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Transistor: Building Block of Computers

 Microprocessors contain millions of transistors
• Intel Pentium 4 (2000): 48 million

• IBM PowerPC 750FX (2002): 38 million

• IBM PowerPC G5 (2003): 58 million

• Intel Core Duo 2 (2006): 291 million (192+ million in cache alone)

 Logically, each transistor acts as a switch

 Combined to implement logic functions
• AND, OR, NOT

 Combined to build higher-level structures
• Adder, multiplexer, decoder, register, …

 Combined to build processor
• LC-3
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How do we represent data in a computer?

 At the lowest level, a computer has electronic “plumbing”
• Operates by controlling the flow of electrons

 Easy to recognize two conditions:
1. Presence of a voltage – we’ll call this state “1”

2. Absence of a voltage – we’ll call this state “0”

Computer use transistors as switches to manipulate bits
• Before transistors: tubes, electro-mechanical relays (pre 1950s)

• Mechanical adders (punch cards, gears) as far back as mid-1600s

 Before describing transistors, we present an analogy…



3-5CSE 240

A Transistor Analogy: Computing with Air

 Use air pressure to encode values

• High pressure represents a “1” (blow)

• Low pressure represents a “0” (suck)

 Valve can allow or disallow the flow of air

• Two types of valves

 High  (On)  High  (Off)

 N-Valve  P-Valve

 Low  (On) Low  (Off)

 hole

3-6CSE 240

Pressure Inverter

 High

 Low

 Out

 N-Valve

 P-Valve

 In
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Pressure Inverter (Low to High)

 High

 Low

 Low

 N-Valve

 P-Valve

 High
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Pressure Inverter

 High

 Low

 N-Valve

 P-Valve
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 Low

Pressure Inverter (High to Low)

 High

 Low

 High

 N-Valve

 P-Valve
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Analogy Explained

 Pressure differential ! electrical potential (voltage)

• Air molecules ! electrons

• High pressure ! high voltage

• Low pressure ! low voltage

 Air flow ! electrical current

• Pipes ! wires

• Air only flows from high to low pressure

• Electrons only flow from high to low voltage

• Flow only occurs when changing from 1 to 0 or 0 to 1

 Valve ! transistor

• The transistor: one of the century’s most important inventions
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Transistors as Switches

 Two types

• N-type

• P-type

 Properties

• Solid state (no moving parts)

• Reliable (low failure rate)

• Small (90nm channel length)

• Fast (<0.1ns switch latency)

 N-Valve

 P-Valve

 N-MOSFET

 P-MOSFET

3-12CSE 240

MOS + FET

 MOS: three materials needed to make a transistor

• Metal (Al, W, Cu): conductor

• Oxide (SiO2): insulator

• Semiconductor (doped Si): conducts under certain conditions

 FET: field effect (the mechanism) transistor

• Voltage on gate: current flows source to drain (transistor on)

• No voltage on gate: no current (transistor off)

 Recall, two types of MOSFET: n and p

channel
source drain

insulator
gate

 (cross-section view of a MOSFET)
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N-type MOS Transistor

• When Gate has positive voltage,

short circuit between #1 and #2

(switch closed)

• When Gate has zero voltage,

open circuit between #1 and #2

(switch open)

Gate = 1

Gate = 0
Terminal #2 connected

to GROUND (0V).
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P-type MOS Transistor

 P-type is complementary to n-type

• When Gate has positive voltage,

open circuit between #1 and #2

(switch open)

• When Gate has zero voltage,

short circuit between #1 and #2

(switch closed)

Gate = 1

Gate = 0
Terminal #1 connected 

to POWER 

(in this example, +2.9V)
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Inverter (NOT Gate)

01

10

OutIn

Truth table

 Power

 Ground
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CMOS Circuit

 Inverter is an example of Complementary MOS (CMOS)

 Uses both n-type and p-type MOS transistors

• p-type

!Attached to POWER (high voltage)

!Pulls output voltage UP when input is zero

• n-type

!Attached to GROUND (low voltage)

!Pulls output voltage DOWN when input is one

 For all inputs, make sure that output is either connected to GROUND

or to POWER, but not both!  (why?)
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NAND Gate (NOT-AND)

110

101

1

0

A

01

10

CB

Note: Parallel structure on top, serial on bottom.

 Power

 Ground
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AND Gate

010

001

1

0

A

11

00

CB

Add inverter to NAND.

 Power

 Ground
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NOR Gate (NOT-OR)

010

001

1

0

A

01

10

CB

Note: Serial structure on top, parallel on bottom.

 Power

 Ground
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OR Gate

110

101

1

0

A

11

00

CB

Add inverter to NOR.

 Power

 Ground
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AND ORNOT/INV

Basic Gates

 From Now On… Gates
• Covered transistors mostly so that you know they exist

• Note: “Logic Gate” not related to “Gate” of transistors

 Will study implementation in terms of gates
• Circuits that implement Boolean functions

 More complicated gates from transistors possible
• XOR, Multiple-input AND-OR-Invert (AOI) gates

NAND NOR
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More than 2 Inputs?

 AND/OR can take any number of inputs

• AND = 1 if all inputs are 1

• OR = 1 if any input is 1

• Similar for NAND/NOR

 Implementation

• Multiple two-input gates or single CMOS circuit
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Visual Shorthand for Multi-bit Gates

 Use a cross-hatch mark to group wires

• Example: calculate the AND of a pair of 4-bit numbers

• A3 is “high-order” or “most-significant” bit

• If “A” is 1000, then A3 = 1, A2 = 0, A1 = 0, A0 = 0

 A0

 B0

 A1

 B1

 A2

 B2

 A3

 B3

 Out0

 Out1

 Out2

 Out3

 A

 B
 Out

 4

 4

 4
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Shorthand for Inverting Signals

 Invert a signal by adding either

• A      before/after a gate

• A “bar” over letter

 A AND B

 A AND B

 A
 B

 A
 B

 A OR B A
 B
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Logical Completeness

 AND, OR, NOT  can implement ANY truth table

1010

1001

0101

0011

1

0

0

0

A

110

011

1

0

B

11

00

SCin  A B Cin

 S

1. AND combinations 

that yield a "1" in the 

truth table

2. OR the results

of the AND gates
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Logical Completeness via PLAs

 Any truth table as a Programmable Logic Array (PLA)
• Traditionally a grid of AND and OR gates

• Configurable by removing wires

 Single-output custom PLA (as on previous slide):
• One AND gate per row with “1” in output in truth table

• Maximum number of AND gates: 2n for n inputs

• One OR gate

 Multiple-output custom PLA:
• Build multiple single-output PLAs

• Share AND gates “in common”

• One OR gate per output column in truth table
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DeMorgan's Law

 Converting AND to OR (with some help from NOT)

 Consider the following gate:

0

0

0

1

1

1

1

0

To convert AND to OR 

(or vice versa),

invert inputs and output.

A AND B  A AND B

01

10

11

0

A

0

B

0

0

1

1

0

1

0

1

A B

A AND B

Why might this be useful?

=    A OR B

A AND B =    A OR B

A AND B =    A OR B
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Summary

 MOS transistors: switches to implement logic functions
• n-type: connect to GROUND, turn on (with 1) to pull down to 0

• p-type: connect to POWER, turn on (with 0) to pull up to 1

 Basic gates: NOT, NOR, NAND
• Logic functions are usually expressed with AND, OR, and NOT

• Universal: any truth table to simple gates (via a PLA)

 DeMorgan's Law
• Convert AND to OR (and vice versa) by inverting inputs/output

 Ok, we now have simple logic gates
• Next up: how do we combine them into something useful?
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AND, OR, NOT Gates: What Good Are They?

 Last time:
• Transistors and gates

• Can implement any logical function using gates (using PLAs)

 Today:
• We’ll use gates to create some building blocks of a processor

• One goal: automate binary arithmetic from Chapter 2

• Continuing on our bottom-up journey

 Next time:
• Storing bits (memory)

• Circuits with “state”
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Incrementer

 Let’s create a incrementer

• Input: A (as a 16-bit 2’s complement integer)

• Output: A+1 (also as a 16-bit 2’s complement integer)

 Approach #1 (impractical):

• Use PLA-like techniques to implement circuit

• Problem: 216 or 65536 rows, 16 output columns

• In theory, possible; in practice, intractable

 Approach#2 (pragmatic):

• Create a 1-bit incrementer circuit

• Replicate it 16 times

+1 SA
 16  16
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One-bit Incrementer

 Implement a single-column of an incrementer

 00001011

 +00000001

 00001100

+1 Sn
An

 1  1

CarryInn

CarryOutn

0

0

1

0

1

1

0

0

01

1

0

0

An

1

1

0

Cin CoutSn

 An Cin

 S

 Cout
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Aside: XOR

0101

1

0

0

An

011

101

0

Cin

00

CoutSn

 A   Cin

A
S

Cin

 XOR

Cin

A

Cout

S
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N-bit Incrementer

 Chain N 1-bit incrementers together

+1 S0
A0

 1  1

CarryIn0

CarryOut0

+1 S1
A1

 1  1

CarryIn1

CarryOut1

+1 S2
A2

 1  1

CarryIn2

CarryOut2

+1 S3
A3

 1  1

CarryIn3

CarryOut3

 4-bit

 example

 …but how do we

correctly handle the 

 least-significant bit?
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N-bit Incrementer, continued

 How do we handle the least-significant bit?

 00001011

 +00000001

 00001100

+1 S0
A0

 1  1

CarryIn0

CarryOut0

+1 S1
A1

 1  1

CarryIn1

CarryOut1

+1 S2
A2

 1  1

CarryIn2

CarryOut2

 . . .

 00001011

 +00000000

 00001100

 Cin = 1

No longer needed;

implicitly encoded

with Cin

 1
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Adder

 Conceptually similar to an incrementer

• Build a one-bit slice, replicate n times

 00001011

 +00110011

 00111100

Add Sn

An

 1
 1

CarryInn

CarryOutn

Bn

 1
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One-bit Adder

 Add two bits and carry-in

produce one-bit sum and carry-out

0

1

0

0

1

1

1

0

1

0

1

1

0

0

1

0

110

001

101

011

S

1

1

0

0

B

10

00

1

0

A

1

0

C
out

C
in

Add Sn

An

 1
 1

CarryInn

CarryOutn

Bn

 1
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CarryIn
N-bit Adder

 . . .

Add S0

A0

CarryIn0

CarryOut0

B0

Add S1

A1

CarryIn1

CarryOut1

B1

Add S2

A2

CarryIn2

CarryOut2

B2

CarryIn

CarryOut

A

B

S
 16

 16

 16

CarryOut: useful for

detecting overflow

CarryIn: assumed to

be zero if not present

 +
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Aside: Efficient Adders

 Full disclosure:

• Our adder: Ripple-carry adder

• No one (sane) actually uses ripple-carry adders

• Why? way too slow

• Latency proportional to n

 We can do better

• Many ways to create adders with latency proportional to log2(n)

• In theory: constant latency (build a big PLA)

• In practice: too much hardware, too many high-degree gates

• “Constant factor” matters, too

• More on this topic in CSE371

3-40CSE 240

Subtracter

 Build a subtracter from an adder

• Calculate A - B = A + -B

• Negate B

• Recall -B = NOT(B) + 1

B
 16

CarryIn

S
 16

 16
+1

 16

A

 16

 Approach#1:

S
 16

B
 16  16

A

 16 CarryIn
 1

 Now, let’s create an adder/subtracter

 Approach#2:
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…But First, The Multiplexer (MUX)

 Selector/Chooser of signals

• Multi-way switch

 0  1

 2-to-1 Mux

 00
 2

 01
 2

 10
 2

 11
 2

 4-to-1 Mux

S

O

B

A
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The Multiplexer (MUX)

 In general

• N select bits chooses from 2N inputs

• An incredibly useful building block

 Multi-bit muxes

• Can switch an entire “bus” or group of signals

• Switch n-bits with n muxes with the same select bits

 S
 2 16

 16

 16

 16
 16
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Adder/Subtracter - Approach #1

CarryIn

CarryOut

A

B

S
 16

 16

 16

 Adder

CarryIn

A

B

S
 16

 16

 16  16

 1

 Subtracter

 Adder/Subtracter

A

B

 16

 16

 16

 16

 16

 1  16
S

Add/Sub
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Adder/Subtracter - Approach #2

CarryIn

A

B

S
 16

 16

 16  16

 1
CarryIn

CarryOut

A

B

S
 16

 16

 16

 Adder  Subtracter

 Adder/Subtracter

CarryIn

S
 16A

 16

 16
B  16

Add/Sub
 1
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Ok, So We Can Add and Subtract

 Other arithmetic operations similar

• Even floating point operations

 We can calculate; but we can’t remember

• Next time: storage and memory

• After that: simple “state machines”

• After that: a simple processor

 Remember: readings, quizzes, and homework

• Homework 2 due Friday Based on slides © McGraw-Hill

Additional material © 2004/2005/2006 Lewis/Martin
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Combinational vs. Sequential Logic

 Combinational Circuit

• Always gives the same output for a given set of inputs

!For example, adder always generates sum and carry,

regardless of previous inputs

 Sequential Circuit

• Stores information

• Output depends on stored information (state) plus input

!Given input might produce different outputs, depending on

stored information

• Example: ticket counter

!Advances when you push the button

!Output depends on previous state

• Useful for building “memory” elements and “state machines”
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Storage - Cross-Coupled Inverters

 Cross-coupled inverters (INV) gates

• Holds value Q and Q’  (Q’ is the same as Q)

• Read: get value from either Q or Q’

 Maintains its “state”, but how do we change the state?

• Write: Option #1: put opposite values on Q and Q’ simultaneously

!Requires “analog” overdriving of Q and Q’

Q’ Q Q’ Q
1 0 0 1
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Storage - NANDs

 Option #2: “Digital” alternative for changing state

 Write: change Q to one

 Write: change Q to zero

 Maintains state 

even after S = 1

 Maintains state 

even after R = 1

S
Q0

0

1

S
Q0

1

1

R

Q1

0

0

R

Q1

1

0

S
Q1

1

0

R

Q0

1

1
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 Write either a zero or one

• When S=1 and R=1, “quiescent” state; maintains value

• When S=0 and R=1, state changes to one (“set”)

• When S=1 and R=0, state changes to zero (“reset” or “clear”)

Storage - Cross-Coupled NANDs (R-S Latch)

S

R

Q
0

1

1

1

S

R

Q
1

1

1

0

S

R

Q
0

0

1

1

S

R

Q
1

1

0

0

3-51CSE 240

Storage - Cross-Coupled NANDs (R-S Latch)

 What happens with S=0 and R=0?

• Short answer: bad things

• Long answer: value stored will depend on timing on circuit

• Does S or R go to one first?

! If they change at the same time?

!Oscillation or meta-stability can result

• Let’s make sure this can never happen…

S

R

Q
1

0

0

1
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Gated D-Latch

 Add logic to an R-S latch

• Create a better interface

 Two inputs: D (data) and WE (write enable)

• When WE = 1, latch is set to value of D

!S = NOT(D), R = D

• When WE = 0, latch continues to hold previous value

!S = R = 1

• Does not allow S=0, R=0 case to occur

1

1

10WE
D

Q

0
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Register

 A register stores a multi-bit value

• A collection of D-latches, controlled by a common WE

• When WE=1, n-bit value D is written to register

D2
Q1

D1
Q1

D0
Q0

D QD
 3  3

WE

WE
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Aside: More on Representing Multi-bit Values

 Number bits from right (0) to left (n-1)

• Just a convention -- could be left to right, but must be consistent

 Use brackets to denote range:

D[l:r] denotes bit l to bit r, from left to right

 May also see A<14:9>

• Especially in hardware block diagrams.

A = 0101 0011 0101 0101
015

A[2:0] = 101A[14:9] = 101001

4812

 3

 6

 [2:0]

 [14:9]

 16
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Let’s Try to Build a Counter

 How quickly will this count?

• Timing dependent

 Will it even work?

• Probably not

• D-latches are “transparent”

!Allows next input to immediately flow to output

!Outputs will never be “stable”

Cnt
 3  3

 1

+1
 3
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What’s Missing? The Clock

 A clock controls when registers are “updated”

• Oscillating global signal with fixed period

• Typical clock frequencies today: a couple of gigahertz

• Corresponds to <1 nanosecond between one rise and the next

• Generated on-chip by special circuitry (for example, oscillating

ring of inverters)

“1”

“0”

time!One

Cycle
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Let’s Try Again: a Counter

 Solves half the problem

• Controls the rate of updates

 Remaining problem

• When clock=1, same problem

• D-latches are still transparent

D

latch

 3  3

 Clock

+1
 3
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 1

 0

 1

 0

 1

 1

 0

 0

 0

 1

 1

 0

+1
S0D

latch

A0

+1
S1D

latch

A1

+1
S2D

latch

A2

WE
 0

Example of Incorrect Operation

 Initial state: 0102

 clock
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Example of Incorrect Operation

 Set WE (Write Enable) to 1

 1

 0

 1

 0

 1

 1

 0

 0

 0

 1

 1

 0

+1
S0D

latch

A0

+1
S1D

latch

A1

+1
S2D

latch

A2

WE
 1

 clock
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Example of Incorrect Operation

 D latches write new value: 0112

 Goal: 1002  1

 1

 1

 0

 1

 1

 0

 0

 0

 1

 1

 0

+1
S0D

latch

A0

+1
S1D

latch

A1

+1
S2D

latch

A2

WE
 1

 clock
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Example of Incorrect Operation

 Incrementer calculates 1st bit

 1

 1

 1

 0

 0

 1

 0

 1

 0

 0

 1

 0

+1
S0D

latch

A0

+1
S1D

latch

A1

+1
S2D

latch

A2

WE
 1

 clock
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Example of Incorrect Operation

 Incrementer calculates 2nd bit, 1st bit latched

 1

 0

 1

 0

 0

 0

 0

 1

 1

 0

 0

 0

+1
S0D

latch

A0

+1
S1D

latch

A1

+1
S2D

latch

A2

WE
 1

 clock
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Example of Incorrect Operation

 Incrementer calculates 3rd bit, 2nd bit latched,
 1st bit re-calculated

 1

 0

 0

 0

 1

 0

 1

 0

 1

 1

 0

 1

+1
S0D

latch

A0

+1
S1D

latch

A1

+1
S2D

latch

A2

WE
 1

 clock
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Example of Incorrect Operation

 1st and 3rd bits latched
 value is: 1012 (not the desired 1002)

 1

 1

 0

 1

 1

 0

 1

 0

 1

 1

 0

 1

+1
S0D

latch

A0

+1
S1D

latch

A1

+1
S2D

latch

A2

WE
 1

 clock
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 1

 0

 1

 0

 1

 1

 0

 0

 0

 1

 1

 0

+1
S0D

latch

A0

+1
S1D

latch

A1

+1
S2D

latch

A2

Clock
 0

Correct Operation

Additional D-latches, WE is NOT(Clock) and Clock

 Initial state: 0102

D
latch

D
latch

D
latch

Q0

Q1

Q2

 1

 1

 0
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 1

 0

 1

 0

 1

 1

 0

 0

 0

 1

 1

 0

+1
S0D

latch

A0

+1
S1D

latch

A1

+1
S2D

latch

A2

Clock
 1

Correct Operation

Clock switches to 1, 2nd latch WE = 1

D
latch

D
latch

D
latch

Q0

Q1

Q2

 1

 1

 0

 clock
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 1

 1

 1

 0

 1

 1

 0

 0

 0

 1

 1

 0

+1
S0D

latch

A0

+1
S1D

latch

A1

+1
S2D

latch

A2

Clock
 1

Correct Operation

 D latches write new value: 0112

 Goal: 1002

D
latch

D
latch

D
latch

Q0

Q1

Q2

 1

 1

 0

 clock
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 1

 1

 1

 0

 0

 1

 0

 1

 0

 1

 1

 0

+1
S0D

latch

A0

+1
S1D

latch

A1

+1
S2D

latch

A2

Clock
 1

Correct Operation

 Incrementer begins calculation

D
latch

D
latch

D
latch

Q0

Q1

Q2

 0

 1

 0

 clock
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 1

 1

 1

 0

 0

 0

 0

 1

 1

 1

 1

 0

+1
S0D

latch

A0

+1
S1D

latch

A1

+1
S2D

latch

A2

Clock
 1

Correct Operation

 Incrementer calculates 2nd bit,

 First bit not written to latch

D
latch

D
latch

D
latch

Q0

Q1

Q2

 0

 0

 0

 clock
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 1

 1

 1

 0

 0

 0

 1

 1

 1

 1

 1

 0

+1
S0D

latch

A0

+1
S1D

latch

A1

+1
S2D

latch

A2

Clock
 1

Correct Operation

 Incrementer calculates 3rd bit,

 1st, 2nd bits not written to latch

D
latch

D
latch

D
latch

Q0

Q1

Q2

 0

 0

 1

 clock
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 1

 1

 1

 0

 0

 0

 1

 1

 1

 1

 1

 0

+1
S0D

latch

A0

+1
S1D

latch

A1

+1
S2D

latch

A2

Clock
 1

Correct Operation

 Correct value ready to latch (1002), circuit quiescent

D
latch

D
latch

D
latch

Q0

Q1

Q2

 0

 0

 1

 clock
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 1

 1

 1

 0

 0

 0

 1

 1

 1

 1

 1

 0

+1
S0D

latch

A0

+1
S1D

latch

A1

+1
S2D

latch

A2

Clock
 0

Correct Operation

 Clock changes to 0

D
latch

D
latch

D
latch

Q0

Q1

Q2

 0

 0

 1

 clock
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 1

 1

 1

 0

 0

 0

 1

 1

 1

 0

 0

 1

+1
S0D

latch

A0

+1
S1D

latch

A1

+1
S2D

latch

A2

Clock
 0

Correct Operation

 2nd set of latches write correct value, circuit quiescent

D
latch

D
latch

D
latch

Q0

Q1

Q2

 0

 0

 1

 clock
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 1

 0

 0

 1

 0

 0

 1

 1

 1

 0

 0

 1

+1
S0D

latch

A0

+1
S1D

latch

A1

+1
S2D

latch

A2

Clock
 1

Correct Operation

 Clock changes back to 1, next increment begins

D
latch

D
latch

D
latch

Q0

Q1

Q2

 0

 0

 1

 clock
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D Flip-Flop (or master-slave flip-flop)

 D Flip-Flop is a pair of D latches

• Stupid name, but it stuck

• Isolate next state from current state

 Two phases:

• Clock = 1, Clock = 0

 D

 Clock

 Q
 Latch #1

 Latch #2

 Qinter
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 Phase 1

• Clock = 1

• Latch 1: writing disabled (output is stable Qinter)

• Latch 2: writing enabled (Q = Qinter)

D Flip-Flop - Phase 1

 D

 Clock

 Q
 Latch #1

 Latch #2

 Qinter

 1

 0  1

 clock
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D Flip-Flop - Phase 2

 Phase 2
• Clock = 0

• Latch 1: writing enabled (Qinter = D)

• Latch 2: writing disabled (output is stable Q)

 Back to Phase 1
• Q becomes Qinter

 D  Q
 Latch #1

 Latch #2

 Qinter

 0

 1  0

 Clock

 clock
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Latches & Flip-Flops

 Latches

• “level triggered” (high or low)

• “transparent”

 Flip-Flops

• “edge triggered” (rising/positive edge or falling/negative edge)

• “non-transparent” or “opaque” or just “latch” (!!!)

 Flip-Flops have WE (write enable) signals, too

• Uses a gate to suppress the rising (or falling) edge of clock

• Once internalized in FF, no need to manipulate clock with logic

• Otherwise manipulating clock with logic usually a bad ideaTM
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 Use a clocked register (made of D flip-flops)

 More simply

• If WE = 1 assumed if WE is not present

Use WE input for conditional counter (stop watch)

D-ff
 3  3

+1
 3

 Clock  WE
 1

Working Counter

D-ff
 3  3

+1
 3
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Memory

 Now that we know how to store bits, we can build a

memory – a logical k by m array of stored bits

•
•
•

k = 2n

locations

m bits

Address Space:

number of locations
(usually a power of 2)

Addressability:

number of bits per location
(e.g., byte-addressable)
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Memory Interface

D0

 3  3

D1

 3  3

D2

 3  3

D3

 3  3

 m
Dout

A
 n

WE

 m
Din

 D
e
c
o

d
e

r  Memory

 (2n by m-bit)
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22 by 3-bit memory

D0

 3  3

D1

 3  3

D2

 3  3

D3

 3  3

 3
Dout

A
 2 Read operation

 22 or 4 registers
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The Decoder

 n inputs, 2n outputs

• Exactly one output is 1 for each possible input pattern

2-bit

decoder
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22 by 3-bit memory

D0

 3  3

D1

 3  3

D2

 3  3

D3

 3  3

 3
Dout

A
 2 Write operation

WE

 3
Din

 D
e
c
o

d
e
r
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22 by 3-bit memory - Multiple “Ports”

D0

 3  3

D1

 3  3

D2

 3  3

D3

 3  3

 3
DR

AR

 2
 Independent Read/Write

WE

 3
DW

 D
e
c
o

d
e

r

AW
 2
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22 by 3-bit memory - Multiple Read Ports

D0

 3  3

D1

 3  3

D2

 3  3

D3

 3  3

 3
DR2

AR2

 2

WE

 3
DW

 D
e
c
o

d
e

r

AW

 3
DR1

AR1

 2

 2
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address

An Efficient 22 by 3-bit Memory - Single Port

address

decoder

word WEword select

write

enable

input

bits

output bits mux

latch

(not flip-flop)

3-88CSE 240

More Memory Details

 This is still not the way actual memory is implemented

• Real memory: fewer transistors, denser, relies on analog

properties

 But the logical structure is similar

• Address decoder

• Word select line, word write enable

• Bit line

 Two basic kinds of RAM (Random Access Memory)

 Static RAM (SRAM) - 6 transistors per bit

• Fast, maintains data as long as power applied

 Dynamic RAM (DRAM) - 1 transistor per bit

• Denser but slower, destructive read, bit storage decays – must be

periodically refreshed (like a leaky balloon)

Also, non-volatile memories: ROM, PROM, flash, …
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State Machine

 Another type of sequential circuit

• Combines combinational logic with storage

• “Remembers” state, and changes output (and state)

based on inputs and current state

State Machine

Combinational

Logic Circuit

Storage

Elements

Inputs Outputs
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Combinational vs. Sequential

 Two types of “combination” locks

4 1 8 4

30

15

5

1020

25

Combinational

Success depends only on

the values, not the order in 

which they are set.

Sequential

Success depends on

the sequence of values

(e.g, R-13, L-22, R-3).

3-91CSE 240

State

 The state of system is snapshot of all relevant elements

of system at moment snapshot is taken

 Examples

• The state of a basketball game can be represented by

the scoreboard

!Number of points, time remaining, possession, etc.

• The state of a tic-tac-toe game can be represented by

the placement of X’s and O’s on the board (and turn)
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State of Sequential Lock

 Our lock example has four different states, labeled A-D:

A: The lock is not open,

and no relevant operations have been performed

 B:The lock is not open,

and the user has completed the R-13 operation

 C:The lock is not open,

and the user has completed R-13, followed by L-22

 D:The lock is open
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Sequential Lock State Diagram

 Shows states and actions that cause a transition between

states

 (open)
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Finite State Machine

 A description of a system with the following
components:

1. A finite number of states

2. A finite number of external inputs

3. A finite number of external outputs

4. An explicit specification of all state transitions

5. An explicit specification of what determines each
external output value

 Often described by a state diagram
• Inputs trigger state transitions

• Outputs are associated with each state (or with each transition)
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Implementing a Finite State Machine

 Combinational logic

• Determine outputs and next state.

 Storage elements

• Maintain state representation.

State Machine

Combinational

Logic Circuit

Storage

Elements

Inputs Outputs

Clock
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Storage

 Master-slave flip-flop stores one state bit

 Number of storage elements (flip-flops)

• Determined by number of states (and representation of states)

 Examples

• Sequential lock

!Four states – two bits

• Basketball scoreboard

!8 bits for each score, 5 bits for minutes, 6 bits for seconds,

1 bit for possession arrow, 1 bit for half, …
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Complete Example

 A blinking traffic sign

• No lights on

• 1 & 2 on

• 1, 2, 3, & 4 on

• 1, 2, 3, 4, & 5 on

• (repeat as long as switch

is turned on)

DANGER
MOVE

RIGHT

1

2

3

4

5
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Traffic Sign State Diagram

State bit S1 State bit S0

Switch on

Switch off

Outputs

Transition on each clock cycle.
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Traffic Sign State Diagram: State 00

Transition on each clock cycle. 3-100CSE 240

Traffic Sign State Diagram: State 01

Transition on each clock cycle.
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Traffic Sign State Diagram: State 10

Transition on each clock cycle. 3-102CSE 240

Traffic Sign State Diagram: State 11

Transition on each clock cycle.

3-103CSE 240

Traffic Sign State Diagram: State 00

Transition on each clock cycle. 3-104CSE 240

Traffic Sign Truth Tables

Outputs

(depend only on state: S1S0)

11111

01101

00110

00000

XYZS0S1

Lights 1 and 2

Lights 3 and 4

Light 5

Next State: S1’S0’

(depend on state and input)

00111

11011

01101

10001

0

In

00XX

S0’S1’S0S1

Switch

Whenever In=0, next state is 00.

 Don’t care
 (1 or 0)
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Traffic Sign Logic

Master-slave

flip-flop

 S0

 S1

 S1
’

 S0
’
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Programmable State Machines

 What if we want to change the pattern of the sign?

• An alternative state machine implementation

• Use a memory indexed by state number

S
ta

te

 2

 3

 2

 2

 3
 1

 2

 [2]

 [1:0]

 Input

 Output

(Z, Y, X)

00000

00001

00010

00111

11110

10101

01100

011

In/S1/S0

00

S

11111

11010

10001

00000

X/Y/ZS

23 by 2-bit

22 by 3-bit
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Programmable State Machines

 Change to a two-state pattern:

• All off

• All on

S
ta

te

 2

 3

 2

 2

 3
 1

 2

 [2]

 [1:0]

 Input

 Output

(Z, Y, X)

00000

--001

00010

--111

00110

--101

10100

011

In/S1/S0

--

S

--11

11110

--01

00000

Z/Y/ZS

 State: 00  State: 10  State: 00

23 by 2-bit

22 by 3-bit
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From Logic to Data Path

 The data path of a computer is all the logic used to

process information.

• See the data path of the LC-3 on next slide

 Combinational Logic

• Decoders -- convert instructions into control signals

• Multiplexers -- select inputs and outputs

• ALU (Arithmetic and Logic Unit) -- operations on data

 Sequential Logic

• State machine -- coordinate control signals and data movement

• Registers and latches -- storage elements
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LC-3 Data Path

Combinational

Logic

State Machine

Storage
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Looking Forward…

 We’ve touched on basic digital logic

• Transistors

• Gates

• Storage (latches, flip-flops, memory)

• State machines

 Built some simple circuits

• Incrementer, adder, subtracter, adder/subtracter

• Counter (consisting of register and incrementer)

• Hard-coded traffic sign state machine

• Programmable traffic sign state machine

 Up next: a computer as a (simple?) state machine
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Next Time

 Topic

• The von Neumann Model

 Readings

• Chapter 4.0 - 4.2

 Online quiz

• You know the drill!


