
Chapter 2
Bits, Data Types,

and Operations

Based on slides © McGraw-Hill

Additional material © 2004/2005/2006 Lewis/Martin

2-2CSE 240

How do we represent data in a computer?

At the lowest level, a computer has electronic “plumbing”

• Operates by controlling the flow of electrons

Easy to recognize two conditions:

1. Presence of a voltage – we’ll call this state “1”

2. Absence of a voltage – we’ll call this state “0”

Alternative: Base state on value of voltage

• On/Off light switch versus dimmer switch

• Problem: Control/detection circuits more complex

2-3CSE 240

Computer is a binary digital system

Basic unit of information: the binary digit, or bit

3+ state values require multiple bits
• A collection of two bits has four possible states:

00, 01, 10, 11

• A collection of three bits has eight possible states:

000, 001, 010, 011, 100, 101, 110, 111

• A collection of n bits has 2n possible states

Aside: why binary?

Binary (base two) system:

• Has two states: 0 and 1

Digital system:

• Finite number of symbols

2-4CSE 240

What kinds of data do we need to represent?

• Numbers – signed, unsigned, integers, real, floating point,
complex, rational, irrational, …

• Text – characters, strings, …

• Images – pixels, colors, shapes, …

• Sound

• Logical – true, false

• Instructions

• …

Data type:
• Representation and operations within the computer

We’ll start with numbers…

2-5CSE 240

Unsigned Integers

Non-positional notation

• Could represent a number (“5”) with a string of ones (“11111”)

• Problems?

Weighted positional notation

• Like decimal numbers: “329”

• “3” is worth 300, because of its position, while “9” is only worth 9

329

102 101 100

3x100 + 2x10 + 9x1 = 329

101

22 21 20

1x4 + 0x2 + 1x1 = 5

most

significant

least

significant base-2
(binary)

base-10
(decimal)

2-6CSE 240

Unsigned Integers (cont.)

An n-bit unsigned integer represents 2n values

• From 0 to 2n-1

7111

6011

5101

4001

3110

2010

1100

0000

val202122

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Binary

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

N = 4 Number Represented

From GATech’s CS2110,

Kishore Ramachandran

Used with permission 2-8CSE 240

Unsigned Binary Arithmetic

Base-2 addition – just like base-10!

• Add from right to left, propagating carry

10010 10010 01111
+ 01001 + 01011 + 00001

10111
+ 111

carry

Subtraction, multiplication, division,…

11011 11101 10000

11110

(18)

(9)

(27)

(18)

(11)

(29)

(15)

(1)

(16)

(23)

(7)

(30)

2-9CSE 240

Signed Integers

With n bits, we have 2n distinct values

• Assign “half” to positive integers (1 through ~2n-1)
and “half” to negative (~-2n-1 through -1)

• That leaves two values: one for 0, and one extra

Positive integers

• Just like unsigned with zero in most significant bit
00101 = 5

Negative integers

• Sign-magnitude: set high-order bit to show negative,
other bits are the same as unsigned
10101 = -5

• One’s complement: flip every bit to represent negative
11010 = -5

• In either case, most significant bit indicates sign:

!0=positive, 1=negative

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Binary

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Signed

Mag

0

1

2

3

4

5

6

7

-0

-1

-2

-3

-4

-5

-6

-7

N = 4 Number Represented

From GATech’s CS2110,

Kishore Ramachandran

Used with permission

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Binary

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Signed

Mag

0

1

2

3

4

5

6

7

-0

-1

-2

-3

-4

-5

-6

-7

1's

Comp

0

1

2

3

4

5

6

7

-7

-6

-5

-4

-3

-2

-1

-0

N = 4 Number Represented

From GATech’s CS2110,

Kishore Ramachandran

Used with permission 2-12CSE 240

Problem

Signed-magnitude and 1’s complement

• Two representations of zero (+0 and –0)

• Arithmetic circuits are complex

!How do we add two sign-magnitude numbers?

– e.g., try 2 + (-3)

!How do we add to one’s complement numbers?

– e.g., try 4 + (-3)

00010 (2)

+ 10011 (-3)

10001 (-1)

00100 (4)

+ 11100 (-3)

00001 (1)

?

?

2-13CSE 240

Two’s Complement

Idea
• Find representation to make arithmetic simple and consistent

Specifics
• For each positive number (X), assign value to its negative (-X),

such that X + (-X) = 0 with “normal” addition, ignoring carry out

00101 (5) 01001 (9)

+ 11011 (-5) + (-9)

00000 (0) 00000 (0)

10111

2-14CSE 240

Two’s Complement (cont.)

If number is positive or zero

• Normal binary representation, zeroes in upper bit(s)

If number is negative

• Start with positive number

• Flip every bit (i.e., take the one’s complement)

• Then add one

00101 (5) 01001 (9)

11010 (1’s comp) 10110 (1’s comp)

+ 1 + 1
11011 (-5) 10111 (-9)

2-15CSE 240

Two’s Complement Shortcut

To take the two’s complement of a number:

• Copy bits from right to left until (and including) the first “1”

• Flip remaining bits to the left

011010000 011010000
100101111 (1’s comp)

+ 1
100110000 100110000

(copy)(flip)

2-16CSE 240

Two’s Complement Signed Integers
MS bit is sign bit: it has weight –2n-1

Range of an n-bit number: -2n-1 through 2n-1 – 1

• Note: most negative number (-2n-1) has no positive counterpart

0

0

0

0

0

0

0

0

-23

7111

6011

5101

4001

3110

2010

1100

0000

202122

1

1

1

1

1

1

1

1

-23

-1111

-2011

-3101

-4001

-5110

-6010

-7100

-8000

202122

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Binary

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Signed

Mag

0

1

2

3

4

5

6

7

-0

-1

-2

-3

-4

-5

-6

-7

1's

Comp

0

1

2

3

4

5

6

7

-7

-6

-5

-4

-3

-2

-1

-0

2's

Comp

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

N = 4 Number Represented

From GATech’s CS2110,

Kishore Ramachandran

Used with permission

Two’s

complement

is used by all

modern

computers

2-18CSE 240

Converting Binary (2’s C) to Decimal

1. If leading bit is one, take two’s
complement to get a positive number

2. Add powers of 2 that have “1” in the
corresponding bit positions

3. If original number was negative,
add a minus sign

102410

5129

2568

1287

646

325

164

83

42

21

10

2nn

X = 01101000two

= 26+25+23 = 64+32+8

= 104ten

Assuming 8-bit 2’s complement numbers.

2-19CSE 240

More Examples

102410

5129

2568

1287

646

325

164

83

42

21

10

2nn

Assuming 8-bit 2’s complement numbers.

X = 00100111two

= 25+22+21+20 = 32+4+2+1

= 39ten

X = 11100110two

-X = 00011010

= 24+23+21 = 16+8+2

= 26ten

X = -26ten

2-20CSE 240

Converting Decimal to Binary (2’s C)

First Method: Division

1. Change to positive decimal number

2. Divide by two – remainder is least significant bit

3. Keep dividing by two until answer is zero,
recording remainders from right to left

4. Append a zero as the MS bit;
if original number negative, take two’s complement

X = 104ten 104/2 = 52 r0 bit 0

52/2 = 26 r0 bit 1

26/2 = 13 r0 bit 2

13/2 = 6 r1 bit 3

6/2 = 3 r0 bit 4

3/2 = 1 r1 bit 5

1/2 = 0 r1 bit 6

 X=01101000two

2-21CSE 240

Converting Decimal to Binary (2’s C)

Second Method: Subtract Powers of Two

1. Change to positive decimal number

2. Subtract largest power of two
less than or equal to number

3. Put a one in the corresponding bit position

4. Keep subtracting until result is zero

5. Append a zero as MS bit;
if original was negative, take two’s complement

X = 104ten 104 - 64 = 40 bit 6

40 - 32 = 8 bit 5

8 - 8 = 0 bit 3

X = 01101000two

102410

5129

2568

1287

646

325

164

83

42

21

10

2nn

2-22CSE 240

Operations: Arithmetic and Logical

Recall

• A data type includes representation and operations

Operations for signed integers

• Addition

• Subtraction

• Sign Extension

Logical operations are also useful

• AND

• OR

• NOT

And. . .

• Overflow conditions for addition

2-23CSE 240

Addition

2’s comp. addition is just binary addition

• Assume all integers have the same number of bits

• Ignore carry out

• For now, assume that sum fits in n-bit 2’s comp. representation

01101000 (104) 11110110 (-10)

+ 11110000 (-16) + (-9)

01011000 (88) (-19)

Assuming 8-bit 2’s complement numbers.

10111111

01101111

2-24CSE 240

Subtraction

Negate 2nd operand and add

• Assume all integers have the same number of bits

• Ignore carry out

• For now, assume that difference fits in n-bit 2’s comp.
representation

01101000 (104) 11110110 (-10)

- 00010000 (16) - (-9)

01101000 (104) 11110110 (-10)

+ 11110000 (-16) + (9)

01011000 (88) (-1)

Assuming 8-bit 2’s complement numbers.

10111111

01001000

11111111

2-25CSE 240

Sign Extension

To add

• Must represent numbers with same number of bits

What if we just pad with zeroes on the left?

No, let’s replicate the MSB (the sign bit)

4-bit 8-bit
0100 (4) 00000100 (still 4)

1100 (-4) 00001100 (12, not -4)

4-bit 8-bit
0100 (4) 00000100 (still 4)

1100 (-4) 11111100 (still -4)

2-26CSE 240

Overflow

What if operands are too big?

• Sum cannot be represented as n-bit 2’s comp number

We have overflow if

• Signs of both operands are the same, and

• Sign of sum is different

Another test (easy for hardware)

• Carry into most significant bit does not equal carry out

01000 (8) 11000 (-8)

+ 01001 (9) + 10111 (-9)

10001 (-15) 01111 (+15)

2-27CSE 240

Logical Operations

Operations on logical TRUE or FALSE

• Two states: TRUE=1, FALSE=0

View n-bit number as a collection of n logical values

• Operation applied to each bit independently

1

1

0

0

A

11

00

01

00

A AND BB

1

1

0

0

A

11

10

11

00

A OR BB

1

0

A

0

1

NOT A

2-28CSE 240

Examples of Logical Operations

AND
• Useful for clearing bits

!AND with zero = 0

!AND with one = no change

OR
• Useful for setting bits

!OR with zero = no change

!OR with one = 1

NOT
• Unary operation -- one argument

• Flips every bit

11000101
AND 00001111

00000101

11000101
OR 00001111

11001111

NOT 11000101
00111010

2-29CSE 240

Hexadecimal Notation

It is often convenient to write binary (base-2) numbers
as hexadecimal (base-16) numbers instead

• Fewer digits: four bits per hex digit

• Less error prone: easy to misread long string of 1’s and 0’s

7

6

5

4

3

2

1

0

Hex

70111

60110

50101

40100

30011

20010

10001

00000

DecimalBinary

F

E

D

C

B

A

9

8

Hex

151111

141110

131101

121100

111011

101010

91001

81000

DecimalBinary

2-30CSE 240

Converting from Binary to Hexadecimal

Every group of four bits is a hex digit

• Start grouping from right-hand side

011101010001111010011010111

7D4F8A3

This is not a new machine representation,

just a convenient way to write the number.

2-31CSE 240

Fractions: Fixed-Point

How can we represent fractions?

• Use a “binary point” to separate positive from negative powers of
two (just like “decimal point”)

• 2’s comp addition and subtraction still work

! If binary points are aligned

00101000.101 (40.625)

+ 11111110.110 (-1.25)

00100111.011 (39.375)

2-1 = 0.5

2-2 = 0.25

2-3 = 0.125

No new operations -- same as integer arithmetic

2-32CSE 240

Very Large and Very Small: Floating-Point

Problem

• Large values: 6.023 x 1023 -- requires 79 bits

• Small values: 6.626 x 10-34 -- requires >110 bits

Use equivalent of “scientific notation”: F x 2E

Need to represent F (fraction), E (exponent), and sign

IEEE 754 Floating-Point Standard (32-bits):

S Exponent Fraction

1b 8b 23b

0exponent,2fraction.01

254exponent1,2fraction.11

126

127exponent

=!!"=

##!!"=

"

"

S

S

N

N

2-33CSE 240

Floating Point Example

Single-precision IEEE floating point number - 32 bits

10111111010000000000000000000000

• Sign is 1: number is negative

• Exponent field is 01111110 = 126 (decimal)

• Fraction is 0.100000000000… = 1/10 = 0.5 (decimal)

Value = -1.5 x 2(126-127) = -1.5 x 2-1 = -0.75

Double-precision IEEE floating point - 64bits

• 11-bit exponent field, 52-bit fraction field

sign exponent fraction

2-34CSE 240

Floating Point Specials

If exponent bits are 0, “denormalized” numbers
• Gradual underflow (also used for representing zero)

Other specials
• Two zeros (-0, 0)

• Two Infinities (-infinity, infinity)

• Not a number (negative and positive)

!When does this occur?

Lots of corner cases (difficult to implement correctly)
• Example: rounding modes

S Exponent Fraction

1b 8b 23b

0exponent,2fraction.01

254exponent1,2fraction.11

126

127exponent

=!!"=

##!!"=

"

"

S

S

N

N

2-35CSE 240

Floating-Point Operations

Will regular 2’s complement arithmetic work for
Floating Point numbers?

(Hint: In decimal, how do we compute 3.07 x 1012 + 9.11 x 108?)

2-36CSE 240

Text: ASCII Characters

ASCII: Maps 128 characters to 7-bit code.

• Both printable and non-printable (ESC, DEL, …) characters

del7fo6f_5fO4f?3f/2fus1fsi0f

~7en6e^5eN4e>3e.2ers1eso0e

}7dm6d]5dM4d=3d-2dgs1dcr0d

|7cl6c\5cL4c<3c,2cfs1cnp0c

{7bk6b[5bK4b;3b+2besc1bvt0b

z7aj6aZ5aJ4a:3a*2asub1anl0a

y79i69Y59I49939)29em19ht09

x78h68X58H48838(28can18bs08

w77g67W57G47737'27etb17bel07

v76f66V56F46636&26syn16ack06

u75e65U55E45535%25nak15enq05

t74d64T54D44434$24dc414eot04

s73c63S53C43333#23dc313etx03

r72b62R52B42232"22dc212stx02

q71a61Q51A41131!21dc111soh01

p70`60P50@40030sp20dle10nul00

2-37CSE 240

Interesting Properties of ASCII Code

What is relationship between a decimal digit ('0', '1', …)
and its ASCII code?

What is the difference between an upper-case letter
('A', 'B', …) and its lower-case equivalent ('a', 'b', …)?

Given two ASCII characters, how do we tell which comes
first in alphabetical order?

Are 128 characters enough?
(http://www.unicode.org/)

No new operations -- integer arithmetic and logic.

2-38CSE 240

Other Data Types

Text strings

• Sequence of characters, terminated with NULL (0)

• Typically, no hardware support

Image

• Array of pixels

!Monochrome: one bit (0/1 = black/white)

!Color: red, green, blue (RGB) components (e.g., 8 bits each)

!Other properties: transparency

• Hardware support

!Typically none, in general-purpose processors

!MMX: multiple 8-bit operations on 32-bit word

Sound

• Sequence of fixed-point numbers

2-39CSE 240

LC-3 Data Types

Some data types are supported directly by the
instruction set architecture

For LC-3, there is only one supported data type

• 16-bit 2’s complement signed integer

• Operations: ADD, AND, NOT (and sometimes MUL)

Other data types?

• Supported by interpreting 16-bit values as logical, text, fixed-
point, etc., in the software that we write

2-40CSE 240

Next Time

Lecture

• Digital logic structures: transistors and gates

Reading

• Chapter 3-3.2

Quiz

• Online

Upcoming

• HW1 due this Friday!

