Chapter 3
Digital Logic
Structures

Based on slides © McGraw-Hill
Additional material © 2004/2005/2006 Lewis/Martin

Transistor: Building Block of Computers

Microprocessors contain millions of transistors
* Intel Pentium 4 (2000): 48 million
+ IBM PowerPC 750FX (2002): 38 million
* IBM PowerPC G5 (2003): 58 million
* Intel Core Duo 2 (2006): 291 million (192+ million in cache alone)

Logically, each transistor acts as a switch
Combined to implement logic functions
+ AND, OR, NOT
Combined to build higher-level structures
* Adder, multiplexer, decoder, register, ...

Combined to build processor
. LC-3

CSE 240 3-2

How do we represent data in a computer?

At the lowest level, a computer has electronic “plumbing”
* Operates by controlling the flow of electrons

Easy to recognize two conditions:
1. Presence of a voltage — we’ll call this state “1”
2. Absence of a voltage — we’ll call this state “0”

Digital Values » “0" llegal B L
L 1 1 . 1
Analog Values » (I) Of5 21.4 219 Volts

Computer use transistors as switches to manipulate bits

» Before transistors: tubes, electro-mechanical relays (pre 1950s)

» Mechanical adders (punch cards, gears) as far back as mid-1600s
Before describing transistors, we present an analogy...

CSE 240 3-4

A Transistor Analogy: Computing with Air

Use air pressure to encode values
» High pressure represents a “1” (blow)
* Low pressure represents a “0” (suck)

Valve can allow or disallow the flow of air
* Two types of valves

N-Valve P-Valve

(Off) Low (On)

High _ (On) High_; MR (Off)

CSE 240

Pressure Inverter (Low to High)

High

P-Valve

—_* High

N-Valve

CSE 240

Pressure Inverter

P-Valve
In Out
N-Valve
de
3-5 CSE 240 3-6
Pressure Inverter
High
P-Valve
N-Valve

de

3-7 CSE 240 3-8

Pressure Inverter (High to Low)

High

i

P-Valve
High «—— Low

N-Valve

CSE 240

Transistors as Switches

Two types N-Valve

N-MOSFET

* N-type
::H: = L
Properties

+ Solid state (no moving parts) P-Valve
* Reliable (low failure rate)

* Small (90nm channel length)

* Fast (<0.1ns switch latency)

CSE 240

P-MOSFET

= I

Analogy Explained

Pressure differential — electrical potential (voltage)
» Air molecules — electrons
* High pressure — high voltage
* Low pressure — low voltage

Air flow — electrical current
* Pipes — wires
+ Air only flows from high to low pressure
» Electrons only flow from high to low voltage
* Flow only occurs when changing from 1 to 0 or 0 to 1

Valve — transistor
* The transistor: one of the century’s most important inventions

CSE 240 3-10

MOS + FET l /

gate
insulator

source drain

channel
(cross-section view of a MOSFET)
MOS: three materials needed to make a transistor

« Metal (Al, W, Cu): conductor

+ Oxide (SiO,): insulator

» Semiconductor (doped Si): conducts under certain conditions
FET: field effect (the mechanism) transistor

* Voltage on gate: current flows source to drain (transistor on)

* No voltage on gate: no current (transistor off)
Recall, two types of MOSFET: n and p

CSE 240 3-12

N-type MOS Transistor

* When Gate has positive voltage,
short circuit between #1 and #2
(switch closed)

* When Gate has zero voltage,
open circuit between #1 and #2
(switch open)

Gate = 1

#1
#1

Gate —|

Terminal #2 connected

to GROUND (0V). GND
CSE 240
Inverter (NOT Gate)
Power + " P-type
I: In=0 Out=1
;YN
In +— Out - e
Truth table
< "
Ground i ptype
In_| Out In=1 Out=0
0 1 1
1 0 \: ;’N—type

CSE 240

#2 Gate =0 4

P-type MOS Transistor

P-type is complementary to n-type
* When Gate has positive voltage,

open circuit between #1 and #2 #1

(switch open) 1
* When Gate has zero voltage,

short circuit between #1 and #2

(switch closed)

Terminal #1 connected
to POWER
(in this example, +2.9V)

3-13 CSE 240 3-14

CMOS Circuit

Inverter is an example of Complementary MOS (CMOS)
Uses both n-type and p-type MOS transistors
* p-type
» Attached to POWER (high voltage)
» Pulls output voltage UP when input is zero
* n-type
» Attached to GROUND (low voltage)
» Pulls output voltage DOWN when input is one

For all inputs, make sure that output is either connected to GROUND

or to POWER, but not both! (why?)

CSE 240 3-16

NAND Gate (NOT-AND)

Power
AT
B— C
4|
- —
Ground
CSE 240

A=0

B=1—

>
vy)

- = O O

Note: Parallel structure on top, serial on bottom.

NOR Gate (NOT-OR)

Power -

—d[

S

CSE 240

Ground

A=0-

Note: Serial structure on top, parallel on bottom.

- O = O

B=1 —Tj 3

(@)

o O O =

© = = -

3-19

AND Gate
Power
A—14
B—‘
—
—
Ground

CSE 240
OR Gate

A1—dL
B - B

Power

CSE 240

?i

Ground [A4d inverter to NOR.

a—l

h
L

A
0
T 0
1
L :
—C
L
<
H—J
| Add inverter to NAND.
A
0
—_ 0
1
1

B| ¢
o o
1] o
o| o
1] 1
3-18
B| ¢
o o
1] 1
0| 1
1] 1

3-20

Basic Gates

From Now On... Gates
» Covered transistors mostly so that you know they exist
* Note: “Logic Gate” not related to “Gate” of transistors

Will study implementation in terms of gates
 Circuits that implement Boolean functions

NOT/INV NAND AND

» > D D D

More complicated gates from transistors possible
* XOR, Multiple-input AND-OR-Invert (AOI) gates

CSE 240 3-21

Visual Shorthand for Multi-bit Gates

Use a cross-hatch mark to group wires
+ Example: calculate the AND of a pair of 4-bit numbers
* A, is “high-order” or “most-significant” bit
« If“A” is 1000, then A;=1,A,=0,A,=0,A,=0

A —td

Bz] >—— Out,

ATl H-out, a4 4

LT oD
AT —Out 4

B, + 2

As T L Out,

B; H)

CSE 240 3-23

More than 2 Inputs?

AND/OR can take any number of inputs
* AND =1 if all inputs are 1
* OR =1 ifany inputis 1
+ Similar for NAND/NOR
Implementation
* Multiple two-input gates or single CMOS circuit

D » D
- 5 C

CSE 240 —] 3-22

Shorthand for Inverting Signals

Invert a signal by adding either
« A O before/after a gate
* A “bar” over letter

Q@—E> ﬁD— E>KANDB

S:@_ E> m E> AANDB

D B Do B o

CSE 240 3-24

Logical Completeness
AND, OR, NOT can implement ANY truth table

A B G,|S ABC,
0 0 O0f{O
1. AND combinations
b—]
: 0 0 111 :“ > ﬁ:)_ that yield a "1" in the
0 1 0|1 truth table
01 110 \
[1 0 of1] s
10 110 \A —
1 1 olo 2. OR the results
| 11 | —\ of the AND gates
—> -)
CSE 240 3-25

DeMorgan's Law
Converting AND to OR (with some help from NOT)

Consider the following gate: To convert AND to OR

_ (or vice versa),
AANDB = AORB

DD
B L

A B[A B[A

0 01 1 1 0

0 1|1 0 0 1 TAANDB = AORB
1. 0/0 1 0 1 j:)o-<j>®_
1 1[0 0 0 1

CSE 240 Why might this be useful? 3.97

invert inputs and output.

Logical Completeness via PLAs

Any truth table as a Programmable Logic Array (PLA)
» Traditionally a grid of AND and OR gates
» Configurable by removing wires

Single-output custom PLA (as on previous slide):
* One AND gate per row with “1” in output in truth table
* Maximum number of AND gates: 2" for n inputs
* One OR gate

Multiple-output custom PLA:
* Build multiple single-output PLAs
» Share AND gates “in common”
* One OR gate per output column in truth table

CSE 240 3-26

Summary

MOS transistors: switches to implement logic functions
* n-type: connect to GROUND, turn on (with 1) to pull down to 0
* p-type: connect to POWER, turn on (with 0) to pull up to 1

Basic gates: NOT, NOR, NAND

* Logic functions are usually expressed with AND, OR, and NOT
» Universal: any truth table to simple gates (via a PLA)

DeMorgan's Law
» Convert AND to OR (and vice versa) by inverting inputs/output

Ok, we now have simple logic gates
* Next up: how do we combine them into something useful?

CSE 240 3-28

Chapter 3
Digital Logic
Structures

Based on slides © McGraw-Hill
Additional material © 2004/2005/2006 Lewis/Martin

Incrementer
. 16 16
Let’s create a incrementer Al +1 P»S
* Input: A (as a 16-bit 2’s complement integer)

* Output: A+1 (also as a 16-bit 2’s complement integer)

Approach #1 (impractical):
* Use PLA-like techniques to implement circuit
* Problem: 26 or 65536 rows, 16 output columns
* In theory, possible; in practice, intractable

Approach#2 (pragmatic):

* Create a 1-bit incrementer circuit
* Replicate it 16 times

CSE 240

CSE 240

3-31

AND, OR, NOT Gates: What Good Are They?

Last time:
* Transistors and gates
» Can implement any logical function using gates (using PLAs)

Today:

+ We’ll use gates to create some building blocks of a processor
* One goal: automate binary arithmetic from Chapter 2
+ Continuing on our bottom-up journey

Next time:

» Storing bits (memory)
 Circuits with “state”

3-30

One-bit Incrementer

Implement a single-column of an incrementer

Carryin,
00001 1 ;
+ A +1 F»S,
000011
CarryOut,
An Cin
An Cin Sn Cout
0 olo VV
0 11110 —S
_
1 _o]1]70
|1 1| 0 I 1 I
\> ;—i) _Cout
CSE 240 3-32

Aside: XOR
An Cin Sn Cout
0 0 j§o 0
0 1 1 0
1 o1 0 I::>
1 1 §0 1
A C

CSE 240

N-bit Incrementer, continued

|J>

O

D

O

How do we handle the least-significant bit? ,
1

000010

000011

000011
No longer needed;
implicitly encoded
CSE 240 with C;,

1
\

\

1
\

arryOut,

\

1
\

arryOut,

\

CarryOut,

N-bit Incrementer
Chain N 1-bit incrementers together

Carryln '
/ 1 Ol 1
AO “ » +1 \‘ :SO
Carryln, CarryOut,
1 1
A ‘\ > +1 ‘\ >S5,
4-bit CarryInQ‘ CarryOut,
example 1 1
Ar A +1 >S5,
Carryln3‘ CarryQOut,
1 1
\ As = +1 Y »S;
CarryOuty
CSE 240
Adder

...but how do we

correctly handle the

least-significant bit?

Conceptually similar to an incrementer

» Build a one-bit slice, replicate n times

CSE 240

3-34
Carryin,
A -—1\—.> ‘ 1
1 S
5. Add S,
CarryOut,
3-36

One-bit Adder Carryln,

1
Add two bits and carry-in A v 1
produce one-bit sum and carry-out 5 1, Add S,
CarryOut,
A BC,|Ssc,.
A B
00o0[0 0
00 1[1 0 " , =
01 0/[1 0) ["
01 1|0 1
1001 0
10 1[0 1
11 00 1
11 1)1 1
B S
CSE 240 3-37

Aside: Efficient Adders

Full disclosure:
* Our adder: Ripple-carry adder
* No one (sane) actually uses ripple-carry adders
* Why? way too slow
» Latency proportional to n

We can do better
+ Many ways to create adders with latency proportional to /og,(n)
* In theory: constant latency (build a big PLA)
* In practice: too much hardware, too many high-degree gates
« “Constant factor” matters, too
* More on this topic in CSE371

CSE 240 3-39

N-bit Adder
Carryln Carryln
16
Carryln A 16
A, > S
. 16
B, _| Add »S; B
CarryOut,
Carryln, CarryOut
A, >
B |Add >S,
1
CarryOut, CarryOut: useful for
5 | Amin detecting overflow
2
B2 - Add > 82
CarryOut, Carryln: assumed to
be zero if not present
CSE 240 3-38
Subtracter

Build a subtracter from an adder
e Calculate A-B=A+-B

* Negate B

+ Recall -B = NOT(B) + 1

Approach#1: Approach#2: ,
Carryln 1
16 Carryln
A J\ 16 A

16 16
B >0\ +1 B

Now, let’s create an adder/subtracter
CSE 240 3-40

...But First, The Multiplexer (MUX)

Selector/Chooser of signals
* Multi-way switch

2-to-1 Mux 4-to-1 Mux
0 1 00 01 10 1
1 Il 2 2 $2 2
—b_’
_>
A B C D
S [81
S.
A @
1O
B_gji
A, if S=00
. B,ifs=01
ToiEe s
Adder/Subtracter - Approach #1
Adder Subtracter
Carryln
18 1Carr In
A 16 Y
16 S A
B S
B
CarryOut
16 Adder/Subtracter
Add/Sub
A 21
:‘: E 1(3 1 >
B X ;l/ 16 s
> 16
16

CSE 240 3-43

The Multiplexer (MUX)

In general
* N select bits chooses from 2N inputs
* An incredibly useful building block

Multi-bit muxes
+ Can switch an entire “bus” or group of signals
» Switch n-bits with n muxes with the same select bits

S
16 \‘tZ
i 16
TR
T
—
CSE 240 3-42

Adder/Subtracter - Approach #2

Adder Subtracter
Carryln
16 1
Carryln
A 16
S A
16 S
B
B
CarryOut
Adder/Subtracter
1
Add/Sub -
1\6 Carryln
A X . 16
16 \ /
B\ 16 > S
CSE 240 E 3-44

Ok, So We Can Add and Subtract

Other arithmetic operations similar
» Even floating point operations

We can calculate; but we can’t remember
* Next time: storage and memory
» After that: simple “state machines”
» After that: a simple processor

Remember: readings, quizzes, and homework
* Homework 2 due Friday

CSE 240 3-45

Combinational vs. Sequential Logic

Combinational Circuit
» Always gives the same output for a given set of inputs

» For example, adder always generates sum and carry,
regardless of previous inputs

Sequential Circuit
» Stores information
* Output depends on stored information (state) plus input

» Given input might produce different outputs, depending on
stored information

* Example: ticket counter
» Advances when you push the button
» Output depends on previous state
» Useful for building “memory” elements and “state machines”

CSE 240 3-47

Chapter 3
Digital Logic
Structures

Based on slides © McGraw-Hill
Additional material © 2004/2005/2006 Lewis/Martin

Storage - Cross-Coupled Inverters

Cross-coupled inverters (INV) gates
« Holds value Q and Q’ (Q’ is the same as Q)

+ Read: get value from either Q or Q’

Maintains its “state”, but how do we change the state?
» Write: Option #1: put opposite values on Q and Q’ simultaneously
> Requires “analog” overdriving of Q and Q’

CSE 240 3-48

Storage - NANDs
Option #2: “Digital” alternative for changing state

Write: change Q to one Maintains state

&« even after S =1

R R R

Write: change Q to zero

@,ﬁ @’LQ
1 0
R R
Maintains state

CSE 240 even afterR=1, ,o

Storage - Cross-Coupled NANDs (R-S Latch)

What happens with S=0 and R=07?
+ Short answer: bad things
* Long answer: value stored will depend on timing on circuit

<0
1 1Q

RO

* Does S or R go to one first?

> If they change at the same time?

» Oscillation or meta-stability can result
* Let’s make sure this can never happen...

CSE 240 3-51

Storage - Cross-Coupled NANDs (R-S Latch)

Write either a zero or one
* When S$=1 and R=1, “quiescent” state; maintains value

S1
@LQ %
R 1 R 1

* When S=0 and R=1, state changes to one (“set”)
* When S=1 and R=0, state changes to zero (“reset” or “clear”)

g2 s -
T@Iﬁ T@Iﬁ
R 1 R &

CSE 240 3-50

Gated D-Latch

Add logic to an R-S latch
» Create a better interface
Two inputs: D (data) and WE (write enable)
« When WE =1, latch is set to value of D
»S8S =NOT(D),R=D
* When WE = 0, latch continues to hold previous value
»S=R=1
* Does not allow S=0, R=0 case to occur

CSE 240 3-52

Register Aside: More on Representing Multi-bit Values
A register stores a multi-bit value

Number bits from right (0) to left (n-1)
* A collection of D-latches, controlled by a common WE * Just a convention -- could be left to right, but must be consistent
 When WE=1, n-bit value D is written to register

Use brackets to denote range:
WE D[l:r] denotes bit | to bit r, from left to right
Q 15 12 8 4 0
Dg— ’ . A = 0101 0011 0101 C[101
3 ' 3 l
Di— 3@7@ §> DA D 0 A[14:9] = 101001 A[2:0] =101
16
May also see A<14:9> [2:0] 3‘ |
D.— Q » Especially in hardware block diagrams. [14:9] ©
CSE 240 g 3-53 CSE 240 v 3-54

Let’s Try to Build a Counter What’s Missing? The Clock
1 A clock controls when registers are “updated”
$ + Oscillating global signal with fixed period
» Typical clock frequencies today: a couple of gigahertz

S

A 4

Cnt

+1

S
A 4
B
A\ 4

A
<&
<

g

o | L L

How quickly will this count? ~ One time—
» Timing dependent

Cycle
Will it even work?
* Probably not

A
v

» Corresponds to <1 nanosecond between one rise and the next

» Generated on-chip by special circuitry (for example, oscillating
ring of inverters)
* D-latches are “transparent”

» Allows next input to immediately flow to output
» Outputs will never be “stable”

CSE 240 3-55 CSE 240 3-56

cock [| [[L[L[

Let’s Try Again: a Counter Example of Incorrect Operation
Clock Initial state: 010,
¥
3 3 3
\,l P [a1 A WE 1
4 atch| ' — l
. 4 1 D0A0;+11SO;
D r latch " i
N A 4
Solves half the problem K Oy
« Controls the rate of updates 1D 1A N Si,
r latch
N A 4
Remaining problem v Ov
* When clock=1, same problem 0f D [0A; » +1 0S5, >
. latch
» D-latches are still transparent r v
CSE 240 3-57 CSE 240 3-58

clock [| [[L[L[cock [][] [L[L[

Example of Incorrect Operation Example of Incorrect Operation
Set WE (Write Enable) to 1 D latches write new value: 011,
Goal: 100,
WE 1 WE 1
1 | 1 |
1 D0A0:+11So: 1D 1A0;+11So:
r latch r latch
N A 4 - N A 4
v Oy T VA Oy
1 D1A1:+11SW: 1 D1A1:+11SW:
r latch r latch
N A 4 - N A 4
v Oy -y A Oy

0A;

@)

D oA

A 4
+
-

A\ 4

latch

10
[}
=
o
=
\ 4
+
-
<Y
<
10
<
<

CSE 240 3-59 CSE 240 3-60

S I O I I O O cock [][] [L[L[

Example of Incorrect Operation Example of Incorrect Operation
Incrementer calculates 1st bit Incrementer calculates 2nd bit, 1st bit latched
WE 1 WE 1
1 l 1 . l
v e, A%y LTI B 2
’0 D 1AO°:.,_|_1 0 Sy’ D [0A, 1 0 Sy,
: r latch 18 e r latch e g
il *1— v x y
e i Y — iy
MDA b S »9D 1A1=+.-1-.|281,
r latch ;r latch
Py A4 S, . <A V.
ﬁ 0" ﬁ "-"

0S; 0l D [0A;

10
o
=k
(o]
>
\ 4
+
=N
<Y
<
o
=k
(o]
>
A 4
+
=N
P A
<

CSE 240 3-61 CSE 240 3-62

S I O I I O O cock [][] [L[L[

Example of Incorrect Operation Example of Incorrect Operation
Incrementer calculates 3rd bit, 2nd bit latched, 1st and 3rd bits latched
1st bit re-calculated value is: 101, (not the desired 100,)
WE 1 WE 1
1 l 1M ... l
v TS A0 SaLTe . vy <
Xl D [0A wq 1 S 11 D [1A + K So
r latch 18 K r latch e e
J T "§ N A 4
—q :i(.......... — o
9D JoA [, oS, 9D JoA LI,]oS:
r latch " i r latch " i
N y e N y
v 1y v < 1y
AID oA f il1 S b A Jf, 1S,
latch r latch " 7
A 4 A 4

CSE 240 3-63 CSE 240 3-64

Correct Operation

Additional D-latches, WE is NOT(Clock) and Clock

Initial state: 010,

3-65

Clock 1
0
3 ! !
Wb Qo oA b, 1S,
A | 1atch "| latch " "
N A
6 * Ov
o[t A | 1S,
4 " latch latch i i
N A
5 * Ow
9.D.10 9 fp oA f oS,
4 "] latch latch " "
A
CSE 240
cIockJ | | | |
Correct Operation
D latches write new value: 011,
Goal: 100,
Clock . 1
1 H
T A !
1ED 1Q0‘D 1Ao‘+11so‘
rﬂatch "| latch " "
H A A
i 5 v 0 4
ol Q p A JJ s,
f’flatch latch i i
: A A
Fo! R v Oy
D [0 fDfor I oS,

10
S SN reerrry BRI S
)
=
S
=2
o
L
o
=2

CSE 240

3-67

cIockJ | | |

Correct Operation

Clock switches to 1, 2nd latch WE =1

Clock . 1
1 :
¥ ! !
1 :p |1 Q, D [0A +1 1 So o
rﬂatch " latch " "
: N A
: 6 * Ow
D [T D AL S,
f’flatch latch " i
: A A
) v Ow
O:p [0 Q D0A2‘+1082;
T_'Elatch latch " "

CSE 240

cIockJ | [|

3-66

Correct Operation
Incrementer begins calculation

Clock . 1

1 : .l
»OED] Qo D 1A [F oSy
:..f'flatch latch " "

D [T I D A S
f’flatch latch " 7]
: A A
Fo! v Oy
D [0 fD oA I oS,

CSE 240

3-68

cIockJ

Correct Operation
Incrementer calculates 2nd bit,
First bit not written to latch

Clock . 1
1 :
¥ ! !
D [T % D A f o So,
rﬂatch latch " "
: N A
i 5 v Ay
A 19 I p A "{_.1" 0 S
ff’ﬂatch latch 1
f A
] v 1
Op [0 Q D0A2;+1032;
T_'Elatch latch " "

CSE 240

cIockJ

3-69

=

Correct Operation

Correct value ready to latch (100,), circuit quiescent

Clock . 1
1 :
¥ ! !
D [T % D A f o So,
rﬂatch latch " "
: N A
e} v 1y
o | @ D A f oS,
f’flatch latch " i
: A A
o) v 1y
D 0 I D JoA I, 1S,
T_'Elatch latch " "

CSE 240

3-71

cIockJ

Correct Operation

Incrementer calculates 3rd bit,
1st, 2nd bits not written to latch

3-70

Clock . 1
1 H
¥ ! !
D [T % D A f o So,
rﬂatch latch " "
: N\ A
o) v 1y
o | @ D A f oS,
f’flatch latch " 7]
: A A
e v 1y
o o % [pfor [l sS:
T_'Elatch latch " : "
K A
CSE 240)
clock | | | | | |
Correct Operation
Clock changes to 0
Clock : 1
0 H
3 3 !
D QD 1A L, oS,
4 | atch Jatch " "
: N\ A
Fo! Py 1y
9D " @ b 1A f oS,
i : > >
latch datch
: A A
Fo! iy 1y
11010 % ED JoA, f 1S,
i : > >
latch datch

CSE 240

3-72

cock [[] L[L[

Correct Operation
2nd set of latches write correct value, circuit quiescent

Clock . 1
0 - :
0 p [0 Q [Ep [MA; 0 So
: » +1 »
4 "] latch Jatch
: N A 4
8‘ HE 1v
9019 @ b 1A f oS,
4 "] latch Jatch " "
: A h 4
o i y 1y
D" % ED JoA f 1S,
A | 1atch Jatch " "
: A 4
CSE 240 ' 3-73

D Flip-Flop (or master-slave flip-flop)

D Flip-Flop is a pair of D latches
» Stupid name, but it stuck
 Isolate next state from current state

Latch #2
Latch #1 Q
D__ intigr 9
Clock
Two phases:
* Clock=1,Clock=0
CSE 240 3-75

cock [[L[L[L[

Correct Operation
Clock changes back to 1, next increment begins

Clock

i 1
E - |

+1 >

;O
[revrrr
[
=
[}
=0
[}
=k
[}
=
A 4
&
<

N

Fo! . Y 1v

+1 >

N

i & R 1v
‘D1 % [D MA,

10
[
=
s}
>
o
=
S
>
\ 4
<
<

+1 >

1—\
Y N yrery
)
=
S
=2
o
=
o
=2
v
<
<

CSE 240 3-74

cock [[L[L[L[

D Flip-Flop - Phase 1 Latch #2

Latch #[; 0 Q. 8
=
% o I !

Clock

Phase 1
* Clock=1
 Latch 1: writing disabled (output is stable Q
« Latch 2: writing enabled (Q = Q

inter)

inter)

CSE 240 3-76

cock [| [L L L[

D Flip-Flop - Phase 2 Latch #2 Latches & Flip-Flops
Latch #1 —i Latches
D Qinet Q + “level triggered” (high or low)
= * “transparent”
1 0 |: Flip-Flops
—0<} 0 » “edge triggered” (rising/positive edge or falling/negative edge)
Clock * “non-transparent” or “opaque” or just “latch” (1!!)
Phase 2))]
. Clock =0 Flip-Flops have WE (write enable) signals, too
+ Latch 1: writing enabled (Q;,., = D) + Uses a gate to suppress the rising (or falling) edge of clock
» Latch 2: writing disabled (output is stable Q) * Once internalized in FF, no need to manipulate clock with logic
Back to Phase 1 + Otherwise manipulating clock with logic usually a bad idea™
* Q becomes Q,,;.,
CSE 240 3-77 CSE 240 3-78
Working Counter Memory
Use a clocked register (made of D flip-flops) Now that we know how to store bits, we can build a
memory — a logical k by m array of stored bits
Clock 1 WE ry g y y
3 * * 3 3
O it \ -
AP D-ff > +1 >
L A 4
More simply Address Space: K= on
« If WE = 1 assumed if WE is not present number of locations | tions s
(usually a power of 2) N
i i 3
Ay ¥ D-ff = +1 >
o
< y Addressability:
Use WE input for conditional counter (stop watch) number of bits per location ;e

(e.g., byte-addressable)

CSE 240 3-79 CSE 240 3-80

Memory Interface

n

A

Din X

WE —

CSE 240

(2" by m-bit)

The Decoder
n inputs, 2" outputs

» Exactly one output is 1 for each possible input pattern

A

B

2-bit
decoder

CSE 240

Y

(0]

shele

QO

1, if AB=00

1, if AB=01

1, ifAB=10

1, if AB=11

__> Dout

3-81

3-83

CSE 240

22 py 3-bit memory

Read operation ,
A

22 or 4 registers <

CSE 240

22 py 3-bit memory

Write operation ,

v

oS

v

oS

v

oS

v

r S S S

oS

__> Dout

3-82

A_3\ [

S

v

S

v

Decoder

S

v

out

R
v
O

oS

v

3-84

22 py 3-bit memory - Multiple “Ports”
Independent Rea2cIIWrite

AR_3\
Dy =\
WE —7
Ay—X
2 3
o [V
o
o 3
S e ?(>D
: > 0.
(]
3
\ .,
> v
- 3
| W
3 Y
CSE 240

An Efficient 22 by 3-bit Memory - Single Port
wite | T —

enable {'j@%ﬁl J[3{1 't E&

e I Y
[|
o ?{ AL

decoder % P/
Q Q

cseao g+ LT mbe

3-85

22 py 3-bit memory - Multiple Read Ports

Arj 2‘\
AR2 3
Dw \‘
WE —1
AW__ J\Y
2 3| “1
\[L[Y
o [V>
- ~
3 s[TT 3,
o \L, X Dri
o 1Y 3
(7] ‘\ »Dr,
o >
3
\l,
2 [V
L . >
SEIR
CSE 240 3-86

More Memory Details

This is still not the way actual memory is implemented
* Real memory: fewer transistors, denser, relies on analog
properties
But the logical structure is similar
+ Address decoder
* Word select line, word write enable
» Bit line
Two basic kinds of RAM (Random Access Memory)
Static RAM (SRAM) - 6 transistors per bit
» Fast, maintains data as long as power applied
Dynamic RAM (DRAM) - 1 transistor per bit

* Denser but slower, destructive read, bit storage decays — must be
periodically refreshed (like a leaky balloon)

CSE 240 ‘ Also, non-volatile memories: ROM, PROM, flash, ... ‘ 3.88

State Machine

Another type of sequential circuit
+ Combines combinational logic with storage

+ “Remembers” state, and changes output (and state)
based on inputs and current state

State Machine
InpUtS » Combinational > OUtpUtS
Logic Circuit
Storage
Elements
CSE 240 3-89
State

The state of system is snapshot of all relevant elements
of system at moment snapshot is taken

Examples

» The state of a basketball game can be represented by
the scoreboard

» Number of points, time remaining, possession, efc.

» The state of a tic-tac-toe game can be represented by
the placement of X’s and O’s on the board (and turn)

CSE 240 3-91

Combinational vs. Sequential
Two types of “combination” locks

30

25 5
411184 20@10
15
Combinational Sequential
Success depends only on Success depends on

the values, not the order in the sequence of values
which they are set. (e.g, R-13, L-22, R-3).

CSE 240 3-90

State of Sequential Lock
Our lock example has four different states, labeled A-D:

A: The lock is not open,

and no relevant operations have been performed
B:The lock is not open,

and the user has completed the R-13 operation
C:The lock is not open,

and the user has completed R-13, followed by L-22
D:The lock is open

CSE 240 3-92

Sequential Lock State Diagram

Shows states and actions that cause a transition between
states

other than L-22

R-13

CSE 240 3-93

Implementing a Finite State Machine
Combinational logic

* Determine outputs and next state.
Storage elements

* Maintain state representation.

State Machine

InpUtS » Combinational > OUtpUtS
Logic Circuit

Storage
Clock ———» Elements

CSE 240 3-95

Finite State Machine

A description of a system with the following
components:

A finite number of states

A finite number of external inputs

A finite number of external outputs

An explicit specification of all state transitions

An explicit specification of what determines each
external output value

alrowbd-=~

Often described by a state diagram
* Inputs trigger state transitions
» Outputs are associated with each state (or with each transition)

CSE 240 3-94

Storage
Master-slave flip-flop stores one state bit

Number of storage elements (flip-flops)
* Determined by number of states (and representation of states)

Examples
» Sequential lock
» Four states — two bits
» Basketball scoreboard

> 8 bits for each score, 5 bits for minutes, 6 bits for seconds,
1 bit for possession arrow, 1 bit for half, ...

CSE 240 3-96

Complete Example

A blinking traffic sign
* No lights on
*1&2o0n
*1,2,3,&40n
*1,2,3,4,&50n

* (repeat as long as switch
is turned on)

DANGER

MOVE
RIGHT

CSE 240

3-97
Traffic Sign State Diagram: State 00 N o
All on 1 \1-4 on
CSE240 Transition on each clock cycle. 399

Traffic Sign State Diagram

1
00

All off

1)

All on 1

CSE240 Transition on each clock cycle. 3-98

Traffic Sign State Diagram: State 01 ® -

0,1 0 vy
11\ 10
All on 1 \ 1-4 on

CSE240 Transition on each clock cycle. 3-100

Traffic Sign State Diagram: State 10 ®9

o0 °
00) 01
All off o \12o0n
A 1
0,1 0
Allon /) 1\ 1-4 on
CSE240 Transition on each clock cycle. 3-101
Traffic Sign State Diagram: State 00 N o
Allon 1 \1-4on
CSE 240 3-103

Transition on each clock cycle.

Traffic Sign State Diagram: State 11 ®9

o0’
All off o \12o0n
A 1
%‘ 0 vy
All on 1 \1-4 on
CSE240 Transition on each clock cycle. 3102
Traffic Sign Truth Tables
Outputs Next State: S,’Sy’
(depend only on state: S,S;) (depend on state and input)
Lights 1 and 2 I‘ Switch
Lights 3 and 4 In S1 SO S1’ So’
r“gh‘s —>0*X X [0 o0
S, S|z Y x vomteae | [4
o o0 0 o 1
101 1 0 1 []f[o o]
1 1|1 1 1 _
Whenever In=0, next state is 00.
CSE 240 3-104

Traffic Sign Logic Programmable State Machines

What if we want to change the pattern of the sign?
In _D— _:D_ Z + An alternative state machine implementation
B
O
B
L/
B

i IniS,/S, | S
* Use a memory indexed by state number _"0010 0 o

. v /
001 |00
———X 1 23 by 2-bit 010 |00

2

011 00

~ 100 |01
N 101 |10
| 10 | M
111 00
S,
— Storage Element 0 Master-slave
IR flip-flop
So
~— Storage Element 1
CSE 240 3-105 CSE 240 3-106
Programmable State Machines From Logic to Data Path
Change to a two-state pattern: The data path of a computer is all the logic used to
< Alloff o4 oo oo process information.
(6] [(6]
« Allon ©° = o0 =0 SIS, | S « See the data path of the LC-3 on next slide
State: 00 State: 10 State: 00 000 00
001 | -

23 by 2-bit 010 |00 Combinational Logic

1
Input [2] 3 2
L « Decoders -- convert instructions into control signals
A[1:0] 100 10

2] * Multiplexers -- select inputs and outputs

2 3
: e T o - ALU (Arithmetic and Logic Unit) -- operations on data
2 i . M| - Sequential Logic
o S | zviz + State machine -- coordinate control signals and data movement

* Registers and latches -- storage elements

alels

CSE 240 3-107 CSE 240 3-108

<

LC-3 Data Path bk
o I wrof pe | -
L \ 7 3 A\ S
P [o] o
s e fram\ T | P e
C b- t- | [l r 2 /l [y ‘. LD.AEG—5
ombinationa B PR Tere om
. o sre7= out out [7 S
|-09|C fzext)
Y
- i \e fo
! LX<
ADDRRMIX b) ADDRIMIX
3 \ / hy
e S e e
Aa Sa e Fa_ e
oo 1] — e 1
o /o SEXT /- # SEXT™ 7
|40
Storage S S]
(501 | > emre " v
47+ SEXT nef S e T
| Z—\" aw /
I I - o ALK) S A
- + \ |
wmh-= IR \MIZ'FL' oo e
1Y
|
, i
Pz = |
‘ L j - /- GanaLy
-~ :
-— ‘ .
State Machine wf g ‘
L ¥
i ‘)
- s
MEMORY ‘ 7
CSE 240 7

* The von Neumann Model

Readings
* Chapter 4.0 -4.2

Online quiz
* You know the drill!

CSE 240

Looking Forward...

We’ve touched on basic digital logic
* Transistors
+ Gates
» Storage (latches, flip-flops, memory)
+ State machines

Built some simple circuits
* Incrementer, adder, subtracter, adder/subtracter
» Counter (consisting of register and incrementer)
» Hard-coded traffic sign state machine
* Programmable traffic sign state machine

Up next: a computer as a (simple?) state machine

3-109 CSE 240

3-111

3-110

