Chapter 9
TRAP Routines and
Subroutines

Based on slides © McGraw-Hill
Additional material © 2004/2005/2006 Lewis/Martin

LC-3 TRAP Mechanism

Provides set of service routines

» Part of operating system -- routines start at arbitrary addresses
(by convention system code is x0200 through x2FFF)

* Up to 256 routines
Requires table of starting addresses
» Stored in memory (x0000 through x00FF)
» Used to associate code with trap number
» Called System Control Block or Trap Vector Table
Uses TRAP instruction
» Used by program to transfer control to operating system (w/ privileges)
» 8-bit trap vector names one of the 256 service routines
Uses “RTT” instruction
* Returns control to the user program (w/o privileges)
» Execution resumes immediately after the TRAP instruction

CSE 240 9-3

System Calls

Some ops. require specialized knowledge and protection

» Abstract I/O device registers and how to use them
Programmers don’t want to know this!

* Protection for shared /O resources - isolate programs from OS
* Reuse of common code

Solution: service routines or system calls
* Low-level, privileged operations performed by operating system

1. User program invokes system call

2. Operating system code:
+ Saves registers
* Performs operation
* Restores registers

3. Returns control to user program

CSE 240 9.2

TRAP Instruction

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
TRAP 11110000 trapvects

Trap vector
+ Identifies which system call to invoke
» Serves as index into table of service routine addresses
> LC-3: table stored in memory at 0x0000 — 0x00FF
» 8-bit trap vector zero-extended to form 16-bit address
* Enters privileged mode
Where to go
» Lookup starting address from table; place in PC
Enabling return
» Save address of next instruction (current PC) in R7
How to return
* Place address in R7 in PC

CSE 240 9-4

Memo

0—]{ mpata
ry
! Adaress

2" by 16 bit

WE

OutData f==Se]

—lo00 6

@ Contoller @

3| 3| 3

RdT Rd2 Wr WE
OutDatat

Register File

inData__ OuData2 o
[4:0] 6
— {sexT
[5:0] 16
—— {sexr 2

[8:0]

Memory
2% by 16 bit

16

CSE 240

RTT

+1
Opcode Control
Instr [15:12] [1[5] | @ (1) 0066006060
TRAP 1111 - 7 1|xx|01]|0]| 0|1 0

15 14 13 12 11 10 9 8 7

6 5 4 3 2 1 0
RTT(11 0000011100000

(special case of JMPT)

CSE 240

Register File

RO

R1

R2

R3

R4

R5

R6

R7

001101000011000

16 |

@*16

416

9-5

...and exit priv. mode

9-7

RET

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RET 1100000 111/000000

Register File
JMp R7 RO
R1
R2
R3
R4
R5
R6
R7 | 001101000011000
}16
+—
2 \1 0/
) @*16
(special case of JMP) R U
CSE 240 9-6
TRAP Mechanism Operation
User Program System Control Block
x0023[0000 0100 1010 0000
Vd
4
2" 1. Lookup starting address
A 2. Transfer to service routine
1111 0000 0010 0011
3. Return
Service Routine
C x04A
B
1100 000 111 000001

CSE 240

9-8

TRAP Routine Template (From HW6)

DRAW_BLOCK:
; Register Saving
ST RO, DB_RO
ST R1, DB_R1

ST R6, DB_R6
ST R7, DB_R7 ; return address

; Register Saves
DB_RO: .FILL x0
DB_R1: .FILL x0
DB_R2: .FILL x0
DB_R3: .FILL x0
DB_RA4: .FILL x0
DB_RS5: .FILL x0
DB_R6: .FILL x0
DB_R7: .FILL x0

; *kk Code *kk

; Register Restoring
LD RO, DB_RO

LD R1, DB_R1

LD R6, DB_R6

TRAP routine interface:
* Reads input registers
* Writes output registers
* Value in R7 is destroyed
» All other registers preserved
+ Condition codes not preserved

LD R7, DB_R?7 ; return address
RTT
CSE 240

Caution Using TRAPs

LEA R3, Block

LD R6, ASCII

LD COUNT

AGAIN TRAP x23
ADD RO, RO,
STR RO, R3,
ADD R3, R3

ADD R7, , -

TRAP x40

9-9

; Init. to first loc.
; Char->digit template
; Init. to 10

; Get char

R6 ; Convert to number
#0 ; Store number
#1 ; Incr pointer

1l ; Decr counter
; More?

; Negative of x0030

What’s wrong with this code?

BRp AGAIN
BRnzp NEXT_TASK
ASCII .FILL xFFDO
COUNT .FILL #10
Block .BLKW #10
CSE 240

9-11

Example: Character Output Service Routine (OUT)

.ORIG x0430
Out: ST R1l, SaveR1l

; Write character

TryWrite: LDI R1, DSR
BRzp TryWrite
WriteIt: STI RO, DDR
; Return from TRAP
Return: LD R1, SaveRl
RTT
DSR .FILL xFEO04
DDR .FILL xFEO06
SaveR1l .FILL O
.END
CSE 240

; Syscall x21 address €
; Save R1

; Get status
; Bit 15 says not ready?
; Write char

; Restore R1
; Return from trap

stored in table,
location x21

9-10

Saving and Restoring Registers

Called routine = “callee-save”

» Before start, save registers that will be altered

(except output regs)

» Before return, restore those same registers

(again, except output regs)

* Values are saved by storing them in memory

Calling routine = “caller-save”

« If register value needed later, save register destroyed by own
instructions or by called routines (if known)

> Save R7 before TRAP

« Or avoid using those registers altogether

LC-3: By convention, callee-saved when possible
« Other ISAs use a more efficient combination of caller- and callee-save

CSE 240

9-12

Privilege Supervisor Mode Versus User Mode

Goal: Isolation Supervisor mode
* OS performs 1/O (in traps) * Program has access to resources not available to user programs
« Application can’t perform I/O directly * LC-3: memory (including memory-mapped /O devices)
How is this enforced? User mode in LC-3
* Memory access is limited by memory protection register (MPR)
Privilege: Processor modes * Each MPR bit corresponds to 4K memory segment
* 1 indicates that users can access memory in this segment

’ Privil-egi]ed (supervisor) 1514 13 1211109 8 7 6 5 4 3 2 1 0
e . 000/0[11/11/111/110/00
* Encoded in 15th bit of processor status register (PSR)

Cannot access x0 to x2FFF

15 14 13 12 11109 8 7 6 5 4 3 2 1 0 C 3000 t BFFF
an access X 0 X
?|] NzP
Cannot access >= xC000
CSE 240 9-13 CSE 240 9-14
MPR Managing Privilege
Note: MPR not in book! What sets privilege bit in PSR?

* TRAP instruction

Set (only) by OS
+ OS decides policy, HW enforces it What clears privilege bit?
* JMPT/RTT (Note: not in book!)

Prevents user from. .. 15 14 13 12 11 109 8 7 6 5 4

3 2 1
* Updating trap table JMPT 1 1 0 00 0 0 BaseRO 0 0 0 0 1
» Changing OS code (i.e., trap handlers)

« Accessing video memory
* Accessing memory-mapped /O registers (e.g., DDR, DSR)
» Could be different for each application

15 14 13 12 11 10 9 8 7 6 5 4

3 2 1
RTT 110000011100000 1]

CSE 240 9-15 CSE 240 9-16

Subroutines

A subroutine is a program fragment that. . .
* Resides in user space (i.e, not in OS)
* Performs a well-defined task
« Is invoked (called) by a user program
* Returns control to the calling program when finished

Like a TRAP routine, but not part of the OS
* Not concerned with protecting hardware resources
* No special privilege required

Virtues
* Reuse code without re-typing it (and debugging it!)
» Divide task into parts (or among multiple programmers)
» Use vendor-supplied /ibrary of useful routines

CSE 240 9-17

l this zero means “register mode”

JSRR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
JSRR 0 1 0 0/00 0 BaseR 0 0 0 0 0 0

Register File

RO
JSRR R1
-lﬂm R2
R3
R4
R5 [0oooo1000011000
R6

Virtues of JSRR?

CSE 240 9-19

JSR

15 14 13 12 11 10 9 8 7 6 5 4

3 2 1 0

JSR|0100 1

PCoffsetll |

Note: This is PC

of next
instruction

@
Register File - 1o

RO IR l
R1
R2
R3 SEXT
R4 16
R5 {16 116 1
R6 0] 0000001000000000
Bl e

16

Just like JMP (but PC is saved in R7)

Why not just use TRAP?
CSE 240

Subroutine Template

SUB_NAME:
; Register Saving
ST RO, SUB_RO
ST R1, SUB_R1

ST R6, SUB_R6
ST R7, SUB_RT7 ; return address

ADD

9-18

; Register Saves
SUB_RO: .FILL x0
SUB_R1: .FILL x0
SUB_R2: .FILL x0
SUB_R3: .FILL x0
SUB_R4: .FILL x0
SUB_RS5: .FILL x0
SUB_R6: .FILL x0
SUB_R7: .FILL x0

; *** Code ***

; Register Restoring
LD RO, SUB_RO
LD R1, SUB_R1

Subroutine interface:

Reads input registers

Writes output registers

Value in R7 is destroyed

All other registers preserved
Condition codes not preserved

LD R6, SUB_R6
LD R7, SUB_R7 ; return address
RET

JSR SUB_NAME

CSE 240 Note: we'll add support for recursion later 9-20

Example: Negate the value in RO

TwosComp NOT RO, RO ; flip bits
ADD RO, RO, #1 ; addone
RET ; return to caller

To call from a program

; need to compute R4 = R1 - R3
ADD RO, R3, #0 ; copyR3to RO
JSR TwosComp ; negate
ADD R4, R1, RO ; addtoR1

Note: TwosComp overwrites RO

CSE 240

Passing Information To Subroutines

Argument(s)
* Value passed in to a subroutine is called an argument
« This is a value needed by the subroutine to do its job
« Examples
» TwosComp: RO is number to be negated
»OUT: RO is character to be printed
»PUTS: RO is address of string to be printed

How?
* In registers (simple, fast, but limited number)
* In memory (many, but awkward, expensive)
* Both

CSE 240

9-21

9-23

Using Subroutines

Programmer must know
* Address: or at least a label that will be bound to its address
* Function: what it does

»NOTE: The programmer does not need to know how the
subroutine works, but what changes are visible in the
machine’s state after the routine has run

* Arguments: what they are and where they are placed
* Return values: what they are and where they are placed

CSE 240

Getting Values From Subroutines

Return Values
* A value passed out of a subroutine is called a return value
« This is the value that you called the subroutine to compute
« Examples
» TwosComp: negated value is returned in RO
» GETC: character read from the keyboard is returned in RO

How?

* Registers, memory, or both
» Single return value in register most common

CSE 240

9-22

9-24

Saving and Restore Registers

Like service routines, must save and restore registers
* Who saves what is part of the calling convention

Generally use “callee-save” strategy, except for ret vals
« Same as trap service routines

» Save anything that subroutine alters internally that shouldn’t be
visible when the subroutine returns

* Restore incoming arguments to original values (unless
overwritten by return value)

Remember
* You MUST save R7 if you call any other subroutine or trap
» Otherwise, you won’t be able to return!

CSE 240 9-25

Global Variables

Just like local variables (labeled memory)
Problem: LD only supports 9-bit offsets (-256 to 255)
Solution: Keep references near subroutine, use indirect addressing

Example:
.ORIG x3000

Foo: ..
LDI R3, VallRef
ADD R3, R3, #1

STI R3, VallRef Note: All labels
. // must be unique!

VallRef: .FILL Vall

Note: Can be more than one
reference to single datum

Vall: .FILL #0 . .
Alternative: reserve register to always

cse240 < i “ ”
_END point to start of “globals 9-27

Local Variables
Goal: keep values in register (simple and efficient)

More variables than register?
* Keep values in memory (load from memory to compute on them)

Example

.ORIG x3000

Foo: ..
LD R3, Vall
ADD R3, R3, #1
ST R3, Vall

Vall: .FILL #0 What prevents another subroutine

'El'm' from accessing your local variables?
CSE 240 9-26

Example

(1) Write a subroutine FirstChar to. ..

Find first occurrence of particular character (in R0) in a string
(pointed to by R1); return to character or to end of string
(NULL) in

(2) Use FirstChar to write CountChar, which. . .

Counts number of occurrences of particular character (in R0) in a
string (pointed to by R1); return in

Strategy

» Write second subroutine first, without knowing the
implementation of FirstChar!

CSE 240 9-28

CountChar Algorithm (using FirstChar)

save regs R4 <-R4 + 1
R4 <-0 R1 <-R5 + 1
!
call FirstChar
—
! TT— saveR7
R3 <- M[R5] since we’re using JSR
R5 <- R4
restore regs
RO Character
R1 Str. Ptr. no ‘
R3 Char in mem
yes
CSE 240 9_29
FirstChar Algorithm
save regs yes
}
R5 <- R1 no
i R5<-R5+1
R3 <- M[R5] \
RO Character restore
R1 Str. Ptr. regs
R3 Char in mem o
R4 -Character !
yes

CSE 240

9-31

CountChar Implementation
; CountChar: subroutine to count occurrences of a char

CountChar:
ST
ST
ST
ST
AND

CCl: JSR
LDR
BRz
ADD
ADD
BRnzp

CC2: ADD
LD
LD
LD
LD

CSE 240

FirstChar Implementation

R1, CCR1l
R3, CCR3
R4, CCR4
R7, CCR7
R4, R4, #0
FirstChar
R3, R5, #0
cc2

R4, R4, #1
R1, R5, #1
CC1l

R5, R4, #0
R1, CCR1
R3, CCR3
R4, CCR4
R7, CCR7

’

Ne Ne Ne o Ne Ne oN. S

RO Character
R1 Str. Ptr.
R3 Charin mem
; save regs R4 Count
JSR alters R7

initialize count to zero

find next occurrence (ptrin R1)
see if char or null

if null, no more chars
increment count

point to next char in string

move return val (count) to R5
restore regs

and return
9-30

RO Character

; FirstChar: subroutine to find first occurrence of a char | R1 Str. Ptr.

FirstChar:
ST

FCl: LDR

FC2: 11D

CSE 240

R3, FCR3
R4, FCR4

R4, RO

R4, R4, #1
R5, R1, #0
R3, R5, #0
FC2

R3, R3, R4
FC2

R5, R5, #1
FC1

R3, FCR3
R4, FCR4

R3 Charin mem
R4 -Character

save registers
R5 Str. Prt.

save original char

negate RO for comparisons

jalize ptr to beginning of string
read

increment pointe

restore registers What if we
used CCR3?
and return
9-32

Library Routines

Call subroutines in other object files (or library)
» Assembler/linker must support EXTERNAL symbols
+ Extra “linking” step will fill in value of SQAddr

.EXTERNAL SQRT

LD R2, SQAddr ; load SQRT addr
JSRR R2

SQAddr .FILL SQRT

Using JSRR, because SQRT likely not “nearby”

CSE 240 0-33

Recursion

Need
« Per-subroutine-invocation data space (activation record)

Approach
« Allocate new activation record for each call

« Subroutine uses its own activation record to hold invocation-
specific data (e.g., local variables, saved registers)

» Organized like a stack (named “the call stack”)

Note

« As SnakeOS/Snake is not recursive, we won’t need to do this for
HW 6 and 7!

CSE 240 9-35

Problems?

What’s the problem with. . .

Main: .
JSR Foo
Next:
Foo: ST R7,
AND RO,
JSR Foo
After:.
LD R7,
Ret
SaveR7: .FILL #0

SaveR7
RO, #0

SaveR7

CSE 240

recursion?

« First call to Foo
(SaveR7 contains address of Next)

e Second call to Foo
(SaveR7 contains address of After)

e First return from Foo
(returns to After)

e Second return from Foo
(returns to After again!!!)

9-34

