CIS 501 Introduction to Computer Architecture

	Class Project
CIS 501 (Martin/Roth): Class Project	

Proposal and Final Report

- Proposal (< 500 words)
 - Names of group members
 - Brief description of idea
 - What you plan to measure and how
- Final report (~4000 words)
 - Brief description of idea
 - Brief description of your implementation
 - Description of your experimental configuration
 - Presentation and analysis of results
 - Like a mini conference paper (you've read some)

Mini-Research Course Project

- What?
 - Investigate a research idea covered in class, in paper, or in head

2

- Who?
 - You and one or two other people
- When?
 - Proposal: Friday, Nov 18 (submit PDF via blackboard)
- Final report: Friday, Dec 9 (last day of classes)
- Tools?

1

3

- Simplescalar and Simics
- How much?
 - 20% of your final grade

CIS 501 (Martin/Roth): Class Project

Simulation Tools

- SimpleScalar
 - User-level programs
 - Functional simulation: sim-func, sim-cache, sim-DLX
 - Simulates insn-by-insn
 - Fast, but impossible to evaluate some ideas
 - Timing simulation: sim-R10K
 - Simulates cycle-by-cycle
 - Accurate, only way to measure some things, but slow
- Simics
 - Full-system simulation (program + OS)
 - Can run any program
 - Few timing

CIS 501 (Martin/Roth): Class Project

CIS 501 (Martin/Roth): Class Project

Finding Ideas

- Research ideas described in class
 - E.g., runahead execution, dynamic cache resizing, etc.
- Ideas found in recent research papers
 - ACM digital library: http://www.acm.org/dl
 - Recent MICRO conferences: <u>http://www.microarch.org/</u>
 - Others: http://www.cs.wisc.edu/~arch/www/conferences.html
- · At most two groups may work on same idea
 - First-come, first-served
 - E-mail us with a general topic as soon as you know it

CIS 501 (Martin/Roth): Class Project

Ideas: Cache Design

Examples	
 Multi-lateral cache [Rivers+, ICPP'96] 	
 Dynamically resizing cache [Albonesi, ISCA'98 	
 Cache with dynamically varying block sizes [J 	lohnson+, MICRO'97]
 Trace cache [Rotenberg+, MICRO'95] 	
Distance associative cache [Chishti+, MICRO]	′03]
 Fully-associative software managed L2 [Halln 	or+, ISCA'00]
 Way prediction [Powell, MICRO'01] 	
Measure effect of capacity, associativity, block si	ze
Functional simulation: measure $\%_{\text{miss}}$, calculate t	avg
Timing simulation: better measurements	
Can probably plug cache.c right in	

Ideas: Branch Prediction Algorithms

- Implement new branch predictor in bpred.c
 - Investigate effects of table size, history length, etc.
 - Compare with other predictors
 - Examples:
 - Agree [Sprangle+, ISCA'97]
 - YAGS [Eden+, MICRO'98]
 - Perceptron [Jimenez, HPCA'01]
 - Interesting: predictors for more than one branch at a time
 - Can be done with functional simulation

CIS 501 (Martin/Roth): Class Project

5

Ideas: Prefetching

- Implement prefetching algorithm in cache.c (or outside)
 - Instructions or data
 - Examples
 - Call-graph prefetching for insns [Annavaram+, HPCA'01]
 - Dependence-based prefetching for pointers [Roth+, ASPLOS'98]
 - Context-based prefetching for pointers [Cooksey+, ASPLOS'02]
 - Jump-pointer prefetching [Roth+, ISCA'99]
 - Dead-block prefetching [Lai+, ISCA'01]
 - Stream-buffers [Jouppi]
 - In-memory prefetching [Solihin, ISCA'02]
 - Functional simulation: study prefetch coverage and accuracy
 - Timing simulation: study prefetch timing
 - Not necessary if coverage/accuracy work thorough enough

8

CIS 501 (Martin/Roth): Class Project

Ideas: ILP Limit/Critical Path Study

Study the effects of real constraints on potential of ILP

 Write your own functional model or hack sim-R10K.c a little
 Examples

 Critical path modeling [Fields+, ISCA'01]
 Limits of ILP [Wall, ASPLOS'91, Lam+, ISCA'02]

 CIS 501 (Martin/Roth): Class Project 9

Ideas: Value Prediction

Value prediction: rather than wait for load values, predict

Still have to execute to verify prediction
Functional simulation: prediction accuracy
How many values can you guess right?

Timing simulation: speculation effectiveness

How much gain/loss correct/wrong speculation?

Examples

Load value locality [Lipasti+, ASPLOS'96]
Predictability of data values [Sazeides+, MICRO'97]

Ideas: Pipeline Techniques Implement something new in sim-R10K.c Not for the feint of heart (or hacking novices) Examples Clustering/steering [Farkas+, MICRO'97, Baniasadi+, MICRO'00] Speculation gating [Manne+, ISCA'98] Runahead execution [Dundas]

Ideas: Instruction Reuse

Instruction reuse: opposite of value predictions

Remember prior computations and reuse, don't repeat
Like common sub-expression elimination in hardware
Functional simulation: reusability and repitition
Timing simulation: effectiveness of reuse (easier than VP)
Examples

Dynamic instruction reuse [Sodani+, ISCA'97]
Analysis of instruction repitition [Sodani+, ASPLOS'98]
Register integration [Petric+, MICRO'02]

Other Ideas	
Ask me if interested	
Speculative scheduling	
Power modeling	
Multiprocessing	
Multithreading	
Buses and memory hierarchy	
Or if you have your own idea	