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CIS 501 
Computer Architecture 

Unit 10: Hardware Multithreading 

Slides originally developed by Amir Roth with contributions by Milo Martin 
at University of Pennsylvania with sources that included University of 
Wisconsin slides by Mark Hill, Guri Sohi, Jim Smith, and David Wood. 
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This Unit: Multithreading (MT) 

•  Why multithreading (MT)? 
•  Utilization vs. performance 

•  Three implementations 
•  Coarse-grained MT 
•  Fine-grained MT 
•  Simultaneous MT (SMT) 
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Readings 

•  Textbook (MA:FSPTCM) 
•  Section 8.1 

•  Paper 
•  Tullsen et al., “Exploiting Choice…” 
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Performance And Utilization 

•  Even moderate superscalar (e.g., 4-way) not fully utilized 
•  Average sustained IPC: 1.5–2 ! < 50% “utilization”.   

•  Utilization is (actual IPC / peak IPC)  
•  Why so low?  Many “dead” cycles, due too: 

•  Mis-predicted branches 
•  Cache misses, especially misses to off-chip memory 
•  Data dependences 

•  Some workloads worse than others, for example, databases 
•  Big data, lots of instructions, hard-to-predict branches 

•  Have resource idle is wasteful… 
•  … How can we better utilize the core? 

•  Multi-threading (MT) 
•  Improve utilization by multiplexing multiple threads on single core 
•  If one thread cannot fully utilize core? Maybe 2 or 4 can 
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Superscalar Under-utilization 

•  Time evolution of issue slot 
•  4-issue processor 

Superscalar 

cache 
miss 
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Simple Multithreading 

•  Time evolution of issue slot 
•  4-issue processor 

•  Where does it find a thread?  Same problem as multi-core 
•  Same shared-memory abstraction 

Superscalar 

cache 
miss 

Multithreading 

Fill in with instructions 
from another thread 

tim
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Latency vs Throughput 
•  MT trades (single-thread) latency for throughput 

–  Sharing processor degrades latency of individual threads 
+  But improves aggregate latency of both threads 
+  Improves utilization 

•  Example 
•  Thread A: individual latency=10s, latency with thread B=15s 
•  Thread B: individual latency=20s, latency with thread A=25s 
•  Sequential latency (first A then B or vice versa): 30s 
•  Parallel latency (A and B simultaneously): 25s 
–  MT slows each thread by 5s 
+  But improves total latency by 5s 

•  Different workloads have different parallelism 
•  SpecFP has lots of ILP (can use an 8-wide machine) 
•  Server workloads have TLP (can use multiple threads) 
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MT Implementations: Similarities 
•  How do multiple threads share a single processor? 

•  Different sharing mechanisms for different kinds of structures 
•  Depend on what kind of state structure stores 

•  No state: ALUs 
•  Dynamically shared 

•  Persistent hard state (aka “context”): PC, registers 
•  Replicated 

•  Persistent soft state: caches, branch predictor 
•  Dynamically shared (like on a multi-programmed uni-processor) 

•  TLBs need thread ids, caches/bpred tables don’t 
•  Exception: ordered “soft” state (BHR, RAS) is replicated 

•  Transient state: pipeline latches, ROB, Instruction Queue 
•  Partitioned … somehow 
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MT Implementations: Differences 

•  Key question: thread scheduling policy 
•  When to switch from one thread to another? 

•  Related question: pipeline partitioning 
•  How exactly do threads share the pipeline itself? 

•  Choice depends on 
•  What kind of latencies (specifically, length) you want to tolerate 
•  How much single thread performance you are willing to sacrifice 

•  Three designs 
•  Coarse-grain multithreading (CGMT) 
•  Fine-grain multithreading (FGMT) 
•  Simultaneous multithreading (SMT) 
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The Standard Multithreading Picture 

•  Time evolution of issue slots 
•  Color = thread 

CGMT FGMT SMT Superscalar 

tim
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Coarse-Grain Multithreading (CGMT) 

•  Coarse-Grain Multi-Threading (CGMT) 
+  Sacrifices very little single thread performance (of one thread) 
–  Tolerates only long latencies (e.g., L2 misses) 
•  Priority thread scheduling policy 

•  Designate a “preferred” thread (e.g., thread A) 
•  Switch to thread B on thread A cache miss 
•  Switch back to A when A cache miss returns 

•  Can also give threads equal priority 
•  Pipeline partitioning 

•  None, flush the pipe on thread switch 
–  Can’t tolerate short latencies (<2x pipeline depth) 

•  Best with short in-order pipelines 
•  Example: IBM Northstar/Pulsar 

CGMT 
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CGMT 

•  CGMT 
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Fine-Grain Multithreading (FGMT) 
•  (Extremely) Fine-Grain Multithreading (FGMT) 

•  Key idea: have so many threads that never stall on cache misses 
•  If miss latency is N cycles, have N threads!  

•  Thread scheduling policy 
•  Switch threads every cycle (round-robin) 

–  Need a lot of threads 
•  Many threads ! many register files 

–  Sacrifices significant single thread performance 
+  Tolerates latencies (e.g., cache misses) 
+  No bypassing needed! 
•  Pipeline partitioning 

•  Dynamic, no flushing 
•  Extreme example: Denelcor HEP, Tera MTA 

•  So many threads (100+), it didn’t even need caches 
•  Failed commercially, but good for certain niche apps 

FGMT 
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Fine-Grain Multithreading (FGMT) 
•  (Adaptive) Fine-Grain Multithreading (FGMT) 

•  Instead of “switching” each cycle, just pick from “ready” threads 
•  Thread scheduling policy 

•  Each cycle, select one thread to execute from 
+  Fewer threads needed 
+  Tolerates latencies (e.g., cache misses, branch mispred) 
+  Sacrifices little single-thread performance 
–  Requires modified pipeline  

– Must handle multiple threads in-flight 
•  Pipeline partitioning 

•  Dynamic, no flushing 

FGMT 
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Fine-Grain Multithreading 

•  FGMT 
•  Multiple threads in pipeline at once 
•  (Many) more threads 
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Vertical and Horizontal Under-Utilization 

•  FGMT and CGMT reduce vertical under-utilization 
•  Loss of all slots in an issue cycle 

•  Do not help with horizontal under-utilization 
•  Loss of some slots in an issue cycle (in a superscalar processor) 

CGMT FGMT SMT 

tim
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Simultaneous Multithreading (SMT) 

•  What can issue insns from multiple threads in one cycle? 
•  Same thing that issues insns from multiple parts of same program… 
•  …out-of-order execution 

•  Simultaneous multithreading (SMT): OOO + FGMT 
•  Aka “hyper-threading” 
•  Observation: once insns are renamed to physical registers... 

•  Scheduler need to know which thread they came from 
•  Some examples 

•  IBM Power5: 4-way issue, 2 threads 
•  Intel Pentium4: 3-way issue, 2 threads 
•  Intel Core i7: 4-way issue, 2 threads 
•  Alpha 21464: 8-way issue, 4 threads (canceled) 
•  Notice a pattern? #threads (T) * 2 = #issue width (N) 
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Simultaneous Multithreading (SMT) 

•  SMT 
•  Replicate map table, share (larger) physical register file 
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SMT Resource Partitioning 
•  Physical regfile and insn buffer entries shared at fine-grain 

•  Physically unordered and so fine-grain sharing is possible 

•  How are ordered structures (ROB/LSQ) shared? 
–  Fine-grain sharing (below) would entangle commit (and squash) 
•  Allowing threads to commit independently is important 
•  Thus, typically replicated or statically partitioned 

•  ROB is cheap (just a FIFO, so it can be big) 
•  LSQ is more of an issue 
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Static & Dynamic Resource Partitioning 

•  Static partitioning (below) 
•  T equal-sized contiguous partitions 
±  No starvation, sub-optimal utilization (fragmentation) 

•  Dynamic partitioning 
•  P > T partitions, available partitions assigned on need basis 
±  Better utilization, possible starvation 
•  ICOUNT: fetch policy prefers thread with fewest in-flight insns 

•  Couple both with larger ROBs/LSQs 
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Multithreading Issues 
•  Shared soft state (caches, branch predictors, TLBs, etc.) 
•  Key example: cache interference 

•  General concern for all multithreading variants 
•  Can the working sets of multiple threads fit in the caches? 
•  Shared memory threads help here (versus multiple programs) 

+ Same insns ! share instruction cache 
+ Shared data ! share data cache 

•  To keep miss rates low… 
•  SMT might need more associative & larger caches (which is OK) 
•  Out-of-order tolerates L1 misses 

•  Large physical register file (and map table) 
•  physical registers = (#threads * #arch-regs) + #in-flight insns 
•  map table entries = (#threads * #arch-regs) 
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Notes About Sharing Soft State 
•  Caches can be shared naturally… 

•  Physically-tagged: address translation distinguishes different threads 

•  … but TLBs need explicit thread IDs to be shared 
•  Virtually-tagged: entries of different threads indistinguishable 
•  Thread IDs are only a few bits: enough to identify on-chip contexts 

•  Thread IDs make sense on BTB (branch target buffer) 
•  BTB entries are already large, a few extra bits / entry won’t matter 
•  Different thread’s target prediction ! automatic mis-prediction 

•  … but not on a BHT (branch history table) 
•  BHT entries are small, a few extra bits / entry is huge overhead 
•  Different thread’s direction prediction ! mis-prediction not automatic 

•  Ordered soft-state should be replicated 
•  Examples: Branch History Register (BHR), Return Address Stack (RAS) 
•  Otherwise it becomes meaningless… Fortunately, it is typically small 
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Multithreading vs. Multicore 

•  If you wanted to run multiple threads would you build a… 
•  A multicore: multiple separate pipelines? 
•  A multithreaded processor: a single larger pipeline? 

•  Both will get you throughput on multiple threads 
•  Multicore core will be simpler, possibly faster clock 
•  SMT will get you better performance (IPC) on a single thread 

•  SMT is basically an ILP engine that converts TLP to ILP 
•  Multicore is mainly a TLP (thread-level parallelism) engine 

•  Do both 
•  Sun’s Niagara (UltraSPARC T1) 
•  8 processors, each with 4-threads (non-SMT threading) 
•  1Ghz clock, in-order, short pipeline (6 stages or so) 
•  Designed for power-efficient “throughput computing” 

CIS 501 (Martin): Multithreading 24 

Research: Speculative Multithreading 

•  Speculative multithreading 
•  Use multiple threads/processors for single-thread performance 
•  Speculatively parallelize sequential loops, that might not be parallel 

•  Processing elements (called PE) arranged in logical ring 
•  Compiler or hardware assigns iterations to consecutive PEs 
•  Hardware tracks logical order to detect mis-parallelization 

•  Techniques for doing this on non-loop code too 
•  Detect reconvergence points (function calls, conditional code) 

•  Effectively chains ROBs of different processors into one big ROB 
•  Global commit “head” travels from one PE to the next 
•  Mis-parallelization flushes one PEs, but not all PEs 

•  Also known as split-window or “Multiscalar” 
•  Not commercially available yet…  

•  But it is the “biggest idea” from academia not yet adopted  
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Multithreading Summary 

•  Latency vs. throughput 
•  Partitioning different processor resources 
•  Three multithreading variants 

•  Coarse-grain: no single-thread degradation, but long latencies only 
•  Fine-grain: other end of the trade-off 
•  Simultaneous: fine-grain with out-of-order 

•  Multithreading vs. chip multiprocessing 


