
Based on slides © McGraw-Hill

Additional material © 2004/2005/2006 Lewis/Martin

Chapter 6

Programming the LC-3

6-2CSE 240

Aside: Booting the Computer

 How does it all begin?

• We have LC-3 hardware and a program, but what next?

 Initial state of computer

• All zeros (registers, memory, condition codes)

• Only mostly true

 Boot process

• Load boot code held in ROM (read-only memory)

!BIOS (basic input/output system)

• Loads operating system from disk (or other input device)

• Operating systems loads other programs

!Uses memory operations (loads, stores)

!Sets PC to beginning of program to run it

!Programs invoke O.S. using TRAP instructions

6-3CSE 240

Solving Problems using a Computer

 Methodologies for creating computer programs

that perform a desired function

 Problem Solving

• How do we figure out what to tell the computer to do?

• Convert problem statement into algorithm (stepwise refinement)

• Convert algorithm into LC-3 machine instructions

 Debugging

• How do we figure out why it didn’t work?

• Examining registers and memory, setting breakpoints, etc.

Time spent on the first can reduce time spent on the second!

6-4CSE 240

Stepwise Refinement

 Also known as systematic decomposition

 Start with problem statement:

 “We wish to count the number of occurrences of a character

in a file.  The character in question is to be input from

the keyboard; the result is to be displayed on the monitor.”

 Decompose task into a few simpler subtasks

 Decompose each subtask into smaller subtasks,

and these into even smaller subtasks, etc....

until you get to the machine instruction level



6-5CSE 240

Problem Statement

 Because problem statements are written in English,

they are sometimes ambiguous and/or incomplete

• Where is the data located?  How big is it, or how do I know

when I’ve reached the end?

• How should final count be printed?  A decimal number?

• If the character is a letter, should I count both

upper-case and lower-case occurrences?

 How do you resolve these issues?

• Ask the person who wants the problem solved, or

• Make a decision and document it

6-6CSE 240

Three Basic Constructs

 There are three basic ways to decompose a task:

Task

Subtask 1

Subtask 2

Subtask 1 Subtask 2

Test

condition

Subtask

Test

condition

Sequential Conditional Iterative

True

True

False
False

6-7CSE 240

Programming at the Instruction Level

Advantage: can do anything

• General, powerful

 Disadvantage: can do anything

• Difficult to structure, modify, understand

 Mitigate disadvantages using structured programming

• Use familiar constructs (even at the instruction level)

!From Java/C/Pascal/Fortran/Basic

• Iteration (while loop, for loop)

• Conditional (if statement, switch/case statement)

6-8CSE 240

Sequential

 Do Subtask 1 to completion,

then do Subtask 2 to completion, etc.

Get character
input from
keyboard

Examine file and
count the number
of characters that

match

Print number
to the screen

Count and print the
occurrences of a

character in a file



6-9CSE 240

Conditional

 If condition is true, do Subtask 1;

else, do Subtask 2

Test character.

If match, increment

counter.
Count = Count + 1

file char

= input?

True False

6-10CSE 240

Iterative

 Do Subtask over and over,

as long as the test condition is true

Check each element of

the file and count the

characters that match.

Check next char and

count if matches.

more chars

to check?

True

False

6-11CSE 240

LC-3 Control Instructions

 How can instructions encode these basic constructs?

 Sequential

• Instructions naturally flow from one to next, so no special

instruction needed to go from one sequential subtask to next

 Conditional and Iterative

• Create code that converts condition into N, Z, or P

!Condition: “Is R0 = R1?”

!Code: Subtract R1 from R0; if equal, Z bit will be set

• Use BR instruction to transfer control

• What about R0 < R1?

!Code: Subtract R1 from R0 (R0-R1), if less, N bit will be set

6-12CSE 240

Code for Conditional

Generate

Condition

Instruction

A

0000B

Subtask 1

C

Subtask 2

Next

Subtask

D

? C

0000 111 D

Subtask 1

Test

Condition

True False

Subtask 2

Next

Subtask

Exact bits depend

on condition

being tested

PC offset to

address C

PC offset to

address D

Unconditional branch

to Next Subtask

Assuming all addresses are close enough that PC-relative branch can be used



6-13CSE 240

Code for Iteration

Generate

Condition

Instruction

A

0000

B

Subtask

C
Next

Subtask

? C

0000 111 A

Subtask

Test

Condition

True

False

Next

Subtask

Exact bits depend

on condition

being tested

PC offset to

address C

PC offset to

address A

Unconditional branch

to retest condition

Assuming all addresses are close enough that PC-relative branch can be used

6-14CSE 240

Example (from both Ch 5 and 6)

 Count the occurrences of a character in a file
• Program begins at location x3000

• Read character from keyboard

• Load each character from a “file”

! In this example the “file” is already in sequence of memory locations

!Starting address of file is stored in the memory location
immediately after the program

• If file character equals input character, increment counter

• End of file is indicated by a special ASCII value: EOT (x04)

• At the end, print the number of characters and halt
(assume there will be fewer than 10 occurrences of the character)

A special character used to indicate the end of a sequence
is often called a sentinel

• Useful when you don’t know ahead of time how many times
to execute a loop

6-15CSE 240

Example: Counting Characters

Input a character.  Then
scan a file, counting
occurrences of that

character.  Finally, display
on the monitor the number
of occurrences of the
character (up to 9).

START

STOP

Initialize: Put initial values
into all locations that will be
needed to carry out this

task.

- Input a character.
- Set up a pointer to the first

location of the file that will
be scanned.
- Get the first character from
the file.

- Zero the register that holds
the count.

START

STOP

Scan the file, location by
location, incrementing the

counter if the character
matches.

Display the count on the

monitor.

A

B

C

Initial refinement: Big task into

three sequential subtasks.

6-16CSE 240

Refining B

Scan the file, location by

location, incrementing the
counter if the character
matches.

B

Test character.  If a match,

increment counter.  Get next

character.

B1

Done?

No

Yes

B

Refining B into iterative construct.



6-17CSE 240

Refining B1

Refining B1 into sequential subtasks.

Test character.  If a match,

increment counter.  Get next

character.

B1

Done?

No

Yes

B

Get next character.

B1

Done?

No

Yes

Test character.  If matches,

increment counter.

B2

B3

6-18CSE 240

Refining B2 and B3

R1 = M[R3]

Done?

No

Yes

B2

B3

R3 = R3 + 1

R1 = R0?

R2 = R2 + 1

NoYes

Get next character.

B1

Done?

No

Yes

Test character.  If matches,

increment counter.

B2

B3

Conditional (B2) and sequential (B3).

Use of LC-3 registers and instructions.

6-19CSE 240

Entire Flow Chart

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char

from keybd
(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to

ASCII character
(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

Input: M[x3012] (address of “file”)

Output: Print count to display

6-20CSE 240

Translate to Pseudocode  R2 ! 0 (Count)

 R3 ! M[x3012] (Ptr)

 Input to R0 (TRAP x23)

 R1 ! M[R3]

 R4 ! R1 – 4 (EOT)

 BRz x????

 R1 ! NOT R1

 R1 ! R1 + 1

 R1 ! R1 + R0

 BRnp x????

 R2 ! R2 + 1

 R3 ! R3 + 1

 R1 ! M[R3]

 BRnzp x????

 R0 ! M[x3013]

 R0 ! R0 + R2

 Print R0 (TRAP x21)

 HALT (TRAP x25)

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char

from keybd
(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to

ASCII character
(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

 ?



6-21CSE 240

Iterative Construct in Pseudocode  R2 ! 0 (Count)

 R3 ! M[x3012] (Ptr)

 Input to R0 (TRAP x23)

 R1 ! M[R3]

 R4 ! R1 – 4 (EOT)

 BRz x????

 R1 ! NOT R1

 R1 ! R1 + 1

 R1 ! R1 + R0

 BRnp x????

 R2 ! R2 + 1

 R3 ! R3 + 1

 R1 ! M[R3]

 BRnzp x????

 R0 ! M[x3013]

 R0 ! R0 + R2

 Print R0 (TRAP x21)

 HALT (TRAP x25)

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char

from keybd
(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to

ASCII character
(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

 ?

6-22CSE 240

Conditional in Pseudocode  R2 ! 0 (Count)

 R3 ! M[x3012] (Ptr)

 Input to R0 (TRAP x23)

 R1 ! M[R3]

 R4 ! R1 – 4 (EOT)

 BRz x????

 R1 ! NOT R1

 R1 ! R1 + 1

 R1 ! R1 + R0

 BRnp x????

 R2 ! R2 + 1

 R3 ! R3 + 1

 R1 ! M[R3]

 BRnzp x????

 R0 ! M[x3013]

 R0 ! R0 + R2

 Print R0 (TRAP x21)

 HALT (TRAP x25)

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char

from keybd
(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to

ASCII character
(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

6-23CSE 240

Final Pseudocode  R2 ! 0 (Count)

 R3 ! M[x3012] (Ptr)

 Input to R0 (TRAP x23)

 R1 ! M[R3]

 R4 ! R1 – 4 (EOT)

 BRz x????

 R1 ! NOT R1

 R1 ! R1 + 1

 R1 ! R1 + R0

 BRnp x????

 R2 ! R2 + 1

 R3 ! R3 + 1

 R1 ! M[R3]

 BRnzp x????

 R0 ! M[x3013]

 R0 ! R0 + R2

 Print R0 (TRAP x21)

 HALT (TRAP x25)

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char

from keybd
(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to

ASCII character
(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

Don’t know

PCoffset bits until

all the code is done

6-24CSE 240

Translate Pseudocode (1 of 2)

Input to R0 (TRAP x23)1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1x3002

R1 ! R1 + 10 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1x3007

R1 ! R1 + R00 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0X3008

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0

0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0

0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0

0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0

Instruction

BRnp x300B

R1 ! NOT R1

BRz x300E

R4 ! R1 – 4 (EOT)

R1 ! M[R3]

R3 ! M[x3012] (ptr)

R2 ! 0 (counter)

Comments

x3009

x3006

x3005

x3004

x3003

x3001

x3000

Address

LD0010

BR0000

TRAP1111

AND0101

ADD0001



6-25CSE 240

Translate Pseudocode (2 of 2)

R1 ! M[R3]0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0x300C

HALT (TRAP x25)1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1x3011

Starting Address of FileX3012

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0

0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1

0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1

Instruction

ASCII x30 (‘0’)

Print R0 (TRAP x21)

R0 ! R0 + R2

R0 ! M[x3013]

BRnzp x3004

R3 ! R3 + 1

R2 ! R2 + 1

Comments

x3013

x3010

x300F

x300E

x300D

x300B

x300A

Address

LD0010

BR0000

TRAP1111

AND0101

ADD0001

6-26CSE 240

Structured Programming of LC-3 Summary

 Decompose task

• Top-down

• Specification often ambiguous

• Continual refinement of details

 Write code

• Focus on one bite-sized part at a time

• Use structured programming (even at the instruction level)

• Translate flowchart to pseudo code then to machine code

 Continual testing and debugging of code

6-27CSE 240

Debugging

 You’ve written your program and it doesn’t work

 Now what?

 What do you do when you’re lost in a city?

• Drive around randomly and hope you find it?

• Return to a known point and look at a map?

In debugging, the equivalent to looking at a map

is tracing your program

• Examine the sequence of instructions being executed

• Keep track of results being produced

• Compare result from each instruction to the expected result

6-28CSE 240

Debugging Operations

Any debugging environment might provide means to:

1. Display values in memory and registers

2. Change values in memory and registers

3. Execute instructions in a program

4. Stop execution when desired

Different programming levels offer different tools

• High-level languages (C, Java, ...) have source-code debugging

tools

• For debugging at the machine instruction level:

! Simulators

! Operating system “monitor” tools

! Special hardware



6-29CSE 240

LC-3 Simulator

 Mem/Reg

Values

 Start

Execution

 Stop

Execution

 Command

Line

6-30CSE 240

Tracing the Program

 Execute the program one piece at a time, examining

register and memory to see results at each step

 Single-Stepping

• Execute one instruction at a time

• Tedious, but useful to help you verify each step of your program

 Breakpoints

• Tell simulator to stop exec. when it reaches a specific instruction

• Check overall results at specific points in the program

!Lets you quickly execute sequences to get a high-level

overview of the execution behavior

!Quickly execute sequences that your believe are correct

6-31CSE 240

Example 1: Multiply

 Goal: Multiply the two positive integers in R4 and R5, and

place result in R2 (does not handle multiple by zero case)

x3200 0101010010100000

x3201 0001010010000100

x3202 0001101101111111

x3203 0000011111111101

x3204 1111000000100101

clear R2

add R4 to R2

decrement R5

R5 = 0?

HALT

No

Yes

Set R4 = 10, R5 =3

Run program

Result: R2 = 40, not 30

(R2 = x0028, not x001E)
6-32CSE 240

Example 1: Multiply

 Goal: Multiply the two positive integers in R4 and R5, and

place result in R2 (does not handle multiple by zero case)

x3000 AND   R2,R2,#0

x3001 ADD   R2,R2,R4

x3002 ADD   R5,R5,#-1

x3003 BRzp  x3001

x3004 HALT

clear R2

add R4 to R2

decrement R5

R5 = 0?

HALT

No

Yes

Set R4 = 10, R5 =3

Run program

Result: R2 = 40, not 30

(R2 = x0028, not x001E)



6-33CSE 240

Debugging the Multiply Program

-11040x3204

-11040

-11040x3203

01040x3202

01030x3201

01030x3203

11030x3202

11020x3201

11020x3203

21020x3202

21010x3201

21010x3203

31010x3202

3100x3201

310--x3200

R5R4R2PC

PC and registers

at the beginning

of each instruction

-11040

-11040x3203

01030x3203

11020x3203

21010x3203

R5R4R2PC

Single-stepping

Breakpoint at branch (x3203)

Executing loop one time too many

Branch at x3203 should be based

on Z bit only, not Z and P

(change x07FD to x03FD)

Should stop looping here!

6-34CSE 240

Example 2: Summing an Array of Numbers

 Goal: Sum the numbers stored in 10 memory locations

beginning with x3100, leaving the result in R1

R4 = 0?

HALT

No

Yes

R1 = 0

R4 = 10

R2 = x3100

R1 = R1 + M[R2]

R2 = R2 + 1

R4 = R4 - 1

x3000 AND   R1,R1,#0

x3001 AND   R4,R4,#0

x3002 ADD   R4,R4,#10

x3003 LD    R2,x3100

x3004 LDR   R3,R2,#0

x3005 ADD   R2,R2,#1

x3006 ADD   R1,R1,R3

x3007 ADD   R4,R4,#-1

x3008 BRp   x3004

x3009 HALT

6-35CSE 240

Debugging the Summing Program

 Running the data below yields R1 = x0024,

but the sum should be x8135.  What happened?

x0004x3109

x0007x3108

x0019x3107

x11B1x3106

x1110x3105

x0110x3104

x0310x3103

x0110x3102

x2819x3101

x3107x3100

ContentsAddress

0--0x3002

10x31070x3004

10--0x3003

----0x3001

------x3000

R4R2R1PC

Start single-stepping program...

Should be x3100!

Loading contents of M[x3100], not address

Change opcode of x3003 

from 0010 (LD) to xE or 1110 (LEA)
6-36CSE 240

Example 3: Looking for a 5

 Scan ten memory locations

• starting at x3100

 If a “5” is found

• set R0 to 1, otherwise set R0 to 0

x3000 AND   R0,R0,#0

x3001 ADD   R0,R0,#1

x3002 AND   R1,R1,#0

x3003 ADD   R1,R1,#-5

x3004 AND   R3,R3,#0

x3005 ADD   R3,R3,#10

x3006 LD    R4,x3010

x3007 LDR   R2,R4,#0

x3008 ADD   R2,R2,R1

x3009 BRz   x300F

x300A ADD   R4,R4,#1

x300B ADD   R3,R3,#-1

x300C LDR   R2,R4,#0

x300D BRp   x3008

x300E AND   R0,R0,#0

x300F HALT  

X3010 x3100

R2 = 5?

HALT

No

Yes

R0 = 1, R1 = -5, R3 = 10

R4 = x3100, R2 = M[R4]

R4 = R4 + 1

R3 = R3-1

R2 = M[R4]
R3 = 0?

R0 = 0

Yes

No



6-37CSE 240

Debugging the Fives Program

 Running the program with a 5 in location x3108

results is R0 = 0, not R0 = 1.  What happened?

61x3109

5x3108

13x3107

6x3106

19x3105

-8x3104

0x3103

32x3102

7x3101

9x3100

ContentsAddress
Perhaps we didn’t look at all the data?

Put a breakpoint at x300D to see

how many times we branch back

0

1

1

1

R0

x310370

x310370x300D

x3102832x300D

x310197x300D

R4R3R2PC

Didn’t branch

back, even

though R3 > 0?

Branch uses condition code set by

loading R2 with M[R4], not by decrementing R3.

Swap x300B and x300C, or remove x300C and

branch back to x3007
6-38CSE 240

Example 4: Finding First 1 in a Word

 Goal: Return (in R1) the bit position of the first 1 in a

word; address of word is in location x3009 (just past the

end of the program);  if there are no ones, R1 should be

set to –1

R1 = 15

R2 = data

R2[15] = 1?

decrement R1

shift R2 left one bit

HALT

x3000 AND   R1,R1,#0

x3001 ADD   R1,R1,#15

x3002 LDI   R2,x3009

x3003 BRn   x3008

x3004 ADD   R1,R1,#-1

x3005 ADD   R2,R2,R2

x3006 BRn   x3008

x3007 BRnzp x3004

x3008 HALT  

x3009 x3100

R2[15] = 1?

Yes

Yes

No

No

6-39CSE 240

Shifting Left

 We often want to manipulate individual bits

• Example: is a number odd or even?

• Answer: R1 := R0 AND 0x1

! If R1 is 0 -> R0 was even

! If R1 is 1 -> R0 was odd

 LC-3 doesn’t give us an instruction to “shift” bits

• Most ISAs include “shift left” and “shift right”

• Example: If you shift 0010 left one place, 0100 results

 How do we shift left in LC-3?

• Multiple value by 2 (why?)

• Same as R1 := R0 + R0

• Example: 0010 + 0010 = 010

 Adding a value to itself shifts the bits left one place

6-40CSE 240

Debugging the First-One Program

 Program works most of the time, but if data is zero,

it never seems to HALT

10x3007

9x3007

8x3007

7x3007

6x3007

12x3007

5x3007

11x3007

13x3007

14x3007

R1PC

Breakpoint at backwards branch (x3007)

0x3007

-1x3007

-2x3007

-3x3007

-4x3007

2x3007

-5x3007

1x3007

3x3007

4x3007

R1PC

If no ones, then branch to HALT

never occurs!

This is called an “infinite loop.”

Must change algorithm to either

(a) check for special case (R2=0), or

(b) exit loop if R1 < 0.



6-41CSE 240

Debugging: Lessons Learned

Trace program to see what’s going on

• Breakpoints, single-stepping

When tracing, make sure to notice what’s really

happening, not what you think should happen

• In summing program, it would be easy to not notice

that address x3107 was loaded instead of x3100

Test your program using a variety of input data

• In Examples 3 and 4, the program works for many data sets

• Be sure to test extreme cases (all ones, no ones, ...)


