
Chapter 5
(and some of Ch. 4)

The Von Neumann Model & LC3

Based on slides © McGraw-Hill

Additional material © 2004/2005/2006 Lewis/Martin

5-2CSE 240

What Do We Know?

A LOT!!

• Data representation (binary, 2’s complement, floating point, …)

• Transistors (p-type, n-type, CMOS)

• Gates (complementary logic)

• Combinational logic circuits (PLAs), memory (latches, flip-flops, …)

• Sequential logic circuits (state machines)

• Simple “processors” (programmable traffic sign)

What’s next?

• Apply all this to traditional computing

• Software interface: instructions

• Hardware implementation: data path

5-3CSE 240

23 by 16-bit memory - Two Read Ports, One Write

D0

 16 16

D1

 16 16

D2

 16 16

D7

 16 16

 16
DR2

AR2

 3

WE

 16
DW

 D
e

c
o

d
e
r

AW

 16
DR1

AR1

 3

 3

. . .

.

5-4CSE 240

 Adder/Subtracter

CarryIn

S
 16A

 16

 16
B 16

Add/Sub
 1

16-bit Adder/Subtracter

5-5CSE 240

 16

AR2
 3

WE

 16DW

AW 16

AR1
 3

 3

23 x

16-bit

Memory

“Register

File”
S

Add/Sub

 1

Adder/

Subtractor

Simple Processing Machine

 n

n x

k-bit

Read-only

Memory

Nextnz

Nextp

Pos?
0

1

 n

 n

Addr

PC
 n

5-6CSE 240

Can we make it multiply?

Goal: A * B into C

Initial register values

• R2 is “A”, R3 is “B”, R4 will be “C”

• R0 is zero, R1 is one

End program with infinite loop

What should the control memory contents be?

#3

#2

#1

#0

NextpNextnzAWWEAR2AR1Add/

Sub

While (B > 0)

 C = C + A

 B = B - 1

5-7CSE 240

Can we make it multiply?

Goal: A * B into C

Initial register values

• R2 is “A”, R3 is “B”, R4 will be “C”

• R0 is zero, R1 is one

End program with infinite loop

What should the control memory contents be?

#3#3X0XXX#3

#0#0R31R1R31#2

#2#2R41R2R40#1

#1#3X0R0R30#0

NextpNextnzAWWEAR2AR1Add/

Sub

While (B > 0)

 C = C + A

 B = B - 1

5-8CSE 240

Multiply Execution Trace

#3#0#2#1#0#2#1#0PC

7

0

6

---R7

---R6

---R5

1050R4 (“C”)

12R3 (“B”)

5R2 (“A”)

1R1

0R0

543210Cycle

5-9CSE 240

Can we make it divide?

3

2

1

0

NextpNextnzAWWEAR2AR1Add/

Sub

Goal: A / B into C

Initial register values

• R2 is “A”, R3 is “B”, R4 will be “C”

• R0 is zero, R1 is one

End program with infinite loop

What should the control memory contents be?

5-10CSE 240

Can we make it divide?

#3#3X0XXX3

#0#0R41R1R402

#2#3X0R1R201

#1#1R21R3R210

NextpNextnzAWWEAR2AR1Add/

Sub

Goal: A / B into C

Initial register values

• R2 is “A”, R3 is “B”, R4 will be “C”

• R0 is zero, R1 is one

End program with infinite loop

What should the control memory contents be?

A = A - B

If (A+1 > 0)

 C = C + 1

 goto start

A >= 0

5-11CSE 240

Divide Execution Trace

#3

8

#1#0#2#1#0#2#1#0PC

-5

7

2

6

---R7

---R6

---R5

10R4 (“C”)

5R3 (“B”)

0510R2 (“A”)

1R1

0R0

543210Cycle

5-12CSE 240

How might we improve our processing machine?
More operations & conditions

• And, Not?

• Control next operation via any of negative/positive/zero combinations

More data storage?

• Add a separate data memory structure

• Register file used as “temporary” storage

• Add new logic elements to read and write this memory

How would we sum all the numbers in memory?

• Need “addressing modes” to allow this

• E.g., Read from the location in memory specified by R1

Smaller encoding

• Use fewer bits for “Next” (too large when control memory is big)

• Also want more “dynamic” control

!E.g., next operation is at the location specified by R1’s value

5-13CSE 240

 16

AR2
 3

WE

 16DW

AW 16

AR1
 3

 3

23 x

16-bit

Memory

“Register

File”
S

Add/Sub

 1

Adder/

Subtractor

Simple Processing Machine -- Modified

 n

n x

k-bit

Read-only

Memory

NextPC N/Z/P
0

1

 n

Addr

PC
 n

+1

 3

nzp
 n

5-14CSE 240

Multiply for Modified Machine

Goal: A * B into C

Initial register values

• R2 is “A”, R3 is “B”, R4 will be “C”

• R0 is zero, R1 is one

End program with infinite loop

What should the control memory contents be?

#3111X0XXX#3

#0111R31R1R31#2

X000R41R2R40#1

#3110X0R0R30#0

NextN/Z/PAWWEAR2AR1Add/

Sub

While (B > 0)

 C = C + A

 B = B - 1

5-15CSE 240

Divide for Modified Machine

#3111X0XXX3

#0111R41R1R412

#3100X0R1R201

X000R21R3R210

NextN/Z/PAWWEAR2AR1Add/

Sub

Goal: A / B into C

Initial register values

• R2 is “A”, R3 is “B”, R4 will be “C”

• R0 is zero, R1 is one

End program with infinite loop

What should the control memory contents be?

A = A - B

If (A >= 0)

 C = C + 1

 goto start

5-16CSE 240

How might we improve our processing machine?
More operations & conditions

• And, Not?

• Control next operation via any of negative/positive/zero combinations

More data storage?

• Add a separate data memory structure

• Register file used as “temporary” storage

• Add new logic elements to read and write this memory

How would we sum all the numbers in memory?

• Need “addressing modes” to allow this

• E.g., Read from the location in memory specified by R1

Smaller encoding

• Use fewer bits for “Next” (too large when control memory is big)

• Also want more “dynamic” control

! E.g., next operation is at the location specified by R1’s value

5-17CSE 240

Warning!

This is a bottom-up course

• No secrets, no magic

e.g., gates build on transistors, logic circuits from gates, etc.

But… some of this lecture is top-down

• You’ll have to trust me for a couple slides

• Start with very abstract discussion of computer architecture

• Meet with Chapter 3 material soon

5-18CSE 240

A Little Context

1943: ENIAC

• First general electronic computer (Presper Eckert and John Mauchly)

(Or was it Atananasoff in 1939? Or Konrad Zuse in 1941?)

• 18,000 tubes (had to replace 50 a day!)

• Memory: 20 10-digit numbers (decimal)

• Hard-wired program (via dials, switches,

and cables)

• Completed in 1946

1944: Beginnings of EDVAC

• Among other improvements, includes

program stored in memory

• Gave birth to UNIVAC-I (1951)

• Completed in 1952

5-19CSE 240

Context Continued: Stored Program Computer
1945: John von Neumann

• First Draft of a Report on EDVAC

See John von Neumann and the Origins of Modern Computing by William Aspray

Von Neumann Machine (or Model)

• Memory, containing instructions and data

• Control unit, for interpreting instructions

• Processing unit, for performing arithmetic and logical operations

• Input/Output units, for interacting with real world

5-20CSE 240

Remember Finite State Machines?

State Machine

Combinational

Logic Circuit

Storage

Elements

Inputs Outputs

State

N
e
x
t s

ta
te

C
u
rr

e
n
t
s
ta

te

PC Control signals

5-21CSE 240

Von Neumann Model

MEMORY

 INPUT

Keyboard

Mouse
Scanner

Disk

 OUTPUT

Monitor
Printer
LED
Disk

 PROCESSING UNIT

 ALU Regs

 CONTROL UNIT

PC

5-22CSE 240

Processing Unit
Functional Units

• ALU = Arithmetic and Logic Unit

• Could have many functional units

(some special-purpose,

e.g., multiply, square root, …)

• LC-3: ADD, AND, NOT

Registers

• Small, temporary storage

• Operands and results of functional units

• LC-3: eight register (R0, …, R7)

Word Size

• Number of bits normally processed by ALU in one instruction

• Also width of registers

• LC-3: 16 bits

 PROCESSING UNIT

 ALU Regs

5-23CSE 240

Memory

k x m array of stored bits (k is usually 2n)

Address

• Unique (n-bit) identifier of location

Contents

• m-bit value stored in location

Basic Operations

• Load: read a value from a memory location

• Store: write a value to a memory location

•
•
•

0000
0001
0010
0011
0100
0101
0110

1101
1110
1111

00101101

10100010

5-24CSE 240

Input and Output
Devices get data into and out of computer

Each device has own interface

• LC-3 uses “memory-mapped registers”

!Access with normal loads and stores

• LC-3 supports keyboard (input) and display (output)

!Keyboard: data register (KBDR) and status register (KBSR)

!Text display: data register (DDR) and status register (DSR)

• Graphical display: later…

Some devices provide both input and output

• Disk, network

Software that controls device access

• Driver

 Input

Keyboard
Mouse

Scanner
Disk

 Output

Monitor
Printer
LED
Disk

5-25CSE 240

Control Unit
Orchestrates execution of the program

Program Counter (PC)

• Contains the address of the next instruction to execute

Control Unit

• Reads an instruction from memory (at PC)

• Interprets the instruction

• Generates signals that tell the other components what to do

• Instruction may take many machine cycles to complete

 CONTROL UNIT

PC

5-26CSE 240

Instructions

Fundamental unit of work

Constituents

• Opcode: operation to be performed

• Operands: data/locations to be used for operation

Encoded as a sequence of bits (just like data!)

• Sometimes have a fixed length (e.g., 16 or 32 bits)

• Control unit interprets instruction

!Generates control signals to carry out operation

• Atomic: operation is either executed completely, or not at all

Instruction Set Architecture (ISA)

• Computer’s instructions, their formats, their behaviors

5-27CSE 240

Instruction Set Architecture

ISA = Programmer-visible components & operations
• Memory organization

! Address space -- how may locations can be addressed?

! Addressibility -- how many bits per location?

• Register set

! How many? What size? How are they used?

• Instruction set

! Opcodes

! Data types

! Addressing modes

All information needed to write/gen machine language program

5-28CSE 240

LC-3: Memory and Registers

Memory
• Address space: 216 locations (16-bit addresses)

• Addressibility: 16 bits

Registers

• Temporary storage, accessed in a single machine cycle

!Memory access generally takes longer

• Eight general-purpose registers: R0 - R7

!Each 16 bits wide

!How many bits to uniquely identify a register?

• Other registers

!Not directly addressable, but used by (and affected by)
instructions

!PC (program counter), condition codes, etc.

5-29CSE 240

LC-3: Instructions

Opcodes

• 16 opcodes

• Operate instructions: ADD, AND, NOT, (MUL)

• Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI

• Control instructions: BR, JSR, JSRR, RET, RTI, TRAP

• Some opcodes set/clear condition codes, based on result

!N = negative (<0), Z = zero (=0), P = positive (> 0)

Data Types

• 16-bit 2’s complement integer

Addressing Modes

• How is the location of an operand specified?

• Non-memory addresses: register, immediate (literal)

• Memory addresses: base+offset, PC-relative, indirect

5-30CSE 240

LC-3 Instruction

Summary
(inside back cover)

5-31CSE 240

Example: LC-3 ADD Instruction

LC-3 has 16-bit instructions

• Each instruction has a four-bit opcode, bits [15:12]

LC-3 has eight registers (R0-R7) for temporary storage

• Sources and destination of ADD are registers

“Add the contents of R2 to the contents of R6,

and store the result in R6.”

5-32CSE 240

Example: LC-3 LDR Instruction

Reads data from memory

Base + offset addressing mode

• Add offset to base register to produce memory address

• Load from memory address into destination register

“Add the value 6 to the contents of R3 to form a

memory address. Load the contents of memory

at that address and place the resulting data in R2.”

5-33CSE 240

Changing the Sequence of Instructions

Recall FETCH

• Increment PC by 1

What if we don’t want linear execution?

• E.g., loop, if-then, function call

Need instructions that change PC

• Jumps are unconditional

!Always change the PC

• Branches are conditional

!Change the PC only if some condition is true

e.g., the contents of a register is zero

5-34CSE 240

Example: LC-3 JMP Instruction

Set the PC to the value of a register

• Fetch next instruction from this address

“Load the contents of register R3 into the PC.”

0 0 0 0 0 0

0 0 0 0 0 0

5-35CSE 240

LC-3: Operate Instructions

Only three operations

• ADD, AND, NOT, (MUL)

Source and destination operands are registers

• Do not reference memory

• ADD and AND can use “immediate” mode,

(i.e., one operand is hard-wired into instruction)

Will show abstracted datapath with each instruction

• Illustrate when and where data moves to accomplish desired op.

5-36CSE 240

NOT (Register)

Note: DR and SR could

be the same register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 DR SR 1 1 1 1 1 1NOT

Register File

R7

R6

R5

R4

R3

R2

R1

R0

1010111100001111

0101000011110000

ALU

AB

1616

NOT

ADD R3 R5

1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1Insn

16
Convention

source

destination "

#

5-37CSE 240

ADD (Register)
this zero means “register mode”

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 DR SR1 0 0 0 SR2ADD

Register File

R7

R6

R5

R4

R3

R2

R1

R0

0000000000001001

0000000000001000

1111111111111111

ALU

AB

1616

ADD

" "

#

ADD R3 R5 R0

0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0

16

Insn

5-38CSE 240

ADD (Immediate)
this one means “immediate mode”

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 DR SR1 1 imm5ADD

Register File

R7

R6

R5

R4

R3

R2

R1

R0

0000000000001001

0000000000001000

ALU

AB

16
16

ADD"

"

#

ADD R3 R5 -1

0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1

SEXT

5

16

1111111111111111

1 0
16

16

SEXT = Sign Extension

Insn

5-39CSE 240

Using Operate Instructions: Subtraction

How do we subtract two numbers?

Goal
• R1 <- R2 - R3 (no such instruction in LC-3!)

Idea (Use 2’s complement)

1. R1 <- NOT R3

2. R1 <- R1 + 1

3. R1 <- R2 + R1

If 2nd operand is known and small, easy
• R1 <- R2 + -3

5-40CSE 240

Using Operate Instructions: OR

How do we OR two numbers?

Goal

• R1 <- R2 OR R3 (no such instruction in LC-3!)

Idea (Use DeMorgan’s Law)

• A OR B = NOT(NOT(A) AND NOT(B))

1. R4 <- NOT R2

2. R5 <- NOT R3

3. R1 <- R4 AND R5

4. R5 <- NOT R1

5-41CSE 240

Using Operate Instructions: Copying

How do we copy a number from register to register?

Goal

• R1 <- R2 (no such instruction in LC-3!)

Idea (Use immediate)

• R1 <- R2 + 0

Could we use AND?

5-42CSE 240

Using Operate Instructions: Clearing

How do we set a register to 0?

Goal

• R1 <- 0 (no such instruction in LC-3!)

Idea

• R1 <- R1 AND 0

5-43CSE 240

Data Movement Instructions

Load: read data from memory to register

• LD: PC-relative mode

• LDR: base+offset mode

• LDI: indirect mode

Store: write data from register to memory

• ST: PC-relative mode

• STR: base+offset mode

• STI: indirect mode

Load effective address

• Compute address, save in register, do not access memory

• LEA: immediate mode

5-44CSE 240

PC-Relative Addressing Mode

Want to specify address directly in the instruction
• But an address is 16 bits, and so is an instruction!

• After subtracting 4 bits for opcode and 3 bits for register, we
have 9 bits available for address

Observation
• Needed data often near currently executing instruction

Solution
• Add 9 bits in instruction (sign extended) to PC (of nextnext

instructioninstruction) to form address

Example: LD: R1 <- Memory[PC+1 + SEXT(Insn[8:0])]

5-45CSE 240

LD (PC-Relative)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 DR PCoffset9LD

Register File

R7

R6

R5

R4

R3

R2

R1

R0

0000000000001001

ALU

AB
ADD

$

"

#

LD R3 -81

0 0 0 1 0 1 1 1 1 0 1 0 1 1 1 1

SEXT

9

16

1111111110101111

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1PC+1

16

MAR MEMORY MDR

Rd
16

16

Insn

MAR = Memory Address Register MDR = Memory Data Register

5-46CSE 240

ST (PC-Relative)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 SR PCoffset9ST

Register File

R7

R6

R5

R4

R3

R2

R1

R0

0000000000001001

ALU

AB
ADD

$

"

#

ST R3 -81

0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1

SEXT

9

16

1111111110101111

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1PC+1

16

MAR MEMORY MDR

Wr
16

16

Insn

5-47CSE 240

Base + Offset Addressing Mode

Problem
• With PC-relative mode, can only address words “near” instruction

• What about the rest of memory?

Solution
• Use a register to generate a full 16-bit address

Idea
• 4 bits for opcode, 3 for src/dest register, 3 bits for base register

• Remaining 6 bits are used as a signed offset

• Offset is sign-extended before adding to base register

• I.e., Instead of adding offset to PC, add it to base register

Example: LDR: R1 <- Memory[R2+SEXT(Insn[5:0])]

5-48CSE 240

LDR (Base+Offset)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 DR BaseR offset6LDR

Register File

R7

R6

R5

R4

R3

R2

R1

R0

000000001000000

0000000000001001

ALU

AB
ADD

$

"

#

LDR R3 R5 -17

0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 1

SEXT

6

16

1111111111101111

MAR MEMORY MDR

Rd
16

16

16

Insn

5-49CSE 240

STR (Base+Offset)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 SR BaseR offset6STR

Register File

R7

R6

R5

R4

R3

R2

R1

R0

000000001000000

0000000000001001

ALU

AB
ADD

$

"

#

STR R3 R5 -17

0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1

SEXT

6

16

1111111111101111

MAR MEMORY MDR

Wr
16

16

16

Insn

5-50CSE 240

Indirect Addressing Mode

Another way to produce full 16-bit address
• Read address from memory, then load/store to that address

Steps
• Address is generated from PC and PCoffset

! just like PC-relative addressing)

• Then content of that address is used as address for load/store

Example: LDI: R1 <- Memory[Memory[PC+SEXT(Insn([8:0])]

Advantage
• Doesn't consume a register for base address

• Addresses are often stored in memory (i.e., useful)

Disadvantage
• Extra memory operation (and no offset)

5-51CSE 240

LDI (Indirect)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 DR PCoffset9LDI

Register File

R7

R6

R5

R4

R3

R2

R1

R0

0000000000001001

ALU

AB
ADD $

"

#

LDI R3 -17

1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1

SEXT

9

16

1111111101101111

MAR MEMORY MDR

Rd
16

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1PC+1

16

16

%

&

16

Insn

5-52CSE 240

STI (Indirect)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 SR PCoffset9STI

Register File

R7

R6

R5

R4

R3

R2

R1

R0

0000000000001001

ALU

AB
ADD $

"

(Rd)

STI R3 -17

1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1

SEXT

9

16

1111111101101111

MAR MEMORY MDR

Rd/Wr
16

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1PC+1

16

16

& (Wr)

%

16

Insn

5-53CSE 240

Load Effective Address

Problem

• How can we compute address without also LD/ST-ing to it?

Solution

• Load Effective Address (LEA) instruction

Idea

• LEA computes address just like PC-relative LD/ST

• Store address in destination register (not data at that address)

• Does not access memory

• Example: LEA: R1 <- PC + SEXT(Insn[8:0])]

5-54CSE 240

LEA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 DR PCoffset9LEA

Register File

R7

R6

R5

R4

R3

R2

R1

R0

0011111110001000

ALU

AB
ADD

"

LEA R3 -81

1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1

SEXT

9

16

1111111110101111

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1PC+1

16 16

Insn

5-55CSE 240

Examples

1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1

0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0

0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0

0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1

0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0

1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1

Instruction

R3 ! Mem[Mem[x30F4]]

(R3 ! Mem[x3102])

(R3 ! 5)

Mem[R1+14] ! R2

(Mem[x3102] ! 5)

R2 ! R2 + 5

R2 ! 0

Mem[PC-5(x30F4)] ! R2

R2 ! R1 + 14 (x3102)

R1 ! PC-3 (x30F4)

Comments

x30FC

x30FB

x30FA

x30F9

x30F8

x30F7

x30F6

Address

opcode

STR0111

LDI1010

LEA1110

AND0101

ST0011

ADD0001

Machine Language

5-56CSE 240

Control Instructions

Alter the sequence of instructions

• Changing the Program Counter (PC)

Conditional Branch

• Branch taken if a specified condition is true

!New PC computed relative to current PC

• Otherwise, branch not taken

!PC is unchanged (I.e., points to next sequential instruction)

Unconditional Branch (or Jump)

• Always changes the PC

• Target address computed PC-relative or Base+Offset

Trap

• Changes PC to start of OS “service routine”

• When routine is done, execution resumes after TRAP instruction

5-57CSE 240

Condition Codes

LC-3 has three 1-bit condition code registers

N -- negative

Z -- zero

P -- positive (greater than zero)

Set/cleared by instructions that store value to register

• e.g., ADD, AND, NOT, LD, LDR, LDI, LEA (but not ST)

Exactly one will be set at all times

• Based on the last instruction that altered a register

5-58CSE 240

Branch Instruction

Branch specifies one or more condition codes

If the specified condition code set, the branch is taken

• PC is set to the address specified in the instruction

• Like PC-relative mode addressing, target address is specified as

offset from next PC (PC+1 + SEXT(Insn[8:0]))

• Note: Target must be “near” branch instruction

If branch not taken, next instruction (PC+1) is executed.

5-59CSE 240

BR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 N Z P PCoffset9BR

ALU

AB
ADD

"

BR N Z P -1

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

SEXT

9

16

1111111111111111

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1PC+1

16

1 0

16

0

N

1

Z

0

P

16

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0

16

Questions

• Problems w/ this

example?

• What if NZP all 0?

• What if NZP all 1?

Insn

5-60CSE 240

Example: Using Branch Instructions

Goal

• Compute sum of 12

integers

Input

• Numbers start at x3100

Output

• Register R3

Program

• Starts at x3000

R1 ! x3100

R3 ! 0

R2 ! 12

R2=0?

R4 ! Mem[R1]

R3 ! R3+R4

R1 ! R1+1

R2 ! R2-1

NO

YES

5-61CSE 240

Example: Summing Program

R2 ! 00 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0x3002

R1 ! R1+10 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1x3007

R2 ! R2-10 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1X3008

0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0

0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0

0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1

0 0 0 1 0 1 0 0 1 0 1 0 1 1 0 0

0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0

1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1

Instruction

BRnzp x3004

R3 ! R3+R4

R4 ! Mem[R1]

BRz x300A

R2 ! 12

R3 ! 0

R1 ! x3001+xFF (x3100)

Comments

x3009

x3006

x3005

x3004

x3003

x3001

x3000

Address

LDR0110

BR0000

LEA1110

AND0101

ADD0001

5-62CSE 240

Jump Instructions

Jump is an unconditional branch (i.e., always taken)

Destination

• PC set to value of base register encoded in instruction

• Allows any branch target to be specified

• Pros/Cons versus BR?

5-63CSE 240

JMP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 BaseR 0 0 0 0 0 0JMP

Register File

R7

R6

R5

R4

R3

R2

R1

R0

000001000011000

JMP R5

1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0IR

16

0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1PC

0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0

1 0
16

"
16

5-64CSE 240

TRAP

Calls operating system “service routine”

• Identified by unsigned 8-bit trap vector -- Zero Extension (ZEXT)

• Execution resumes after OS code executes (more later)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 trapvect8TRAP

halt the program (HALT)x25

output a character to the monitorx21

input a character from the keyboardx23

routinevector

5-65CSE 240

Addressing Mode Summary
Register

• R1 <- R1 + R2

• R1 <- NOT R2

Immediate

• R1 <- R1 + -2

Base+Offset

• R1 <- Mem[R2+4]

• Mem[R2+4] <- R1

PC-Relative

• R1 <- Mem[PC+6]

• Mem[PC+6] <- R1

Indirect

• R1 <- Mem[Mem[R2+4]]

• Mem[Mem[R2+4]] <- R1

5-66CSE 240

 16

AR2
 3

WE

 16DW

AW 16

AR1
 3

 3

23 x

16-bit

Memory

“Register

File”
S

Add/Sub

 1

Adder/

Subtractor

Remember this?

 n

n x

k-bit

Read-only

Memory

NextPC N/Z/P
0

1

 n

Addr

PC
 n

+1

 3

nzp
 n

5-67CSE 240

An (incomplete) LC-3 Implementation

Execute one instruction per cycle

• Much simpler than implementation in book

• All phases happen in one cycle

!"#$ % & ' ()*

5-68CSE 240

ADD
!"#$ % & ' ()*

101000001I[11:9]I[2:0]I[8:6]00001ADD

*)('&%$#"!I[5]I[15:12]Instr

ControlOpcode

5-69CSE 240

LDR
!"#$ % & ' ()*

10000021I[11:9]-I[8:6]-0110LDR

*)('&%$#"!I[5]I[15:12]Instr

ControlOpcode

5-70CSE 240

JMP
!"#$ % & ' ()*

0x100020--I[8:6]-1100JMP

*)('&%$#"!I[5]I[15:12]Instr

ControlOpcode

5-71CSE 240

An (incomplete) LC-3 Implementation
!"#$ % & ' ()*

AND? NOT? What changes would you make?

(LDI/STI? JSR? RTI?)

5-72CSE 240

Another Example

Count the occurrences of a character in a file
• Program begins at location x3000

• Read character from keyboard

• Load each character from a “file”

!File is a sequence of memory locations

!Starting address of file is stored in the memory location
immediately after the program

• If file character equals input character, increment counter

• End of file is indicated by a special ASCII value: EOT (x04)

• At the end, print the number of characters and halt
(assume there will be fewer than 10 occurrences of the character)

A special character used to indicate the end of a sequence
is often called a sentinel

• Useful when you don’t know ahead of time how many times
to execute a loop

5-73CSE 240

Flow Chart

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char

from keybd
(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to

ASCII character
(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

Input: Mem[x3012] (address of “file”)

Output: Print count to display

5-74CSE 240

Program R2 ! 0 (Count)

R3 ! Mem[x3012] (Ptr)

Input to R0 (TRAP x23)

R1 ! Mem[R3]

R4 ! R1 – 4 (EOT)

BRz x????

R1 ! NOT R1

R1 ! R1 + 1

R1 ! R1 + R0

BRnp x????

R2 ! R2 + 1

R3 ! R3 + 1

R1 ! Mem[R3]

BRnzp x????

R0 ! Mem[x3013]

R0 ! R0 + R2

Print R0 (TRAP x21)

HALT (TRAP x25)

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char

from keybd
(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to

ASCII character
(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

5-75CSE 240

Program (1 of 2)

Input to R0 (TRAP x23)1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1x3002

R1 ! R1 + 10 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1x3007

R1 ! R1 + R00 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0X3008

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0

0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0

0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0

0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0

Instruction

BRnp x300B

R1 ! NOT R1

BRz x300E

R4 ! R1 – 4 (EOT)

R1 ! M[R3]

R3 ! M[x3012] (ptr)

R2 ! 0 (counter)

Comments

x3009

x3006

x3005

x3004

x3003

x3001

x3000

Address

LD0010

BR0000

TRAP1111

AND0101

ADD0001

5-76CSE 240

Program (2 of 2)

R1 ! M[R3]0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0x300C

HALT (TRAP x25)1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1x3011

Starting Address of FileX3012

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0

0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1

0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1

Instruction

ASCII x30 (‘0’)

Print R0 (TRAP x21)

R0 ! R0 + R2

R0 ! M[x3013]

BRnzp x3004

R3 ! R3 + 1

R2 ! R2 + 1

Comments

x3013

x3010

x300F

x300E

x300D

x300B

x300A

Address

LD0010

BR0000

TRAP1111

AND0101

ADD0001

5-77CSE 240

Aside: Machine Language Programming Is Hard!

(Altair 8800, 1975)

5-78CSE 240

Summary

Many instructions
• ISA: Programming-visible components and operations

• Behavior determined by opcodes and operands

!Operate, Data, Control

• Control unit “tells” rest of system what to do (based on opcode)

• Some operations must be synthesized from given operations
(e.g., subtraction, logical or, etc.)

Concepts
• Addressing modes

• Condition codes and branching/jumping

Bit-level programming bites!

