
ECE 199 Final Exam Spring 2004

Friday, May 7th, 2004

• Be sure your exam booklet has 14 pages.
• Write your name at the top of each page.
• This is a closed book exam.
• You are allowed three handwritten 8.5 x 11” sheets of notes.
• Absolutely no interaction between students is allowed.
• Show all of your work.
• Be sure to clearly indicate any assumptions that you make.
• More challenging questions are marked with a ***
• Don’t panic, and good luck!

Problem 1 20 points _______________________________

Problem 2 20 points _______________________________

Problem 3 20 points _______________________________

Problem 4 20 points _______________________________

Problem 5 20 points _______________________________

Total 100 points

Name:

Page 2 Name: __

Problem 1 (20 points): Short Answer

Part A (5 points): Given a 16-bit register A holding a number in 2’s complement form,
use a single gate (e.g., AND, OR, XOR, NAND, NOR, NOT) with an arbitrary number of
inputs to implement a circuit that produces an output 1 if the number is divisible by 16,
and an output 0 otherwise.

Part B (5 points): You and your friends decide to collect all fifty of the U.S. state
quarters. Given that each collection may or may not contain any given quarter, how
many bits are necessary to represent a single collection?

 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

Page 3 Name: __

Part C (10 points): The three file I/O functions fgets, fscanf, and fread are all used
to read data from a file, but the context in which each is used differs. Explain the
differences between their usages, and provide an example of how each function could be
used. The function signatures appear below for your convenience.

char* fgets (char* buf, int buf_size, FILE* in_file);
int fscanf (FILE* in_file, const char* format_string, …);
size_t fread (void* buf, size_t size, size_t n_items, FILE* in_file);

Page 4 Name: __

Problem 2 (20 points): LC-3 Assembly

The first two parts of the problem refer to the LC-3 code given below.

FSM_CHECK LD R1, NEG_ASCII_ZERO
 AND R2, R2, #0
 ST R2, STATE
LOOP_TOP LDR R3, R0, #0

BRz DONE
LD R2, STATE
ADD R3, R3, R1
BRnp HANDLE_ONE
ADD R2, R2, #1

 ADD R3, R2, #-3
 BRn NEXT_CHAR
 ADD R2, R2, #-1
 BRnzp NEXT_CHAR
HANDLE_ONE AND R2, R2, x1E
NEXT_CHAR ST R2, STATE
 ADD R0, R0, #1
 BRnzp LOOP_TOP
DONE AND R0, R0, #0

LD R2, STATE
 BRnp RET_ZERO
 ADD R0, R0, #1
RET_ZERO RET

STATE .BLKW #1
NEG_ASCII_ZERO .FILL xFFD0

Part A (12 points): The LC-3 subroutine above uses a finite state machine (FSM) to
check whether a string of ASCII 0’s and 1’s matches a particular pattern. The string
(address of the first character) is passed in R0, and is assumed to contain only ASCII 0’s
and 1’s and to be NUL-terminated. The subroutine returns R0=1 if the string matches the
pattern, and R0=0 if it does not. Draw the FSM implemented by the subroutine, using the
diagram below as a starting point. An example of a complete state diagram is provided to
the right above.

STATE
00

 sample FSM for
a parity checker

0

state 1

state 0

0

1 1

STATE
01

STATE
10

STATE
11

Page 5 Name: __

Part B (3 points): In one sentence, describe what pattern is recognized by the code.

Part C (5 points): Describe two advantages of using subroutines in assembly, and
explain how the erroneous subroutine calling convention shown in the code below
negates either of the two advantages that you listed.

LD R1, NUM1
LD R2, NUM2
LD R3, NUM3
JSR ADD3SUB

JUMPBACK HALT

NUM1 .FILL x0005
NUM2 .FILL x0010
NUM3 .FILL xFFFF

ADD3SUB ADD R0, R1, R2
 ADD R0, R0, R3
 BRnzp JUMPBACK

Page 6 Name: __

Problem 3 (20 points): Comprehending C

Part A (6 points): Write down the values of i and j after the execution of each of the
following fragments of code. The three subproblems are independent.

i) int i = 5;
 int j = 0;

 do {
 i--;
 j++;
 } while (j < 0);

ii) int i = 1;
 int j = 3;

 for (i = j ; i < j ; i++) {
 i++;

}

iii) int i = 1;

int j = -6;

 for(j++ ; j < 0 ; j++) {
 j++;
 i--;
 }

The remainder of this problem relates to a tree of integers represented as the global array
of structures of type node_t shown below. This array is similar to the array of virtual
pages in MP2. Each node has two fields that hold the array indices of its left and right
children. If a node has no left or right child, the corresponding field is set to –1.

Page 7 Name: __

typedef struct node_t node_t;
struct node_t {
 int value;
 int left;
 int right;
}
node_t array[7];

Part B (8 points): Assume that the global array holds values representing the tree shown
to the right of the code. The numbers inside the circles represent the node values, while
the numbers outside represent the array indices of the nodes (the root of the tree is
element 0). Write the output produced by the code below when called with i=0, and
describe in one or two sentences what the code does.

int foo(int i)
{
 int num = 0;

 if(array[i].left != -1)
 num = num + foo(array[i].left);
 if(array[i].right != -1)

num = num + foo(array[i].right);
 num = num + array[i].value;

 printf("%d\n", num);

 return num;
}

5

3 0

1 6 8 1

0

1 2

3 4 5 6

Page 8 Name: __

Part C (6 points): For the function and tree used in Part B (replicated below for
convenience), draw the state of the stack when the number 8 is printed to the screen,
starting with the stack frame for the foo(0) call. The stack frame for main() and part of
the first call to foo() have been drawn for you. Use the same style to draw all other
stack frames for foo(). You need not include the stack frame for printf().

int foo(int i)
{
 int num = 0;

 if(array[i].left != -1)
 num = num + foo(array[i].left);
 if(array[i].right != -1)

num = num + foo(array[i].right);
 num = num + array[i].value;

 printf("%d\n", num);

 return num;
}

main()’s
stack
frame

linkage

first
call
to
foo()

parameters

local variables

i=0

5

3 0

1 6 8 1

0

1 2

3 4 5 6

Page 9 Name: __

Problem 4 (20 Points): Testing and Debugging

A student has written the blackjack_total() function below to calculate the total of the first
two cards dealt to a player and to print messages to the player The two input parameters are the
count values of the cards, with Aces represented as 1.

int blackjack_total(int card1, int card2)
{

1 if (card1 + card2 > 21) {
2 printf("You busted!\n");
3 } else if (card1 + card2 == 21) {
4 printf("Blackjack! You win!\n");
5 } else if (card1 + card2 < 12 && (card1==1 || card2==1)) {
6 if (card1 + card2 == 11) {
7 printf("Blackjack! You win!\n");
8 } else {
9 printf("Want to pick another card?\n");
10 }
11 return (card1 + card2 + 10);
12 } else {
13 printf("Want to pick another card?\n");
14 }
15 return (card1 + card2);

}

Part A (7 points): Draw a flowchart for the function blackjack_total(). Use the line
numbers to the left of the code to represent conditions and statements, as shown below
for the first if statement.

1START
T F

Page 10 Name: __

Part B (3 points): What is the minimum number of times that the blackjack_total()
function must be called (changing the arguments each time) in order to test all paths
through the function? Hint: look at your flow chart.

Part C (5 points): The following code is supposed to print the even numbers between one
and ten, but it has a simple bug that causes the program to enter an infinite loop and not
print anything to the screen. Explain the bug and correct it.

int main(void)
{
 int x = 1;
 while (x <= 10)
 if (!(x % 2))
 printf("%d\n", x);
 x = x + 1;
 printf("All done!\n");
 return 0;
}

***Part D (5 points): Due to a specification ambiguity, the binary search code below
sometimes returns incorrect results in the sense that the array element identified by the
function does NOT match the find parameter. Explain the problem and suggest a way to
fix it.

int binary_search (char* find, char* element[], int num_elements)
{

int left = 0, right = num_elements - 1, middle;
int comparison;

while (left <= right) {

middle = (left + right) / 2;
comparison = strcmp (find, element[middle]);
if (comparison == 0)

break;
if (comparison < 0)

right = middle - 1;
else

left = middle + 1;
}
return middle;

}

Page 11 Name: __

Problem 5 (20 points): C Structures and Pointers

You are given a list holding letters of a word in some scrambled order. Each letter of the word is
stored in a structure of type puzzle_t.

typedef struct puzzle_t puzzle_t;
struct puzzle_t {
 char letter; /* the actual letter */
 int index; /* the index of the letter in a string */
 puzzle_t* next; /* pointer to the next list element */
}

Write a C function, void solvePuzzleString(puzzle_t* start), that unscrambles
the word held in the linked list into a dynamically allocated string, prints the string, then
frees the memory used for the string. Use the template on the following page, in which
the part of the code that prints and frees the dynamically allocated string has been written
for you. You may assume that the all indices from 0 to N-1 appear in the list for some
value of N. You may also assume that any call to a memory allocation function succeeds.
An example is shown at the bottom of this page.

Here are the signatures of the standard memory allocation functions:

void* malloc (size_t size);
void* calloc (size_t n_elem, size_t elem_size);
void* realloc (void* ptr, size_t size);

'a' 1 'c' 0 't' 2

head

solvePuzzleString(head) should print
"cat\n" to the screen for this list. The
diagonal line indicates a NULL pointer.

Page 12 Name: __

void solvePuzzleString(puzzle_t* start)
{

char* stringPtr = NULL;
 /* All of your code must go here.
 Note that you CAN declare additional variables. */

 /* Print the solved puzzle string to screen */
 printf("%s\n", stringPtr);

 /* Return memory allocated for string to heap */
 free(stringPtr);
}

-- End of Exam --

Page 13 Name: __

Use this page for scratchwork

Page 14 Name: __

5 0

