Chapter 2 Bits, Data Types, and Operations

Based on slides © McGraw-Hill Additional material © 2004/2005/2006 Lewis/Martin

How do we represent data in a computer?

At the lowest level, a computer has electronic "plumbing"

• Operates by controlling the flow of electrons

Easy to recognize two conditions:

- 1. Presence of a voltage we'll call this state "1"
- 2. Absence of a voltage we'll call this state "0"

Alternative: Base state on value of voltage

- · On/Off light switch versus dimmer switch
- Problem: Control/detection circuits more complex

CSE 240

2-2

Computer is a binary digital system

Digital system:

- Binary (base two) system:
- Finite number of symbols
- Has two states: 0 and 1

Basic unit of information: the binary digit, or bit

3+ state values require multiple bits

- A collection of two bits has four possible states: 00, 01, 10, 11
- A collection of three bits has eight possible states: 000, 001, 010, 011, 100, 101, 110, 111
- A collection of *n* bits has 2^{*n*} possible states

Aside: why binary?

What kinds of data do we need to represent?

- Numbers signed, unsigned, integers, real, floating point, complex, rational, irrational, ...
- Text characters, strings, ...
- Images pixels, colors, shapes, …
- Sound
- Logical true, false
- Instructions
- ...

Data type:

· Representation and operations within the computer

We'll start with numbers...

2-3

Unsigned Integers

Non-positional notation

- Could represent a number ("5") with a string of ones ("11111")
- Problems?

Weighted positional notation

- · Like decimal numbers: "329"
- "3" is worth 300, because of its position, while "9" is only worth 9

2-5

Unsigned Integers (cont.)

An *n*-bit unsigned integer represents 2^{*n*} values

• From 0 to 2ⁿ-1

			1
2 ²	2 ¹	2º	val
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

CSE 240

2-6

N = 4	Numbe	er Represented
Binary	Unsigned	
0000	0	
0001	1	
0010	2	
0011	3	
0100	4	
0101	5	
0110	6	
0111	7	
1000	8	
1001	9	
1010	10	
1011	11	
1100	12	
1101	13	
1110	14	
1111	15	

Unsigned Binary Arithmetic

Base-2 addition – just like base-10!

· Add from right to left, propagating carry

From GATech's CS2110, Kishore Ramachandran Used with permission

Subtraction, multiplication, division,...

	N = 4	Numbe	er Repr	esented
Signed Integers	Binary	Unsigned	Signed	
With <i>n</i> bits, we have 2 ^{<i>n</i>} distinct values			Mag	
 Assign "half" to positive integers (1 through ~2ⁿ⁻¹) and "half" to penative (~-2ⁿ⁻¹ through -1) 	0000	0	0	
 That leaves two values: one for 0, and one extra 	0001	1 2	1 2	
Positive integers	0011	3	3	
 Just like unsigned with zero in most significant bit 00101 = 5 	0100 0101 0110	4 5 6	4 5 6	
Negative integers	0111	7	7	
 Sign-magnitude: set high-order bit to show negative, other bits are the same as unsigned 10101 = -5 	1000 1001 1010	8 9 10	-0 -1 -2	
 One's complement: flip every bit to represent negative 11010 = -5 	1011 1100	11 12	-3 -4	
In either case, most significant bit indicates sign: SGE 240 P0=positive, 1=negative 2-9	11101 1110 11111	13 14 15	-5 -6 -7	

From GATech's CS2110, Kishore Ramachandran Used with permission From GATech's CS2110, Kishore Ramachandran Used with permission

N = 4	Number Represented					
Binary	Unsigned	Signed Mag	l's Comp			
0000 0001 0010 0100 0101 0110 0111 1000 1001	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 -0 -1	0 1 2 3 4 5 6 7 7 -7 -6			
1010 1011 1100 1101 1110 1111	10 11 12 13 14 15	-2 -3 -4 -5 -6 -7	-5 -4 -3 -2 -1 -0			

Problem

Signed-magnitude and 1's complement

- Two representations of zero (+0 and -0)
- Arithmetic circuits are complex
 - > How do we add two sign-magnitude numbers?

– e.g., try 2 + (-3)

00010 (2) + <u>10011</u> (-3) 10001 (-1)

> How do we add to one's complement numbers?

 $\begin{array}{c} -\text{ e.g., try 4 + (-3)} \\ + & \underbrace{1000}_{00001} & (-3) \\ 000001 & (1) \end{array}$

Two's Complement

Idea

Find representation to make arithmetic simple and consistent

Specifics

 For each positive number (X), assign value to its negative (-X), such that X + (-X) = 0 with "normal" addition, ignoring carry out

	00101	(5)	01001	(9)
+	<u>11011</u>	(-5)	+ <u>10111</u>	(-9)
	00000	(0)	00000	(0)

CSE 240

2-13

Two's Complement (cont.)

If number is positive or zero

· Normal binary representation, zeroes in upper bit(s)

If number is negative

- Start with positive number
- Flip every bit (i.e., take the one's complement)
- Then add one

CSE 240

2-14

Two's Complement Shortcut

To take the two's complement of a number:

- Copy bits from right to left until (and including) the first "1"
- Flip remaining bits to the left

Two's Complement Signed Integers

MS bit is sign bit: it has weight –2^{*n*-1} Range of an n-bit number: -2^{*n*-1} through 2^{*n*-1} – 1

• Note: most negative number (-2ⁿ⁻¹) has no positive counterpart

-2 ³	2 ²	2 ¹	2 º		-2 ³	2 ²	2 ¹	2 º	
0	0	0	0	0	1	0	0	0	-8
0	0	0	1	1	1	0	0	1	-7
0	0	1	0	2	1	0	1	0	-6
0	0	1	1	3	1	0	1	1	-5
0	1	0	0	4	1	1	0	0	-4
0	1	0	1	5	1	1	0	1	-3
0	1	1	0	6	1	1	1	0	-2
0	1	1	1	7	1	1	1	1	-1

N = 4	Number Represented							
Binary	Unsigned	Signed Mag	l's Comp	2's Comp				
0000	0	0	0	0				
0001	1	1	1	1				
0010	2	2	2	2				
0011	3	3	3	3				
0100	4	4	4	4				
0101	5	5	5	5				
0110	6	6	6	6				
0111	7	7	7	7				
1000	8	-0	-7	-8				
1001	9	-1	-6	-7				
1010	10	-2	-5	-6				
1011	11	-3	-4	-5				
1100	12	-4	-3	-4				
1101	13	-5	-2	-3				
1110	14	-6	-1	-2				
1111	15	-7	-0	-1				

Two's complement is used by all modern computers

> From GATech's CS2110, Kishore Ramachandran Used with permission

> > n 2ⁿ

1 2

2 4

3 8

2-19

0

Converting Binary (2's C) to Decimal

If leading bit is one, take two's complement to get a positive number	n	2 ⁿ
Add powers of 2 that have "1" in the	0	1
corresponding bit positions	1	2
If original number was negative.	2	4
add a minus sign	3	8
adu a minus sign	4	16
	5	32
$X = 01101000_{two}$	6	64
$= 2^{6} + 2^{5} + 2^{3} = 64 + 32 + 8$	7	128
	8	256
= 104 _{ten}	9	512
	10	1024

Assuming 8-bit 2's complement numbers.

CSE 240

1.

2.

3.

2-18

More Examples

$X = 00100111_{two}$ = 2 ⁵ +2 ² +2 ¹ +2 ⁰ = 32+4+2+1
= 39 _{ten}
X - 11100110
$X = 11100110_{two}$ -X = 00011010
$= 2^4 + 2^3 + 2^1 = 16 + 8 + 2$
= 26 _{ten}
$X = -26_{ten}$

Assuming 8-bit 2's complement numbers.

Converting Decimal to Binary (2's C)

First Method: Division

- 1. Change to positive decimal number
- 2. Divide by two remainder is least significant bit
- 3. Keep dividing by two until answer is zero, recording remainders from right to left
- 4. Append a zero as the MS bit; if original number negative, take two's complement

X = 104.	104/2	=	52 r0	hit 0
, io ten	52/2	=	26 r0	bit 1
	26/2	=	13 r0	bit 2
	13/2	=	6 r1	bit 3
	6/2	=	3 r0	bit 4
	3/2	=	1 r1	bit 5
	1/2	=	0 r1	bit 6
X=01101000 _{two}				

Converting Decimal to Binary (2's C)

Second Method: Subtract Powers of Two						
00		5 01	1 000		1	2
1. Change to positive decimal number						
2 Subtract largest nower of two						
۷.		0			4	16
	less than or equal to number				5	32
3.	Put a one in the correspondi	ng b	oit po	sition	6	64
					7	128
4.	Keep subtracting until result	is z	ero		8	256
5.	Append a zero as MS bit;				9	512
	if original was negative, take	two	's co	mplement	10	1024
Γ	V = 104					
	$\lambda - 104_{ten}$ 104-0	54 =	40	bit 6		
	40 - 3	32 =	8	bit 5		
	8 -	8 =	0	bit 3		

2-21

2-23

n 2ⁿ

Operations: Arithmetic and Logical

Recall

• A data type includes representation and operations

Operations for signed integers

- Addition
- Subtraction
- Sign Extension

Logical operations are also useful

- AND
- OR
- NOT

And. . .

· Overflow conditions for addition

CSE 240

2-22

Addition

2's comp. addition is just binary addition

- · Assume all integers have the same number of bits
- Ignore carry out

 $X = 01101000_{two}$

· For now, assume that sum fits in n-bit 2's comp. representation

Assuming 8-bit 2's complement numbers.

Subtraction

Negate 2nd operand and add

- · Assume all integers have the same number of bits
- Ignore carry out
- For now, assume that difference fits in n-bit 2's comp. representation

	01101000 (104)	11110110 (·	-10)
-	<u>00010000</u> (16)	- 11110111 (-9)
	01101000 (104)	11110110 (-10)
+	<u>11110000</u> (-16)	+ 00001001 (9)
	01011000 (88)	11111111 (*	-1)

Assuming 8-bit 2's complement numbers.

Sign Extension

To add

• Must represent numbers with same number of bits What if we just pad with zeroes on the left?

<u>4-bit</u>		<u>8-bit</u>	
0100	(4)	00000100	(still 4)
1100	(-4)	00001100	(12, not -4)

No, let's replicate the MSB (the sign bit)

<u>4-bit</u>	<u>8-bit</u>	
0100 (4)	00000100	(still 4)
1100 (-4)	11111100	(still -4)

CSE 240

2-25

Overflow

What if operands are too big?

• Sum cannot be represented as *n*-bit 2's comp number

	01000	(8)	11000	(-8)
+	<u>01001</u>	(9)	+ <u>10111</u>	(-9)
	10001	(-15)	01111	(+15)

We have overflow if

- Signs of both operands are the same, and
- Sign of sum is different

Another test (easy for hardware)

Carry into most significant bit does not equal carry out

CSE 240

CSE 240

2-26

Logical Operations

Operations on logical TRUE or FALSE

• Two states: TRUE=1, FALSE=0

A	в	A AND B	Α	в	A OR B	A	NOT A
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	1	1	1		

View *n*-bit number as a collection of *n* logical values

Operation applied to each bit independently

Examples of Logical Operations

AND • Useful for clearing bits → AND with zero = 0 → AND with one = no change	AND	11000101 <u>00001111</u> 00000101
OR • Useful for setting bits ≻ OR with zero = no change ≻ OR with one = 1	OR	11000101 <u>00001111</u> 11001111
NOT • Unary operation one argument • Flips every bit	NOT	<u>11000101</u> 00111010

Hexadecimal Notation

It is often convenient to write binary (base-2) numbers as hexadecimal (base-16) numbers instead

- Fewer digits: four bits per hex digit
- Less error prone: easy to misread long string of 1's and 0's

Binary	Hex	Decimal	Binary	Hex	Decimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	Α	10
0011	3	3	1011	В	11
0100	4	4	1100	С	12
0101	5	5	1101	D	13
0110	6	6	1110	Е	14
0111	7	7	1111	F	15

CSE 240

2-29

Converting from Binary to Hexadecimal

Every group of four bits is a hex digit

• Start grouping from right-hand side

This is not a new mach	ine representation,
just a convenient way to	o write the number.

CSE 240

2-30

Fractions: Fixed-Point

How can we represent fractions?

- Use a "binary point" to separate positive from negative powers of two (just like "decimal point")
- 2's comp addition and subtraction still work
 - ➢ If binary points are aligned

No new operations -- same as integer arithmetic

Very Large and Very Small: Floating-Point

Problem

- Large values: 6.023 x 10²³ -- requires 79 bits
- Small values: 6.626 x 10⁻³⁴ -- requires >110 bits

Use equivalent of "scientific notation": F x 2^E Need to represent F (*fraction*), E (*exponent*), and sign IEEE 754 Floating-Point Standard (32-bits):

 $N = -1^{S} \times 1.$ fraction $\times 2^{exponent-127}$, $1 \le exponent \le 254$

Floating Point Example

Single-precision IEEE floating point number - 32 bits

10111111010000000000000000000000000

fraction sign exponent

- · Sign is 1: number is negative
- Exponent field is 01111110 = 126 (decimal)
- Fraction is 0.10000000000... = 1/10 = 0.5 (decimal)

Value = $-1.5 \times 2^{(126-127)} = -1.5 \times 2^{-1} = -0.75$

Double-precision IEEE floating point - 64bits

• 11-bit exponent field, 52-bit fraction field

CSE 240

2-33

Floating Point Specials

<u>1b 8b</u>	23b
S Exponent	Fraction

$$N = -1^{S} \times 1.$$
fraction $\times 2^{exponent-127}$, $1 \le exponent \le 254$

$$N = -1^{\circ} \times 0.11$$
 action $\times 2^{\circ}$, exponent = 0

- If exponent bits are 0, "denormalized" numbers
- Gradual underflow (also used for representing zero) Other specials
 - Two zeros (-0, 0)
 - Two Infinities (-infinity, infinity)
 - Not a number (negative and positive) > When does this occur?
- Lots of corner cases (difficult to implement correctly)

 Example: rounding modes CSE 240

Floating-Point Operations

Will regular 2's complement arithmetic work for

Floating Point numbers?

(*Hint*: In decimal, how do we compute $3.07 \times 10^{12} + 9.11 \times 10^{8}$?)

Text: ASCII Characters

ASCII: Maps 128 characters to 7-bit code.

Both printable and non-printable (ESC, DEL, ...) characters

00 nul 10 dle 20 sp 30 0 40 @ 50 P 60 70 p 01 soh 11 dc1 21 ! 31 1 41 A 51 Q 61 a 71 q 02 stx 12 dc2 22 " 32 2 42 B 52 R 62 b 72 r 03 etx 13 dc3 23 # 33 3 43 C 53 S 63 c 73 s 04 eot 14 dc4 24 \$ 34 4 44 D 54 T 64 d 74 t 05 eng 15 nak 25 % 35 5 45 E 55 U 65 e 75 u 06 ack 16 svn 26 & 36 6 46 F 56 V 66 f 76 V 47 G 57 W 67 07 bel 17 etb 27 37 7 77 w q 48 H 58 X 68 h 08 bs 18 can 28 (38 8 78 x 09 ht 19 em 29) 39 9 49 I 59 Y 69 1 79 y 3a : 4a J 5a Z 6a i 0a ni 1a sub 2a * 7a z 0b vt 1b esc 2b + 3b ; 4b K 5b [6b k 7b { 1c fs 2c , 3c < 4c L 5c \ 6c I 7c 0c np $0d \ cr \ 1d \ gs \ 2d \ - \ 3d \ = \ 4d \ M \ 5d \] \ 6d \ m \ 7d \ \}$ 0e so 1e rs 2e , 3e > 4e N 5e ^ 6e n 7e ~ Of si 1f us 2f / 3f ? 4f O 5f 6f o 7f del

CSE 240

2-34

Interesting Properties of ASCII Code

What is relationship between a decimal digit ('0', '1', \ldots) and its ASCII code?

What is the difference between an upper-case letter ('A', 'B', ...) and its lower-case equivalent ('a', 'b', ...)?

Given two ASCII characters, how do we tell which comes first in alphabetical order?

Are 128 characters enough? (http://www.unicode.org/)

No new operations -- integer arithmetic and logic.

CSE 240

2-37

Other Data Types

Text strings

- Sequence of characters, terminated with NULL (0)
- Typically, no hardware support

Image

- Array of pixels
 - > Monochrome: one bit (0/1 = black/white)
 - Color: red, green, blue (RGB) components (e.g., 8 bits each)
 - > Other properties: transparency
- Hardware support
 - > Typically none, in general-purpose processors
 - > MMX: multiple 8-bit operations on 32-bit word

Sound

Sequence of fixed-point numbers

CSE 240

2-38

LC-3 Data Types

Some data types are supported directly by the instruction set architecture

For LC-3, there is only one supported data type

- 16-bit 2's complement signed integer
- · Operations: ADD, AND, NOT (and sometimes MUL)

Other data types?

• Supported by <u>interpreting</u> 16-bit values as logical, text, fixedpoint, etc., in the software that we write

Next Time

Lecture

· Digital logic structures: transistors and gates

Reading

Chapter 3-3.2

Quiz

• Online

Upcoming

• HW1 due this Friday!