSE 240

Recursion

Need

• Per-subroutine-invocation data space (activation record)

Approach

• Allocate new activation record for each call

• Subroutine uses its own activation record to hold invocation-

specific data (e.g., local variables, saved registers)

• Organized like a stack (named “the call stack”)

Note

• As SnakeOS/Snake is not recursive, we won’t need to do this for

HW 6 and 7!

