CIS 501 Computer Architecture

Unit 1: Technology

CIS 501 (Martin/Roth): Technology

1

3

Readings

- H+P
 - Chapters 1
- Paper
 - G. Moore, "Cramming More Components onto Integrated Circuits"
- Announcements
 - Pre-quiz

This Unit

- Technology basis
 - MOS transistors
 - Moore's Law: transistor scaling
- The metrics
 - · Transistor speed
 - Cost
 - Power
 - Reliability
 - How do these change over time (driven by Moore's Law)?
 - · All roads lead to multi-core

CIS 501 (Martin/Roth): Technology

2

Discussion of Moore's Paper

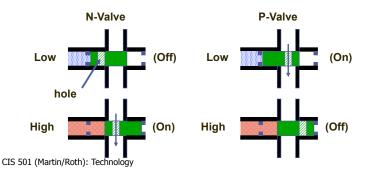
Notes:

Review: What is Computer Architecture?

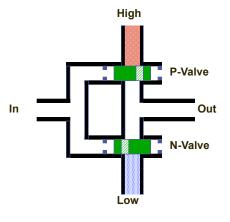
- Design of interfaces and implementations...
- Under constantly changing set of external forces...
 - Applications: change from above
 - Technology: changes from below
 - Inertia: resists changing all levels of system at once
- To satisfy different constraints
 - CIS 501 mostly about performance
 - Cost
 - Power
 - Reliability
- Iterative process driven by empirical evaluation
- The art/science of tradeoffs
- Next: transistors & semiconductor technology

CIS 501 (Martin/Roth): Technology

5

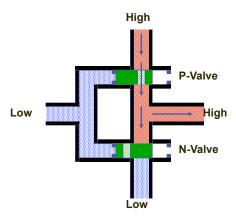

The Transistor

CIS 501 (Martin/Roth): Technology


c

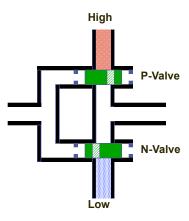
A Transistor Analogy: Computing with Air

- Use air pressure to encode values
 - High pressure represents a "1" (blow)
 - Low pressure represents a "0" (suck)
- Valve can allow or disallow the flow of air
 - · Two types of valves


Pressure Inverter

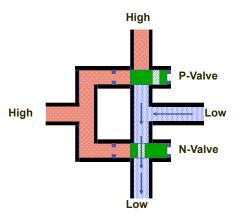
CIS 501 (Martin/Roth): Technology

8


Pressure Inverter (Low to High)

CIS 501 (Martin/Roth): Technology

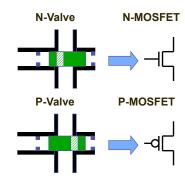
9


Pressure Inverter

CIS 501 (Martin/Roth): Technology

10

Pressure Inverter (High to Low)



Analogy Explained

- Pressure differential → electrical potential (voltage)
 - Air molecules → electrons
 - High pressure → high voltage
 - Low pressure → low voltage
- Air flow → electrical current
 - Pipes → wires
 - Air only flows from high to low pressure
 - Electrons only flow from high to low voltage
 - Flow only occurs when changing from 1 to 0 or 0 to 1
- Valve → transistor
 - The transistor: one of the century's most important inventions

Transistors as Switches

- Two types
 - N-type
 - P-type
- Properties
 - Solid state (no moving parts)
 - Reliable (low failure rate)
 - Small (45nm channel length)
 - Fast (<0.1ns switch latency)

CIS 501 (Martin/Roth): Technology

13

power (1)

ground (0)

input

p-transistor

output

("node")

n-transistor

Complementary MOS (CMOS)

- Voltages as values
 - Power $(V_{DD}) = 1$, Ground = 0
- Two kinds of MOSFETs
 - N-transistors
 - Conduct when gate voltage is 1
 - Good at passing 0s
 - P-transistors
 - Conduct when gate voltage is 0
 - Good at passing 1s

CMOS

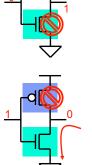
- Complementary n-/p- networks form boolean logic (i.e., gates)
- And some non-gate elements too (important example: RAMs)

Semiconductor Technology

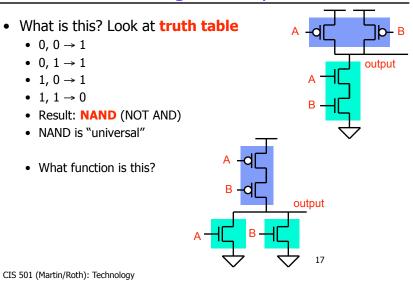
- Basic technology element: MOSFET
 - · Invention of 20th century
 - MOS: metal-oxide-semiconductor
 - Conductor, insulator, semi-conductor
 - FET: field-effect transistor
 - Solid-state component acts like electrical switch
 - Channel conducts source→drain when voltage applied to gate
 - An electrical "switch"
- **Channel length**: characteristic parameter (short → fast)
 - Aka "feature size" or "technology"
 - Currently: 0.045 micron (μm), 45 nanometers (nm)
 - Continued miniaturization (scaling) known as "Moore's Law"
 - Won't last forever, physical limits approaching (or are they?)

CIS 501 (Martin/Roth): Technology

14


drain

source


channel

Basic CMOS Logic Gate

- **Inverter**: NOT gate
 - One p-transistor, one n-transistor
 - Basic operation
 - Input = 0
 - P-transistor closed, n-transistor open
 - Power charges output (1)
 - Input = 1
 - P-transistor open, n-transistor closed
 - Output discharges to ground (0)

Another CMOS Logic Example

Cost

Transistor Speed, Power, and Reliability

- Transistor characteristics and scaling impact:
 - Switching speed
 - Power
 - Reliability
- "Undergrad" gate delay model for architecture
 - Each Not, NAND, NOR, AND, OR gate has delay of "1"
 - Reality is not so simple
- But first, how are these transistors manufactured?
 - First-order impact: **cost**

CIS 501 (Martin/Roth): Technology

18

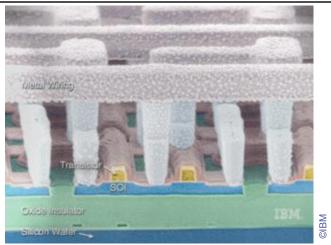
Cost

- Metric: \$
- In grand scheme: CPU accounts for fraction of cost
 - Some of that is profit (Intel's, Dell's)

	Desktop	Laptop	PDA	Phone	
\$	\$100-\$300	\$150-\$350	\$50-\$100	\$10-\$20	
% of total	10-30%	10–20%	20–30%	20-30%	
Other costs	Memory, display, power supply/battery, storage, software				

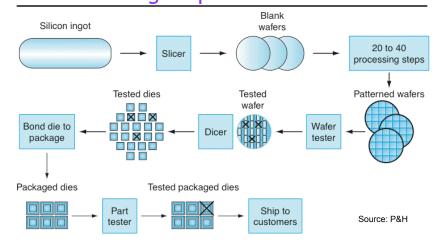
- We are concerned about chip cost
 - Unit cost: costs to manufacture individual chips
 - Startup cost: cost to design chip, build the manufacturing facility

19


Aside: Cost versus Price

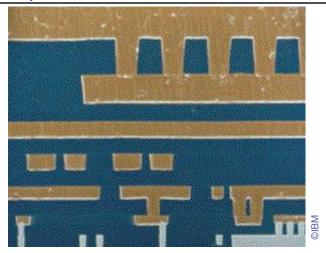
- Cost: cost to manufacturer, cost to produce
- What is the relationship of cost to price?
 - Complex, has to with volume and competition
- **Commodity**: high-volume, un-differentiated, un-branded
 - "Un-differentiated": copper is copper, wheat is wheat
 - "Un-branded": consumers aren't allied to manufacturer brand
 - Commodity prices tracks costs closely
 - Example: DRAM is a commodity
 - Do you even know who manufactures DRAM?
- Microprocessors are not commodities
 - Specialization, compatibility, different cost/performance/power
 - Complex relationship between price and cost

CIS 501 (Martin/Roth): Technology


21

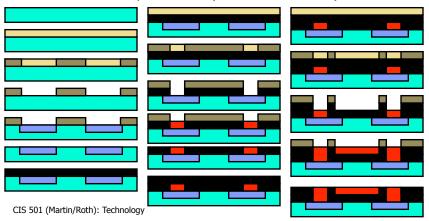
Transistors (and Wires)

From slides © Krste Asanović, MIT


Manufacturing Steps

CIS 501 (Martin/Roth): Technology

22


Wire Layers Cross-section View

IBM CMOS7, 6 layers of copper wiring From slides © Krste Asanović, MIT CIS 501 (Martin/Roth): Technology 24

Manufacturing Steps

- Multi-step photo-/electro-chemical process
 - More steps, higher unit cost
- + Fixed cost mass production (\$1 million or more)

Manufacturing Defects

Correct:

Defective:

Defective:

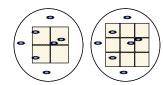
Slow:

CIS 501 (Martin/Roth): Technology

- Defects can arise
 - Under-/over-doping
 - Over-/under-dissolved insulator
 - Mask mis-alignment
 - Particle contaminants

Try to minimize defects

- Process margins
- Design rules
 - Minimal transistor size, separation


Or, tolerate defects

- Redundant or "spare" memory cells
- · Can substantially improve yield

26

Unit Cost: Integrated Circuit (IC)

- Chips built in multi-step chemical processes on wafers
 - Cost / wafer is constant, f(wafer size, number of steps)
- Chip (die) cost is related to area
 - Larger chips means fewer of them
- Cost is more than linear in area
 - Why? random defects
 - Larger chips means fewer working ones
 - Chip cost \sim chip area $^{\alpha}$
 - $\alpha = 2$ to 3

- Wafer yield: % wafer that is chips
- Die yield: % chips that work
- Yield is increasingly non-binary fast vs slow chips

Additional Unit Cost

- After manufacturing, there are additional unit costs
 - Testing: how do you know chip is working?
 - Packaging: high-performance packages are expensive
 - Determined by maximum operating temperature
 - And number of external pins (off-chip bandwidth)
 - Re-testing: how do you know packaging didn't damage chip?

Fixed Costs

- For new chip design
 - Design & verification: ~\$100M (500 person-years @ \$200K per)
 - Amortized over "proliferations", e.g., Xeon/Celeron cache variants
- For new (smaller) technology generation
 - ~\$3B for a new fab
 - Amortized over multiple designs
 - Amortized by "rent" from companies that don't fab themselves
- Moore's Law generally increases startup cost
 - More expensive fabrication equipment
 - More complex chips take longer to design and verify

CIS 501 (Martin/Roth): Technology

29

All Roads Lead To Multi-Core

- + Multi-cores reduce unit costs
 - Higher yield than same-area single-cores
 - Why? Defect on one of the cores? Sell remaining cores for less
 - IBM manufactures CBE ("cell processor") with eight SPE cores
 - But PS3 software is written for seven cores
 - · Yield for eight working cores is too low
 - Sun manufactures Niagaras with eight cores
 - Also sells six- and four- core versions (for less)
- + Multi-cores can reduce design costs too
 - Replicate existing designs rather than re-design larger single-cores

Moore's Effect on Cost

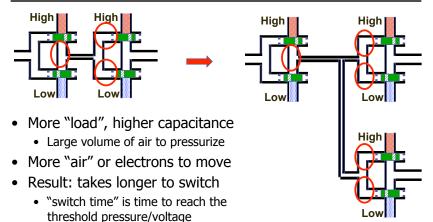
- Mixed impact on unit integrated circuit cost
 - + Either lower cost for same functionality...
 - + Or same cost for more functionality
 - Difficult to achieve high yields
- Increases startup cost
 - More expensive fabrication equipment
 - Takes longer to design, verify, and test chips
- Process variation across chip increasing
 - Some transistors slow, some fast
 - Increasingly active research area: dealing with this problem

CIS 501 (Martin/Roth): Technology

30

Transistor Speed

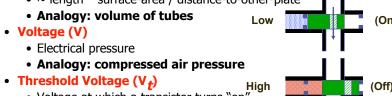
Technology Basis of Transistor Speed


- Physics 101: delay through an electrical component ~ RC
 - Resistance (R) —\\\/_
 - Slows rate of charge flow
 - ~ length / cross-section area
 - Capacitance (C)
 - Stores charge
 - ~ length * surface-area / distance-to-other-plate
 - Voltage (V)
 - Electrical pressure
 - Threshold Voltage (V_t)
 - Voltage at which a transistor turns "on"

CIS 501 (Martin/Roth): Technology

33

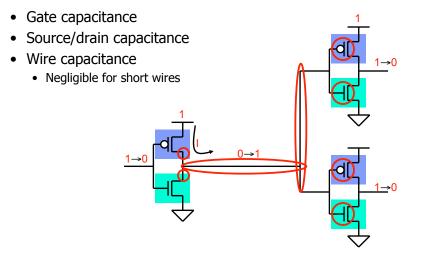
Delay model for transistors and wires.


Capacitance Analogy: Air Capacity

• The "fan-out" of the device impacts its switching speed

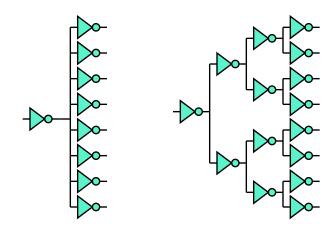
Analogy Extended

- Physics 101: delay through an electrical component ~ RC
 - Resistance (R) —\\\/_
 - Slows rate of charge flow
 - ~ length / cross-section area
 - Analogy: the friction of air flowing through a tube
 - Capacitance (C) ⊣⊢
 - Stores charge
 - ~ length * surface-area / distance-to-other-plate

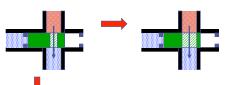

Voltage at which a transistor turns "on"

• Analogy: pressure at which valve switches

CIS 501 (Martin/Roth): Technology


34

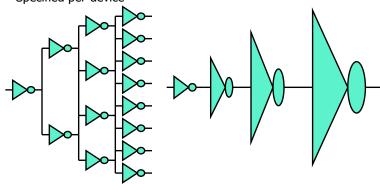
Capacitance


35

Which is faster? Why?

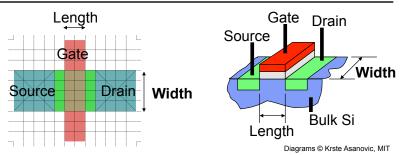
(Assume wires are short enough to have negligible resistance/capacitance)
CIS 501 (Martin/Roth): Technology 37

Trans. Resistance Analogy: Valve Friction


- Increase valve "width", lower resistance
- Decrease valve "length", lower resistance
- Main source of transistor resistance
- Result: faster switching

Transistor Width

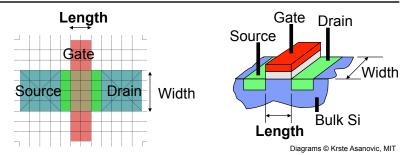
- "Wider" transistors have lower resistance, more drive
 - Specified per-device



• Useful for driving large "loads" like long or off-chip wires

CIS 501 (Martin/Roth): Technology

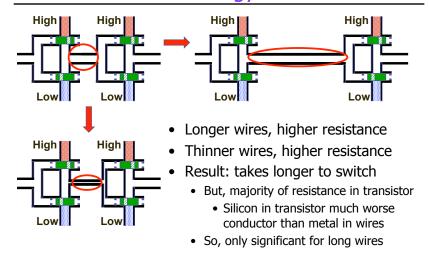
38


Transistor Geometry: Width

- Transistor width, set by designer on a per-transistor basis
- Wider transistors:
 - **Lower resistance** of channel (increases drive strength)
 - But, **increases capacitance** of gate/source/drain
- Result: set width to balance these conflicting effects

CIS 501 (Martin/Roth): Technology

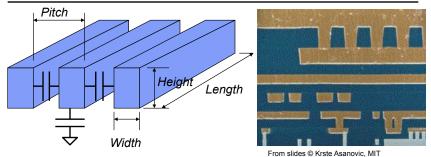
Transistor Geometry: Length & Scaling



- Transistor length: characteristic of "process generation"
 - 90nm refers to the transistor gate length, same for all transistors
- Shrink transistor length:
 - Lower resistance of channel (shorter)
 - Lower gate/source/drain capacitance
- Result: transistor drive strength linear as gate length shrinks

CIS 501 (Martin/Roth): Technology

41

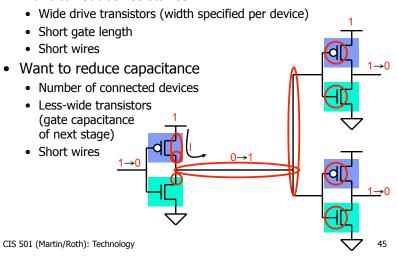

Wire Resistance Analogy: Tube Friction

CIS 501 (Martin/Roth): Technology

42

Wire Geometry

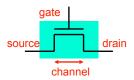
- Transistors 1-dimensional for design purposes: width
- Wires 4-dimensional: length, width, height, "pitch"
 - Longer wires have more resistance
 - "Fatter" wires have less resistance
 - Closer wire spacing ("pitch") increases capacitance


Wire Delay

- RC Delay of wires
 - Resistance proportional to length / cross section
 - Wires with smaller cross section have higher resistance
 - Type of metal (copper vs aluminum)
 - Capacitance proportional to length
 - And wire spacing (closer wires have large capacitance)
 - Type of material between the wires
- Result: delay of a wire is quadratic in length
 - Insert "inverter" repeaters for long wires to
 - Bring it back to linear delay, but repeaters still add delay
- Trend: wires are getting relatively slow to transistors
 - And relatively longer time to cross relatively larger chips

CIS 501 (Martin/Roth): Technology 43 CIS 501 (Martin/Roth): Technology 44

RC Delay Model Ramifications


Want to reduce resistance

Moore's Effect #1: Transistor Count

- Linear shrink in each dimension
 - 180nm, 130nm, 90nm, 65nm, 45nm, 32nm, ...
 - Each generation is a 1.414 linear shrink
 - Shrink each dimension (2D)
 - Results in 2x more transistors (1.414*1.414)
- More transistors reduces cost
- More transistors can increase performance
 - Job of a computer architect: use the ever-increasing number of transistors
 - Examples: caches, exploiting parallelism (ILP, TLP, DLP)

Moore's Law: Technology Scaling

- Moore's Law: aka "technology scaling"
 - Continued miniaturization (esp. reduction in channel length)
 - + Improves switching speed, power/transistor, area(cost)/transistor
 - Reduces transistor reliability
 - Literally: DRAM density (transistors/area) doubles every 18 months
 - Public interpretation: performance doubles every 18 months
 - · Not quite right, but helps performance in three ways

CIS 501 (Martin/Roth): Technology

46

Moore's Effect #2: RC Delay

- First-order: speed scales proportional to gate length
 - Has provided much of the performance gains in the past
- Scaling helps wire and gate delays in some ways...
 - + Transistors become shorter (Resistance↓), narrower (Capacitance↓)
 - + Wires become shorter (Length↓ → Resistance↓)
 - + Wire "surface areas" become smaller (Capacitance↓)
- Hurts in others...
 - Transistors become narrower (Resistance↑)
 - Gate insulator thickness becomes smaller (Capacitance↑)
 - Wires becomes thinner (Resistance↑)
- What to do?
 - Take the good, use wire/transistor sizing & repeaters to counter bad
 - Exploit new materials: Aluminum → Copper, metal gate, high-K

CIS 501 (Martin/Roth): Technology 47 CIS 501 (Martin/Roth): Technology 48

Moore's Effect #3: Psychological

- Moore's Curve: common interpretation of Moore's Law
 - "CPU performance doubles every 18 months"
 - Self fulfilling prophecy: 2X every 18 months is ~1% per week
 - Q: Would you add a feature that improved performance 20% if it would delay the chip 8 months?
 - Processors under Moore's Curve (arrive too late) fail spectacularly
 - E.g., Intel's Itanium, Sun's Millennium

CIS 501 (Martin/Roth): Technology

49

Power & Energy

Moore's Law in the Future

- · Won't last forever, approaching physical limits
 - But betting against it has proved foolish in the past
 - Likely to "slow" rather than stop abruptly
- Transistor count will likely continue to scale
 - "Die stacking" is on the cusp of becoming main stream
 - Uses the third dimension to increase transistor count
- But transistor performance scaling?
 - · Running into physical limits
 - Example: gate oxide is less than 10 silicon atoms thick!
 - Can't decrease it much further
 - Power is becoming a limiting factor (next)

CIS 501 (Martin/Roth): Technology

50

Power/Energy: Increasingly Important

- Battery life for mobile devices
 - Laptops, phones, cameras
- Tolerable temperature for devices without active cooling
 - Power means temperature, active cooling means **cost**
 - No room for a fan in a cell phone, no market for a hot cell phone
- Electric bill for compute/data centers
 - Pay for power twice: once in, once out (to cool)
- Environmental concerns
 - "Computers" account for growing fraction of energy consumption

CIS 501 (Martin/Roth): Technology 51 CIS 501 (Martin/Roth): Technology 52

Energy & Power

- Energy: measured in Joules or Watt-seconds
 - Total amount of energy stored/used
 - Battery life, electric bill, environmental impact
 - Instructions per Joule (car analogy: miles per gallon)
- Power: energy per unit time (measured in Watts)
 - Related to "performance" (which is also a "per unit time" metric)
 - Power impacts power supply and cooling requirements (cost)
 - Power-density (Watt/mm²): important related metric
 - Peak power vs average power
 - E.g., camera, power "spikes" when you actually take a picture
 - Joules per second (car analogy: gallons per hour)
- Two sources:
 - Dynamic power: active switching of transistors
 - Static power: leakage of transistors even while inactive

CIS 501 (Martin/Roth): Technology

53

Dynamic Power

- Dynamic power (P_{dynamic}): aka switching or active power
 - Energy to switch a gate (0 to 1, 1 to 0)
 - Each gate has capacitance (C)
 - Charge stored is ~ C * V
 - \bullet Energy to charge/discharge a capacitor is \sim to C * V^2
 - Time to charge/discharge a capacitor is ~ to V
 - Result: frequency ~ to V
 - P_{dynamic} ~ N * C * V² * f * A
 - N: number of transistors
 - C: capacitance per transistor (size of transistors)
 - V: voltage (supply voltage for gate)
 - f: frequency (transistor switching freq. is ~ to clock freq.)
 - A: activity factor (not all transistors may switch this cycle)

Recall: Tech. Basis of Transistor Speed

- Physics 101: delay through an electrical component ~ RC
 - Resistance (R) —\\\\/_
 - · Slows rate of charge flow
 - . Analogy: the friction of air flowing through a tube
 - Capacitance (C) ____
 - Stores charge
 - Analogy: volume of tubes
 - Voltage (V)
 - Electrical pressure
 - Analogy: compressed air pressure
 - Threshold Voltage (V_t)
 - Voltage at which a transistor turns "on"
 Analogy: pressure at which valve switches
 - Switching time ~ to (R * C) / (V V_t)
 - switching time \sim to (R \sim C) / ($\mathbf{v} \mathbf{v}_t$)

· Analogy: the higher the pressure, the faster it switches

High

CIS 501 (Martin/Roth): Technology

Reducing Dynamic Power

- Target each component: P_{dynamic} ~ N * C * V² * f * A
- Reduce number of transistors (N)
 - Use fewer transistors/gates
- Reduce capacitance (C)
 - Smaller transistors (Moore's law)
- Reduce voltage (V)
 - · Quadratic reduction in energy consumption!
 - But also slows transistors (transistor speed is ~ to V)
- Reduce frequency (f)
 - Slower clock frequency (reduces power but not energy) Why?
- Reduce activity (A)
 - "Clock gating" disable clocks to unused parts of chip
 - Don't switch gates unnecessarily

(Off)

Static Power

- Static power (P_{static}): aka idle or leakage power
 - Transistors don't turn off all the way
 - Transistors "leak"
 - · Analogy: leaky valve
 - $P_{\text{static}} \sim N * V * e^{-Vt}$
 - N: number of transistors
 - V: voltage
 - V_t (threshold voltage): voltage at which transistor conducts (begins to switch)
- Switching speed vs leakage trade-off
- The lower the V.:
 - Faster transistors (linear)
 - Transistor speed \sim to V V_T
- Leakier transistors (exponential)

CIS 501 (Martin/Roth): Technology

57

Dynamic Voltage/Frequency Scaling

Dynamically trade-off power for performance

- Change the voltage and frequency at runtime
- Under control of operating system
- Recall: P_{dynamic} ~ N * C * **V**² * **f** * A
 - Because frequency ~ to V...
 - P_{dvnamic} ~ to V³
- · Reduce both V and f linearly
 - Cubic decrease in dynamic power
 - Linear decrease in performance (actually sub-linear)
 - Thus, only about quadratic in energy
 - Linear decrease in static power
 - Thus, only modest static energy improvement
- Newer chips can do this on a per-core basis

Reducing Static Power

- Target each component: P_{static} ~ N * V * e^{-Vt}
- Reduce number of transistors (N)
 - Use fewer transistors/gates
- Reduce voltage (V)
 - Linear reduction in static energy consumption
 - But also slows transistors (transistor speed is ~ to V)
- Disable transistors (also targets N)
 - "Power gating" disable power to unused parts (long latency to power up)
 - Power down units (or entire cores) not being used
- **Dual V**_t use a mixture of high and low V_t transistors
 - Use slow, low-leak transistors in SRAM arrays
 - Requires extra fabrication steps (cost)
- Low-leakage transistors
 - High-K/Metal-Gates in Intel's 45nm process
- Note: reducing frequency can actually hurt static power. Why?

CIS 501 (Martin/Roth): Technology

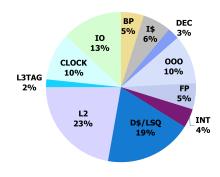
58

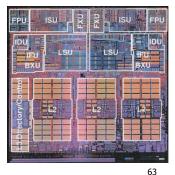
Dynamic Voltage/Frequency Scaling

	Mobile PentiumIII " SpeedStep "	Transmeta 5400 "LongRun"	Intel X-Scale (StrongARM2)	
f (MHz)	300-1000 (step=50)	200-700 (step=33)	50-800 (step=50)	
V (V)	0.9-1.7 (step=0.1)	1.1-1.6V (cont)	0.7-1.65 (cont)	
High-speed	3400MIPS @ 34W	1600MIPS @ 2W	800MIPS @ 0.9W	
Low-power	1100MIPS @ 4.5W	300MIPS @ 0.25W	62MIPS @ 0.01W	

- Dynamic voltage/frequency scaling
 - Favors parallelism
- Example: Intel Xscale
 - 1 GHz \rightarrow 200 MHz reduces energy used by 30x
 - But around 5x slower
 - 5 x 200 MHz in parallel, use 1/6th the energy
 - Power is driving the trend toward multi-core

Moore's Effect on Power


- + Moore's Law reduces power/transistor...
 - Reduced sizes and surface areas reduce capacitance (C)
- ...but increases power density and total power
 - By increasing transistors/area and total transistors
 - Faster transistors → higher frequency → more power
 - Thermal cycle: hotter transistors leak more
- What to do? Reduce voltage (V)
 - + Reduces dynamic power quadratically, static power linearly
 - Already happening: 486 (5V) → Core2 (1.1V)
 - Trade-off: reducing V means either...
 - Keeping V_t the same and reducing frequency (F)
 - Lowering V_t and increasing leakage exponentially
 - ullet Pick your poison ... or not: new techniques like high-K and dual-V_T


CIS 501 (Martin/Roth): Technology

61

Processor Power Breakdown

- Power breakdown for IBM POWER4
 - Two 4-way superscalar, 2-way multi-threaded cores, 1.5MB L2
 - Big power components are L2, D\$, out-of-order logic, clock, I/O
 - Implications on complicated versus simple cores

Trends in Power

	386	486	Pentium	PentiumII	Pentium4	Core2
Year	1985	1989	1993	1998	2001	2006
Technode (nm)	1500	800	350	180	130	65
Transistors (M)	0.3	1.2	3.1	5.5	42	291
Voltage (V)	5	5	3.3	2.9	1.7	1.1
Clock (MHz)	16	25	66	200	1500	3000
Power (W)	1	5	16	35	80	75
Peak MIPS	6	25	132	600	4500	24000
MIPS/W	6	5	8	17	56	320

- Supply voltage decreasing over time
- Emphasis on power starting around 2000
 - · Resulting in slower frequency increases

CIS 501 (Martin/Roth): Technology

62

Implications on Software

- Software-controlled dynamic voltage/frequency scaling
 - OS? Application?
 - · Example: video decoding
 - Too high a frequency wasted energy (battery life)
 - Too low a frequency quality of video suffers
- Managing low-power modes
 - Don't want to "wake up" the processor every millisecond
- Tuning software
 - Faster algorithms can be converted to lower-power algorithms
 - Via dynamic voltage/frequency scaling
- · Exploiting parallelism

Reliability

CIS 501 (Martin/Roth): Technology

65

Aside: Memory Technology Families

- SRAM: "static" RAM
 - Used on processor chips (same transistors as used for "logic")
 - Storage implemented as 6 transistors per bit
 - An inverter pair (2 transistors each) + two control transistors
 - Optimized for speed first, then secondarily density and power
- DRAM (volatile memory): "dynamic" RAM
 - Different manufacturing steps, not typically used on processor chips
 - Storage implemented as one capacitor + 1 transistor per bit
 - Optimized for density and cost
- Flash (non-volatile memory):
 - Used for solid state storage
 - Slower than DRAM, but non-volatile
- Disk is also a "technology", but isn't transistor-based

Technology Basis for Reliability

- As transistors get smaller, they are less reliable
 - Wasn't a problem a few years ago, becoming a big problem
 - Small capacitance means fewer electrons represent 1 or 0

Transient faults

- A bit "flips" randomly, temporarily
- Cosmic rays and such (more common at higher altitudes!)
- Memory cells (especially memory) vulnerable today, logic soon

• Permanent (hard) faults

- A gate or memory cell wears out, breaks and stays broken
- Temperature & electromigration gradually deform components
- Solution for both: use **redundancy** to detect and tolerate

CIS 501 (Martin/Roth): Technology

cc

Memory Error Detection

- Idea: add extra state to memory to detect a bit flip
- Parity: simplest scheme
 - · One extra bit, detects any single bit flip
 - Parity bit = XOR(data_{N-1}, ..., data₁, data₀)
- Example:
 - 010101 0^1^0^1^0^1 = "1" so parity is "odd" (versus "even")
 - So, store "010101 1" in memory
 - When you read the data, and re-calculate the parity, say
 - 011101 1, if the parity bit doesn't match, error detected
- Multiple bit errors? more redundancy can detect more

Memory Error Detection

- What to do on a parity error?
- Crash
 - Dead programs tell no lies
 - Fail-stop is better than silent data corruption
 - Avoiding writing that "\$1m check"
- For user-level data, OS can kill just the program
 - Not the whole system, unless it was OS data
- Alternative: correct the error

CIS 501 (Martin/Roth): Technology

69

SECDED Error Correction Code (ECC)

- **SECDED**: single error correct, double error detect
- Example: $D = 4 \rightarrow C = 4$
 - $d_1 d_2 d_3 d_4 c_1 c_2 c_3 \rightarrow c_1 c_2 d_1 c_3 d_2 d_3 d_4 c_4$
 - $c_4 = c_1 \land c_2 \land d_1 \land c_3 \land d_2 \land d_3 \land d_4$
 - Syndrome == 0 and $c'_4 == c_4 \rightarrow$ no error
 - Syndrome != 0 and c'_4 != $c_4 \rightarrow$ 1-bit error
 - Syndrome != 0 and $c'_4 == c_4 \rightarrow 2$ -bit error
 - Syndrome == 0 and $c'_4 != c_4 \rightarrow c_4$ error
 - In general: C = log₂D + 2
- Many machines today use 64-bit SECDED code
 - C = 8 (64bits + 8bits = 72bits, 12% overhead)
 - ChipKill correct any aligned 4-bit error
 - If an entire memory chips dies, the system still works!

SEC Error Correction Code (ECC)

- SEC: single-error correct (a hamming code)
- Example: Four data bits, three "code" bits
 - $d_1 d_2 d_3 d_4 c_1 c_2 c_3 \rightarrow c_1 c_2 d_1 c_3 d_2 d_3 d_4$
 - $c_1 = d_1 \wedge d_2 \wedge d_4$, $c_2 = d_1 \wedge d_3 \wedge d_4$, $c_3 = d_2 \wedge d_3 \wedge d_4$
 - Syndrome: $c_i \wedge c'_i = 0$? no error : points to flipped-bit
- Working example
 - Original data = $0110 \rightarrow c_1 = 1$, $c_2 = 1$, $c_3 = 0$
 - Flip $d_2 = 0010 \rightarrow c'_1 = 0$, $c'_2 = 1$, $c'_3 = 1$
 - Syndrome = 101 (binary 5) \rightarrow 5th bit? D₂
 - Flip $c_2 \rightarrow c'_1 = 1$, $c'_2 = 0$, $c'_3 = 0$
 - Syndrome = 010 (binary 2) \rightarrow 2nd bit? c_2

CIS 501 (Martin/Roth): Technology

70

Moore's Bad Effect on Reliability

- Wasn't a problem until 5-10 years ago...
 - Except for transient-errors on chips in orbit (satellites)
- ...a problem already and getting worse all the time
 - Small (low charge) transistors are more easily flipped
 - Even low-energy particles can flip a bit now
 - Small transistors and wires deform and break more quickly
 - Higher temperatures accelerate the process
- Progression
 - Memory (DRAM) was hit first: denser, smaller devices than SRAM
 - Then on-chip memory (SRAM)
 - Logic is starting to have problems...

Moore's Good Effect on Reliability

- The key to providing reliability is **redundancy**
 - The same scaling that makes devices less reliable...
 - Also increase device density to enable redundancy
- Examples
 - Error correcting code for memory (DRAM) and caches (SRAM)
 - Core-level redundancy: paired-execution, hot-spare, etc.
- More recent example
 - Intel's Nehalem uses 8 transistor SRAM cells (versus only 6T cells)
- Big open questions
 - Can we protect logic efficiently? (without 2x or 3x overhead)
 - Can architectural techniques help hardware reliability?
 - Can software techniques help?

CIS 501 (Martin/Roth): Technology

73

75

A Global Look at Moore

- Device scaling (Moore's Law)
 - + Reduces unit cost
 - But increases startup cost
 - + Increases performance
 - Reduces transistor/wire delay
 - Gives us more transistors with which to increase performance
 - + Reduces local power consumption
 - Which is quickly undone by increased integration, frequency
 - Aggravates power-density and temperature problems
 - Aggravates reliability problem
 - + But gives us the transistors to solve it via redundancy
- Will we fall off Moore's Cliff? (for real, this time?)
 - Difficult challenges, but \$\$\$ and smart people working on it
 - Example: 3D die stacking

Summary

CIS 501 (Martin/Roth): Technology

74

Rest of

76

semester

Technology Summary

- Has a first-order impact on computer architecture
 - Cost (die area)
 - Performance (transistor delay, wire delay)
 - Power (static vs dynamic)
 - Reliability

CIS 501 (Martin/Roth): Technology

- All changing rapidly
- Most significant trends for architects (and thus CIS501)
 - More and more transistors
 - What to do with them? → integration → **parallelism**
 - Logic is improving faster than memory & cross-chip wires
 - "Memory wall" → caches, more integration
 - Power and reliability (more recent)
- This unit: a quick overview, just scratching the surface