Chapter 2

$$
\begin{aligned}
& \text { Bits, Data Types, } \\
& \text { and Operations }
\end{aligned}
$$

[^0]
Computer is a binary digital system

Digital system:

- Finite number of symbols

Binary (base two) system:

- Has two states: 0 and 1

Basic unit of information: the binary digit, or bit 3+ state values require multiple bits

- A collection of two bits has four possible states:

00, 01, 10, 11

- A collection of three bits has eight possible states: 000, 001, 010, 011, 100, 101, 110, 111
- A collection of n bits has 2^{n} possible states

Aside: why binary?

Unsigned Integers

Non-positional notation

- Could represent a number (" 5 ") with a string of ones (" 11111 ")
- Problems?

Weighted positional notation

- Like decimal numbers: " 329 "
- " 3 " is worth 300 , because of its position, while " 9 " is only worth 9

CSE 240

$\mathbf{N}=4$	Number Represented	
Binary	Unsigned	
0000	0	
0001	1	
0010	2	
0011	3	
0100	4	
0101	5	
0110	6	
0111	7	
1000	8	
1001	9	
1010	10	
1011	11	
1100	12	
1101	13	
1110	14	
1111	15	

From GATech's CS2110 Kishore Ramachandra Used with permission

Unsigned Integers (cont.)

An n-bit unsigned integer represents 2^{n} values

- From 0 to $\mathbf{2 n}^{\text {n }} \mathbf{1}$

2^{2}	2^{1}	2^{0}	val
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

CSE 240

Unsigned Binary Arithmetic

Base-2 addition - just like base-10!

- Add from right to left, propagating carry

$10010{ }^{(18)}$	$\begin{gathered} \AA^{\text {carry }} \\ 10010 \text { (18) } \end{gathered}$	01111
+ $01001{ }^{(9)}$	+ $\underline{1011}^{(11)}$	+00001 ${ }^{(1)}$
$11011{ }^{(27)}$	$11101{ }^{(29)}$	10000
	10111 (23)	
	+ $111{ }^{(7)}$	
	$11110{ }^{(30)}$	

Subtraction, multiplication, division,... CSE 240

Signed Integers

With n bits, we have 2^{n} distinct values

- Assign "half" to positive integers (1 through ~2 $\mathbf{2 n}^{n-1}$) and "half" to negative ($\sim-2^{n-1}$ through -1)
- That leaves two values: one for 0 , and one extra

Positive integers

- Just like unsigned with zero in most significant bit 00101 = 5

Negative integers

- Sign-magnitude: set high-order bit to show negative, other bits are the same as unsigned
$10101=-5$
- One's complement: flip every bit to represent negative $11010=-5$
- In either case, most significant bit indicates sign: CSE 240 $>0=$ positive, $1=$ negative

| $\mathbf{N}=4$ | Number Represented | | |
| :---: | :---: | ---: | ---: | ---: |
| Binary | Unsigned | Signed
 Mag | $1 ' s$
 Comp |
| 0000 | 0 | 0 | 0 |
| 0001 | 1 | 1 | 1 |
| 0010 | 2 | 2 | 2 |
| 0011 | 3 | 3 | 3 |
| 0100 | 4 | 4 | 4 |
| 0101 | 5 | 5 | 5 |
| 0110 | 6 | 6 | 6 |
| 0111 | 7 | 7 | 7 |
| 1000 | 8 | -0 | -7 |
| 1001 | 9 | -1 | -6 |
| 1010 | 10 | -2 | -5 |
| 1011 | 11 | -3 | -4 |
| 1100 | 12 | -4 | -3 |
| 1101 | 13 | -5 | -2 |
| 1110 | 14 | -6 | -1 |
| 1111 | 15 | -7 | -0 |

$N=4$	Number Represented	
Binary	Unsigned	Signed Mag
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-0
1001	9	-1
1010	10	-2
1011	11	-3
1100	12	-4
1101	13	-5
1110	14	-6
1111	15	-7

From GATech's CS2110
Kishore Usishore Ramachandran

Problem

Signed-magnitude and 1's complement

- Two representations of zero (+0 and -0)
- Arithmetic circuits are complex
$>$ How do we add two sign-magnitude numbers?
- e.g., try 2 + (-3)

$>$ How do we add to one's complement numbers?
- e.g., try 4 + (-3)

CSE 240

Two's Complement

Idea

- Find representation to make arithmetic simple and consistent

Specifics

- For each positive number (X), assign value to its negative ($-X$), such that $\mathrm{X}+(-\mathrm{X})=0$ with "normal" addition, ignoring carry out

	00101 (5)	01001
$+$	11011 (-5)	+ 10111
	00000	00000

CSE 240

Two's Complement Shortcut

To take the two's complement of a number:

- Copy bits from right to left until (and including) the first " 1 "
- Flip remaining bits to the left

```
011010000
100101111 (1's comp)
+ 1
    100110000
```


Two's Complement Signed Integers

MS bit is sign bit: it has weight -2^{n-1}

Range of an n-bit number: - $\mathbf{2}^{\mathrm{n}-1}$ through $\mathbf{2}^{\mathrm{n}-1}-1$

- Note: most negative number ($-2^{\mathrm{n}-1}$) has no positive counterpart

-2^{3}	2^{2}	2^{1}	2^{0}			-2^{3}	2^{2}	2^{1}	2^{0}	
0	0	0	0	0		1	0	0	0	-8
0	0	0	1	1		1	0	0	1	-7
0	0	1	0	2		1	0	1	0	-6
0	0	1	1	3		1	0	1	1	-5
0	1	0	0	4		1	1	0	0	-4
0	1	0	1	5		1	1	0	1	-3
0	1	1	0	6		1	1	1	0	-2
0	1	1	1	7		1	1	1	1	-1

CSE 240

$\mathbf{N}=4$	Number Represented			
Binary	Unsigned	Signed Mag	1 's Comp	$2 ' s$ Comp
0000		0	0	0
0001	1	1	1	1
0010	2	2	2	2
0011	3	3	3	3
0100	4	4	4	4
0101	5	5	5	5
0110	6	6	6	6
0111	7	7	7	7
1000	8	-0	-7	-8
1001	9	-1	-6	-7
1010	10	-2	-5	-6
1011	11	-3	-4	-5
1100	12	-4	-3	-4
1101	13	-5	-2	-3
1110	14	-6	-1	-2
1111	15	-7	-0	-1

Two's complement is used by all modern computers

From GATech's CS2110,
Kishore Ramachandran Kishore Ramachandran
Used with permission

Converting Binary (2's C) to Decimal

1. If leading bit is one, take two's complement to get a positive number
2. Add powers of 2 that have " 1 " in the corresponding bit positions
3. If original number was negative, add a minus sign

$$
\begin{aligned}
X & =01101000_{\text {two }} \\
& =2^{6}+2^{5}+2^{3}=64+32+8 \\
& =104_{\text {ten }}
\end{aligned}
$$

Assuming 8-bit 2's complement numbers.

More Examples

$$
\begin{aligned}
X & =00100111_{\text {two }} \\
& =2^{5}+2^{2}+2^{1}+2^{0}=32+4+2+1 \\
& =39_{\text {ten }}
\end{aligned}
$$

$$
\begin{aligned}
X & =11100110_{\text {two }} \\
-X & =00011010 \\
& =2^{4}+2^{3}+2^{1}=16+8+2 \\
& =26_{\text {ten }} \\
X & =-26_{\text {ten }}
\end{aligned}
$$

Converting Decimal to Binary (2's C)

First Method: Division

1. Change to positive decimal number
2. Divide by two - remainder is least significant bit
3. Keep dividing by two until answer is zero, recording remainders from right to left
4. Append a zero as the MS bit;
if original number negative, take two's complement

$\mathrm{X}=104_{\text {ten }}$	$104 / 2$	$=52 \mathrm{ro}$	bit 0
$52 / 2$	$=26 \mathrm{rO}$	bit 1	
$26 / 2$	$=13 \mathrm{rO}$	bit 2	
$13 / 2$	$=6 \mathrm{r} 1$	bit 3	
$6 / 2$	$=3 \mathrm{ro}$	bit 4	
$3 / 2$	$=1 \mathrm{r} 1$	bit 5	
	$1 / 2$	$=0 \mathrm{r} 1$	bit 6

$X=01101000_{\text {two }}$
240

Converting Decimal to Binary (2's C)

Second Method: Subtract Powers of Two

1. Change to positive decimal number
2. Subtract largest power of two less than or equal to number
3. Put a one in the corresponding bit position
4. Keep subtracting until result is zero
5. Append a zero as MS bit;
if original was negative, take two's complement

$X=104_{\text {ten }}$	$104-64$	$=40$	bit 6
	$40-32$	$=8$	bit 5
$8-8$	$=0$	bit 3	

$X=01101000_{\text {two }}$
$\operatorname{CSE} 240$

Addition

2's comp. addition is just binary addition

- Assume all integers have the same number of bits
- Ignore carry out
- For now, assume that sum fits in n-bit 2's comp. representation

$+$| $01101000(104)$ |
| :--- |
| $+11110000(-16)$ |
| $01011000(88)$ |
| $(1110110(-10)$ |
| $1110111(-9)$ |
| $11101101(-19)$ |

Assuming 8-bit 2's complement numbers.

Sign Extension

To add

- Must represent numbers with same number of bits

What if we just pad with zeroes on the left?

4-bit	8-bit	
0100 (4)	00000100	(still 4)
1100 (-4)	00001100	(12, not-4)

No, let's replicate the MSB (the sign bit)

4-bit	8-bit	
0100 (4)	00000100	(still 4)
1100 (-4)	11111100	(still -4)

CSE 240
2-25

Logical Operations

Operations on logical TRUE or FALSE

- Two states: TRUE=1, FALSE=0

A	B	A AND B	A	B	A OR B	A	NOT A	
0	0	0		0	0	0		0
0	1	0		0	1	1		1
1	0	0		1	0	1		
1	1	1		1	1	1		
	1							

View \boldsymbol{n}-bit number as a collection of \boldsymbol{n} logical values

- Operation applied to each bit independently

Hexadecimal Notation

It is often convenient to write binary (base-2) numbers as hexadecimal (base-16) numbers instead

- Fewer digits: four bits per hex digit
- Less error prone: easy to misread long string of 1's and 0's

Binary	Hex	Decimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7

Binary	Hex	Decimal
1000	8	8
1001	9	9
1010	A	10
1011	B	11
1100	C	12
1101	D	13
1110	E	14
1111	F	15

CSE 240

Converting from Binary to Hexadecimal

Every group of four bits is a hex digit

- Start grouping from right-hand side

This is not a new machine representation,
just a convenient way to write the number.
CSE 240

Very Large and Very Small: Floating-Point

Problem

- Large values: 6.023×10^{23}-- requires 79 bits
- Small values: 6.626×10^{-34}-- requires $\mathbf{> 1 1 0}$ bits

Use equivalent of "scientific notation": $F \times 2^{E}$ Need to represent F (fraction), E (exponent), and sign IEEE 754 Floating-Point Standard (32-bits):

$N=-1^{S} \times 1$.fraction $\times 2^{\text {exponent-127 }}, 1 \leq$ exponent ≤ 254
No new operations -- same as integer arithmetic

Floating Point Example

Single-precision IEEE floating point number - 32 bits 10111111010000000000000000000000

- Sign is 1 : number is negative
- Exponent field is $01111110=126$ (decimal)
- Fraction is $0.100000000000 \ldots=1 / 10=0.5$ (decimal)

Value $=-1.5 \times 2^{(126-127)}=-1.5 \times 2^{-1}=-0.75$

Double-precision IEEE floating point - 64bits

- 11-bit exponent field, 52-bit fraction field

CSE 240

Floating-Point Operations

Will regular 2's complement arithmetic work for Floating Point numbers?
(Hint: In decimal, how do we compute $3.07 \times 10^{12}+9.11 \times 10^{8}$?)

Floating Point Specials

$$
\begin{aligned}
& \overbrace{\text { S|Exponent }}^{1 b_{c} 8 b} \times \frac{23 b}{\text { Fraction }} \\
& N=-1^{S} \times 1 \text {.fraction } \times 2^{\text {exponent-127 }, ~} 1 \leq \text { exponent } \leq 254 \\
& N=-1^{S} \times 0 . \text { fraction } \times 2^{-126}, \text { exponent }=0
\end{aligned}
$$

If exponent bits are $\mathbf{0}$, "denormalized" numbers

- Gradual underflow (also used for representing zero)

Other specials

- Two zeros ($-0,0$)
- Two Infinities (-infinity, infinity)
- Not a number (negative and positive) $>$ When does this occur?
Lots of corner cases (difficult to implement correctly)
- Example: rounding modes

CSE 240

Text: ASCII Characters

ASCII: Maps 128 characters to 7-bit code

- Both printable and non-printable (ESC, DEL, ...) characters

00 nu	10 dle	20 sp	30	0	40	@	50	P	60			p
01 soh	11 dc 1	21 !	31	1	41	A	51	Q	61	a		q
02 stx	12 dc 2	22	32	2	42	B	52	R	62	b	72	
03 etx	13 dc 3	23 \#	33	3	43	C	53	S	63	c	73	s
04 eot	14 dc 4	24 \$	34	4	44	D	54	T	64	d	74	
05 enq	15 nak	25 \%	35	5	45	E	55	U	65		75	u
06 ack	16 syn	26 \&	36	6	46	F	56	v	66	f	76	
07 bel	17 etb	27	37	7	47	G	57	W	67	g	77	w
08 bs	18 can	28	38	8	48	H	58	X	68	h	78	x
09 ht	19 e	29	39	9	49	1	59	Y	69		79	y
Oa nl	1a sub	2a	3a	:	4a	J	5a	Z	6a		7a	
Ob vt	1b esc	2b	3b	;	4b	K	5b	[6b	k	7b	
Oc np	1c fs	2c	3c	<	4 c	L	5c	1	6c		7c	
Od cr	1d gs	2d	3d	=	4	M	5d]	6d	m	7d	\}
Oe so	1 e rs	2e	3 e	>	4 e	N	5	\wedge	6 e		7e	
Of si	1 f us	2 f	3f	?	4 f	0	$5 f$		6 f	-	7 f	

Interesting Properties of ASCII Code

What is relationship between a decimal digit ('0', '1', ...) and its ASCII code?

What is the difference between an upper-case letter ('A', 'B', ...) and its lower-case equivalent ('a', 'b', ...)?

Given two ASCII characters, how do we tell which comes first in alphabetical order?

Are 128 characters enough?

(http://www.unicode.org/)
No new operations -- integer arithmetic and logic.
CSE 240 2-37

LC-3 Data Types

Some data types are supported directly by the instruction set architecture

For LC-3, there is only one supported data type

- 16-bit 2's complement signed integer
- Operations: ADD, AND, NOT (and sometimes MUL)

Other data types?

- Supported by interpreting 16-bit values as logical, text, fixedpoint, etc., in the software that we write

Other Data Types

Text strings

- Sequence of characters, terminated with NULL (0)
- Typically, no hardware support

Image

- Array of pixels
> Monochrome: one bit (0/1 = black/white)
$>$ Color: red, green, blue (RGB) components (e.g., 8 bits each)
$>$ Other properties: transparency
- Hardware support
$>$ Typically none, in general-purpose processors
$>$ MMX: multiple 8-bit operations on 32-bit word

Sound

- Sequence of fixed-point numbers

CSE 240

Next Time

Lecture

- Digital logic structures: transistors and gates

Reading

- Chapter 3-3.2

Quiz

- Online

Upcoming

- HW1 due this Friday!

[^0]: Based on slides © McGraw-Hill
 Additional material © 2004/2005/2006
 Additional material © 2004/2005/2006 Lewis/Martin

