
Based on slides © McGraw-Hill

Additional material © 2004/2005/2006 Lewis/Martin

Chapter 8

Input/Output

8-2CSE 240

Input/Output: Connecting to the Outside World

 So far, we’ve learned how to…

• Compute with values in registers

• Move data between memory and registers

 But how do we interact with computers?

• Game console (Playstation, Xbox)

• DVD player

• MP3 player (iPod)

• Cell phone

• Automated Teller Machine (ATM)

• Car’s airbag controller

• Web server

8-3CSE 240

Examples of Input/Output (I/O) Devices

 User output
• Display, printer, speakers

 User input
• Keyboard, mouse, trackball, game controller, scanner,

microphone, touch screens, camera (still and video)

 Storage
• Disk drives, CD & DVD drives, flash-based storage, tape drive

 Communication
• Network (wired, wireless, optical, infrared), modem

 Sensor inputs
• Temperature, vibration, motion, acceleration, GPS

• Barcode scanner, magnetic strip reader, RFID reader

 Control outputs
• Motors, actuators

8-4CSE 240

I/O Controller

 Control/Status Registers

• CPU tells device what to do -- write to control register

• CPU checks whether task is done -- read status register

 Data Registers

• CPU transfers data to/from device

 Device electronics

• Performs actual operation

!Pixels to screen, bits to/from disk, characters from keyboard

I/O Controller
Control/Status

Data
Electronics

Processor
device

How does software interact with I/O?

8-5CSE 240

Memory-Mapped vs. I/O Instructions

 Instructions

• Designate opcode(s) for I/O

• Register and operation encoded in instruction

 Memory-mapped

• Assign a memory address

to each device register

• Use data movement

instructions (LD/ST)

for control and data transfer

• Hardware intercepts these address

• No actual memory access performed
8-6CSE 240

LC-3 I/O Devices (Extended)
 Memory-mapped I/O (Table A.3)

 Polling and Interrupts

• We’ll talk first about polling, a bit on interrupts later

Timer interval in msecs.Timer Interval Register (TIR)xFE0A

Bit[15] is one when timer goes off; cleared

when read.
Timer Status Register (TSR)xFE08

Bit [15] is one when device ready to display

another char on screen.
Display Status Register (DSR)xFE04

Character written to bits [7:0] will be displayed

on screen.
Display Data Register (DDR)xFE06

Bits [7:0] contain the last character typed on

keyboard.
Keyboard Data Reg (KBDR)xFE02

Bit [15] is one when keyboard has received a

new character.
Keyboard Status Reg (KBSR)xFE00

FunctionI/O RegisterLocation

8-7CSE 240

Input from Keyboard

 When a character is typed:
• Its ASCII code is placed in bits [7:0] of KBDR

(bits [15:8] are always zero)

• The “ready bit” (KBSR[15]) is set to one

• Keyboard is disabled -- any typed characters will be ignored

 When KBDR is read:
• KBSR[15] is set to zero

• Keyboard is enabled

 Alternative implementation: buffering keyboard input

KBSR

KBDR
15 8 7 0

1514 0

keyboard data

ready bit

8-8CSE 240

new

char?

read

character

YES

NO

Polling

POLL LDI R2, KBSRPtr

 BRzp POLL

 LDI R0, KBDRPtr

 ...

KBSRPtr .FILL xFE00

KBDRPtr .FILL xFE02

Basic Input Routine

 Put the ASCII value of the character typed into R0

 What is the advantage of using LDI?

 What if you don’t test KBSR before reading data from keyboard?

8-9CSE 240

Output to Monitor

 When Monitor is ready to display another character:

• The “ready bit” (DSR[15]) is set to one

 When data is written to Display Data Register:

• DSR[15] is set to zero

• Character in DDR[7:0] is displayed

• Any other character data written to DDR is ignored

(while DSR[15] is zero)

DSR

DDR
15 8 7 0

1514 0

output data

ready bit

8-10CSE 240

Basic Output Routine

screen

ready?

write

character

YES

NO

Polling

POLL LDI R1, DSRPtr

BRzp POLL

STI R0, DDRPtr

...

DSRPtr .FILL xFE04

DDRPtr .FILL xFE06

 R0 is the ASCII value of the character to be displayed

 What if you don’t test KBSR before send data to display?

8-11CSE 240

Keyboard Echo Routine

 Usually, input character is also printed to screen
• User gets feedback on character typed and knows its ok to type

the next character

new

char?

read

character

YES

NO

screen

ready?

write

character

YES

NO

POLL1 LDI R2, KBSRPtr

BRzp POLL1

LDI R0, KBDRPtr

POLL2 LDI R1, DSRPtr

BRzp POLL2

STI R0, DDRPtr

...

KBSRPtr .FILL xFE00

KBDRPtr .FILL xFE02

DSRPtr .FILL xFE04

DDRPtr .FILL xFE06

8-12CSE 240

Pixel-Based Display

 A display consists of many dots (pixels)

• Color of each pixel represented by a 16-bit value

!5 bits for each of Red/Green/Blue

!32 thousand distinct colors

 Memory-mapped pixels

• One memory location per pixel

• 128x124 pixels

• Memory region xC000 to xFDFF

!xC000 to xC07F is first row of display

!xC080 to xC0FF is second row of display

• Set the corresponding location to change its color

 B
1514 0

 G R

 Display

 xC000

 xC080

5910 4

8-13CSE 240

Timer Device

 A periodic timer “tick”
• Allows a program to detect when a interval of time has passed

• Our implementation (for the LC-3) uses a simple fix-interval timer

 Using TSR (Timer Status Register):
• “Tick” bit is set every n milliseconds

• Read the value of the bit from memory location (xFE08)

• Bit reset to zero after every read

• Change interval via Timer Interval Register (TIR, xFE0A)

 Why did we add the display and timer? For Snake!

TSR
1514 0

tick bit

8-14CSE 240

Internal Hard Drives

 A large magnetic disk
• Spinning at 10,000 RPM

• A magnetic head reads from the surface of the disk

 Larger capacity than memory
• Contain 100s of gigabytes of data

• In contrast: main memory is commonly a gigabyte or two

 Interface is block-level
• Request a particular “block” to read from the disk

• All of that block is written into memory

• Or read from memory, written to disk

8-15CSE 240

Disk Interface

 The LC-3 simulator doesn’t support disks, but if it did…

• Read or write “block” of 256 16-bit words (512 bytes)

• Access any of 216 = 65536 blocks

• Resulting maximum disk size: 32 megabytes (32 million bytes)

 Interface

• DiskStatusRegister: ready bit (just like keyboard and display)

• DiskControlRegister: tell disk what to do

• DiskBlockRegister: disk block address to read or write

• DiskMemoryRegister: address of starting memory location

 Block read operation

• Wait for disk to be “idle”

• Set BlockRegister (source), MemoryRegister (destination)

• Set Control to “Read” - the doorbell

• Wait for disk to finish read (status bit becomes “idle” again)

8-16CSE 240

Disk Interface

 Write operation

• Wait for disk to be “idle”

• Set BlockRegister (destination), MemoryRegister (source)

• Set Control to “Write” - the doorbell

• Wait for disk to finish write (status bit becomes “idle” again)

 Direct Memory Access (DMA)

• This type of “device writes to or reads from memory” interface

• Allows large amounts of data to move without intervention from

the processor (for example, an entire disk block)

• Status register changes upon completion

• Network interfaces also use DMA

• Used by all high-speed, high-performance devices

8-17CSE 240

Two Ways to Control Devices

 Who determines when the next data transfer occurs?

 Polling

• CPU keeps checking status register until

new data arrives or device ready for next data

• Example: spinning on keyboard status register

• “Are we there yet? Are we there yet? Are we there yet?”

 Interrupts

• Device sends a special signal to CPU when

new data arrives or device ready for next data

• CPU can be performing other tasks instead of polling device

• “Wake me when we get there.”

8-18CSE 240

Interrupt-Driven I/O

 External device can. . .

(1) Force currently executing program to stop

(2) Have the processor satisfy the device’s needs

(3) Resume the stopped program as if nothing happened

 Why?

• Polling consumes a lot of cycles, especially for rare events –

these cycles can be used for more computation

• Again, I/O devices are slow

• Examples:

! Process previous input while collecting current input (See

Example 8.1 in text)

! Waiting for disk write to complete (overlap disk write with

other work)

! Another example? Network interface

8-19CSE 240

Interrupt-Driven I/O

 To implement an interrupt mechanism, we need

• Way for software to enable interrupts on device

!Set a bit in the device’s status register

• Way for I/O device to signal that event has occurred

!When device status changes, hijack processor

!“jumps” to interrupt service routine (PC = Mem[x0100+i])

 Interrupt service routine

• Operating system code at a well-know location

• Uses regular I/O register to interact with devices

• Interrupt simply tells the software when to query

 Not implemented in LC-3 simulator

More information in Chapter 10

8-20CSE 240

Role of the Operating System

 In real systems, only the operating system (OS) does I/O

• “Normal” programs ask the OS to perform I/O on its behalf

 Hardware prevents non-operating system code from

• Accessing I/O registers

• Operating system code and data

• Accessing the code and data of other programs

 Why?

• Protect programs from themselves

• Protect programs from each other

• Multi-user environments

8-21CSE 240

Memory Protection

 The hardware has two modes
• “Supervisor” or “privileged” mode

• “User” or “unprivileged” mode

 Code in privileged mode
• Can do anything

• Used exclusively by the operating system

 Code in user mode
• Can’t access I/O parts of memory

• Can only access some parts of memory

 Division of labor
• Operating system (OS) - make policy choices

• Hardware - enforce the OS’s policy
8-22CSE 240

OS and Hardware Cooperate for Protection

 Hardware support for protected memory
• For example, consider a 16-bit protection register (MPR) in the

processor

!MPR[0] corresponds to x0000 - x0FFF

!MPR[1] corresponds to x1000 - x1FFF

!MPR[2] corresponds to x2000 - x2FFF, etc.

 When a processor performs a load or store
• Checks the corresponding bit in MPR

• If MPR bit is not set (and not in privileged mode)

!Trigger illegal access handler

 The OS must set these bits before running each program
• Example, If a program should access only x4000 - x6FFF

!OS sets MPR[4, 5, 6] to 1 (the rest are set to 0)

8-23CSE 240

Invoking the Operating System

 How does non-privileged code perform I/O?
• Answer: it doesn’t; it asks the OS to perform I/O on its behalf

 How is this done?
• Making a system call into the operating system

 In LC-3: The TRAP instruction
• Calls into the operating system (sets privileged mode)

• Different part of the OS called for each trap number

• OS performs the operations (in privileged mode)

• OS leaves privileged mode

• OS returns control back to user program (jumps to the PC after
the TRAP instruction)

 Topic of next chapter…

