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CIS 501
Introduction to Computer Architecture

Unit 5: I/O
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This Unit: I/O

• I/O system structure

• Devices, controllers, and buses

• Device characteristics 

• Disks

• I/O control

• Polling and interrupts

• DMA
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CIS 501 (Martin/Roth): I/O 3

Readings

• H+P
• Chapter 7.1-7.5, 7.7, 7.10, 7.14-16
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One Instance of I/O

• Have briefly seen one instance of I/O

• Disk: bottom of memory hierarchy
CPU

D$

L2

Main
Memory

I$

Disk
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A More General/Realistic I/O System

• A computer system

• CPU/Memory: connected by memory bus

• I/O peripherals: disks, input devices, displays, network cards, ...

• With built-in or separate I/O (or DMA) controllers

• All connected by a system bus

CPU

Memory

Disk
kbd

DMA DMA

display NIC

I/O ctrl

“System” (I/O) busMemory bus

CPU

Memory

bridge

Cache Cache
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I/O Device Performance

• Primary characteristic
• Data rate (bandwidth)

• Latency is really only an issue for disk

• Contributing factors
• Partner: humans have slower data rates than machines

• Input/output/both

8.00I/OMachineModem

10,000.00I/OMachineDisk

200.00OutputHumanPrinter

10,000.00I/OMachineEthernet card

240,000.00OutputHumanDisplay

0.60OutputHumanSpeaker

0.02InputHumanMouse

0.01InputHumanKeyboard

Data Rate (KB/s)I? O?PartnerDevice

CIS 501 (Martin/Roth): I/O 7

I/O Devices: Mouse, Keyboard, Display

• Many I/O devices have low performance needs

• Keyboard

• 1 B/key * 10 keys/s = 10 B/s

• Mouse

• 2 B/transfer * 10 transfers/s = 20 B/s

• Display

• 4 B/pixel * 1M pixel/display * 60 displays/s = 240M B/s
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I/O Device: Disk

• Disk: like stack of record players

• Collection of platters
• Each with read/write head

• Platters divided into concentric tracks
• Head seeks to track

• All heads move in unison

• Each track divided into sectors
• More sectors on outer tracks

• Sectors rotate under head

• Controller
• Seeks heads, waits for sectors

• Turns heads on/off

• May have its own cache (a few MBs)

• Exploit spatial locality

platter
head

sector

track
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Disk Parameters

• Newer from Toshiba

• 0.85”, 4 GB drives, used in iPod-mini

1.8”2.5”3.5”Diameter

200 MB/s200 MB/s150 MB/sPeak Data Rate

16 MB/s94 MB/s58 MB/sSustained Data Rate

iPodLaptopDesktopUse

ATASCSIATAInterface

7 ms4.5 ms8 msAverage Seek

1/22/42/4Discs/Heads

512 KB?8 MBCache

4200 RPM10000 RPM7200 RPMRPM

10 GB73 GB200 GBCapacity

Toshiba MK1003Seagate SavvioSeagate ST3200
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Disk Latency

• Disk read/write latency has four components

• Seek delay (tseek): head seeks to right track

• Average of ~5ms - 15ms

• Less in practice because of shorter seeks)

• Rotational delay (trotation): right sector rotates under head

• On average: time to go halfway around disk

• Based on rotation speed (RPM)

• 10,000 to 15,000 RPMs

• ~3ms

• Transfer time (ttransfer): data actually being transferred

• Fast for small blocks

• Controller delay (tcontroller): controller overhead (on either side)

• Fast (no moving parts)
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Disk Latency Example

• Example: time to read a 4KB page assuming…

• 128 sectors/track, 512 B/sector, 6000 RPM, 10 ms tseek, 1 ms tcontroller

• 6000 RPM ! 100 R/s ! 10 ms/R ! trotation = 10 ms / 2 = 5 ms

• 4 KB page ! 8 sectors ! ttransfer = 10 ms * 8/128 = 0.6 ms

• tdisk = tseek + trotation + ttransfer + tcontroller = 16.6 ms

• tdisk = 10 + 5 + 0.6 + 1 = 16.6 ms
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Disk Bandwidth: Sequential vs Random

• Disk is bandwidth-inefficient for page-sized transfers
• Sequential vs random accesses

• Random accesses:
• One read each disk access latency (~10ms)

• Randomly reading 4KB pages

• 10ms is 0.01 seconds ! 100 access per second

• 4KB * 100 access/sec ! 400KB/second bandwidth

• Sequential accesses:
• Stream data from disk (no seeks)

• 128 sectors/track, 512 B/sector, 6000 RPM

• 64KB per rotation, 100 rotation/per sec

• 6400KB/sec ! 6.4MB/sec

• Sequential access is ~10x or more bandwidth than random
• Still no where near the 1GB/sec to 10GB/sec of memory
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Increasing Disk Bandwidth

• Single disk:

• Shorter access times (latency helps bandwidth)

• Schedule access efficiently for multiple parallel requests

• Reduce seek time by scheduling seeks

• Higher RPMs

• More sequential seeks (layout files on disk intelligently)

• More disks: stripe data across multiple disks

• Increases both sequential and random access bandwidth

• More later on these disk arrays
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Disk Interfaces

• Disks talk a “language”, too
• Much like an ISA for a processor

• ATA/IDE
• Simple, one request at a time

• Limited number of devices

• Cheap, high volume

• SCSI
• Many parallel requests

• Split request from response

• Many devices, high transfer rates

• Expensive, high-end

• Newcomers: Serial-ATA (S-ATA) and iSCSI
• S-ATA - single device, allows parallel requests

• iSCSI - same SCSI commands, use ethernet for physical link
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Other Storage Devices

• CD/DVD read/write

• Disk-like interface and performance

• Optical, not magnetic

• Capacity throttled by standardization

• One-time improvement every 5-10 years

• Bandwidth

• Controller by rotation speed

• Tape drives

• Used to backup disk

• Cheaper per bit

• Low volume, surprisingly high cost
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Storage Backup

• Data is more valuable than hardware!
• Almost always true

• Protecting data - three aspects
• User error - accidental deletion

• Aside: “.snapshot” on enaic-l/halfdome filesystem

• Disk failure - mechanical, wears out over time

• Disaster recovery - An entire site is disabled

• Two approaches:
• Frequent tape backups, taken off site (most common today)

• Handle each problem distinctly

• File system, redundant disks (next), network-based remote
backup
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Reliability: RAID

• Error correction: more important for disk than for memory

• Error correction/detection per block (handled by disk hardware)

• Mechanical disk failures (entire disk lost) most common failure mode

• Many disks means high failure rates

• Entire file system can be lost if files striped across multiple disks

• RAID (redundant array of inexpensive disks)

• Add redundancy

• Similar to DRAM error correction, but…

• Major difference: which disk failed is known

• Even parity can be used to recover from single failures

• Parity disk can be used to reconstruct data faulty disk

• RAID design balances bandwidth and fault-tolerance

• Implemented in hardware (fast, expensive) or software
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Levels of RAID - Summary

• RAID-0 - no redundancy

• Multiplies read and write bandwidth

• RAID-1 - mirroring

• Pair disks together (write both, read one)

• 2x storage overhead

• Multiples only read bandwidth (not write bandwidth)

• RAID-3 - bit-level parity (dedicated parity disk)

• N+1 disks, calculate parity (write all, read all)

• Good sequential read/write bandwidth, poor random accesses

• If N=8, only 13% overhead

• RAID-4/5 - block-level parity

• Reads only data you need

• Writes require read, calculate parity, write data&parity
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RAID-3: Bit-level parity

• RAID-3 - bit-level parity

• dedicated parity disk

• N+1 disks, calculate parity
(write all, read all)

• Good sequential read/write
bandwidth, poor random
accesses

• If N=8, only 13% overhead

© 2003 Elsevier Science
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RAID 4/5 - Block-level Parity

© 2003 Elsevier Science

• RAID-4/5

• Reads only data you need

• Writes require read, calculate
parity, write data&parity

• Naïve approach

1. Read all disks

2. Calculate parity

3. Write data&parity

• Better approach

• Read data&parity

• Calculate parity

• Write data&parity

• Still worse for writes
than RAID-3
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RAID-4 vs RAID-5

• RAID-5 rotates the parity disk, avoid single-disk bottleneck

© 2003 Elsevier Science
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Two Buses

• Buses: connects system components
• Insufficient bandwidth can bottleneck system

• Performance factors

• Physical length

• Number and type of connected devices (taps)

• Processor-memory bus
• Connects CPU and memory, no direct I/O interface

+ Short, few taps ! fast, high-bandwidth

– System specific

• I/O bus
• Connects I/O devices, no direct processor interface

– Longer, more taps ! slower, lower-bandwidth

+ Industry standard

• Bridge connects these busses

CPU

I/O I/O

I/O

Mem

Memory

bridge
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Bus Design

• Goals

• Performance: latency and bandwidth

• Standardization: flexibility in dealing with many devices

• Cost

• Memory bus emphasize performance, then cost

• I/O buses emphasize standardization, then performance

• Design issues

• Width/multiplexing: shared or separate wires

• Clocking: bus clocked or not?

• Switching: how/when bus control is acquired and released

• Arbitration: deciding who gets the bus next

data lines

address lines

control lines
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Bus Width and Multiplexing

• Wider

+ More bandwidth

– More expensive and more susceptible to skew

• Multiplexed: address and data on same lines

+ Cheaper

– Less bandwidth

• Burst transfers

• Multiple sequential data transactions for single address

+ Increase bandwidth at relatively little cost
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Bus Clocking

• Synchronous: clocked
+ Fast

– Must be short: to minimize clock skew

• Asynchronous: un-clocked
+ Longer: no clock skew, deals with devices of different speeds

– Slower: requires “hand-shaking” protocol

• For example, asynchronous read

1. Processor drives address onto bus, asserts Request line

2. Memory asserts Ack line, processor stops driving

3. Memory drives data on bus, asserts DataReady line

4. Processor asserts Ack line, memory stops driving

• Source synchronous
• A hybrid: send clock with data

• Trend is away from asynchronous buses
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Bus Arbitration

• Bus master: component that can initiate a bus request

• Bus typically has several masters

• Processor, but I/O devices can also be masters (Why? See in a bit)

• Arbitration: choosing a master among multiple requests

• Try to implement priority and fairness (no device “starves”)

• Several different schemes (e.g., centralized, distributed)

• Daisy-chain: devices connect to bus in priority order

• High-priority devices intercept/deny requests by low-priority ones

± Simple, but slow and can’t ensure fairness

• New trend: Point-to-point busses

• Pro: No arbitration, no “master”, fast, simple, source synchronous

• Con: need lots of wires or requires high per-wire bandwidth
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Standard Bus Examples

• USB (universal serial bus)

• Popular for low-/moderate-bandwidth external peripherals

+ Packetized interface (like TCP) extremely flexible

+ Also supplies power to the peripheral

YesYesYesMultiplexed?

0.2, 1.5, 80 MB/s10 (20) MB/s133 (266) MB/sData rate

–2.5 m0.5 mMaximum length

1277–311024Maximum masters

Daisy-chainSelf-selectionParallelArbitration

Asynchronous5 (10) MHz33 (66) MHzClocking

18–32 bits32–64 bitsWidth

I/OI/O - disksBackplaneType

USBSCSIPCI
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I/O Interfaces

• Now that we know how I/O devices and buses work…

• How does I/O actually happen?

• How does CPU give commands to I/O devices?

• How do I/O devices execute data transfers?

• How does CPU know when I/O devices are done?
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I/O: Control + Data Transfer

• I/O devices have two ports

• Control: commands and status reports

• Tricky part (especially status reports)

• Data: data

• Labor intensive part

• “Interesting” I/O devices do data transfers (to/from memory)

• Display: video memory ! monitor

• Disk: memory " disk

• Network interface: memory " network card
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OS Plays a Big Role

• I/O interface is typically under OS control

• User applications access I/O devices indirectly (e.g., SYSCALL)

• Why?

• Virtualization: same argument as for memory

• Physical devices shared among multiple apps

• Direct access could lead to conflicts

• Synchronization

• Most have asynchronous interfaces, require unbounded waiting

• OS handles asynchrony internally, presents synchronous interface

• Standardization

• Devices of a certain type (disks) can/will have different interfaces

• OS handles differences (via drivers), presents uniform interface
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Sending Commands to I/O Devices

• Remember: only OS can do this

• I/O instructions

• OS only? Instructions are privileged

• E.g., IA32

• Memory-mapped I/O

• Portion of physical address space reserved for I/O

• OS maps physical addresses to I/O device control registers

• Stores/loads to these addresses are commands to I/O devices

• Main memory ignores them, I/O devices recognize and respond

• Address specifies both I/O device and command

• Obviously, these address are not cached

• OS only? I/O physical addresses only mapped in OS address space

• E.g., almost every architecture other than IA32
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Querying I/O Device Status

• Sent command to I/O device… check

• How to query I/O device status?

• So that you know if data you asked for is ready?

• So that you know if device is ready to receive next command?

• Polling: Ready now? How about now? How about now?

• Processor queries I/O device status register

• Loops until it gets status it wants (ready for next command)

• Or tries again a little later

+ Simple

– Waste of processor’s time

• Processor much faster than I/O device

– Worse for higher bandwidth I/O devices (e.g., disks)
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Polling Overhead

• Parameters

• 500 MHz CPU

• Polling event takes 400 cycles

• Overhead for polling a mouse 30 times per second?

• (30 poll/s) * [(400 c/poll)/(500M c/s)] = 0.002%

+ Not bad

• Overhead for polling a 4 MB/s disk with 16 B interface?

• (4M B/s)/(16 B/poll) * [(400 c/poll)/(500M c/s)] = 20%

– Not good

• This is the overhead of polling, not actual data transfer

• Really bad if disk is not being used
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Interrupt-Driven I/O

• Interrupts: alternative to polling

• I/O device generates interrupt when status changes, data ready

• OS handles interrupts just like exceptions (e.g., page faults)

• Identity of interrupting I/O device recorded in ECR

• I/O interrupts are asynchronous

• Not associated with any one insn

• Don’t need to be handled immediately

• I/O interrupts are prioritized

• Synchronous interrupts (e.g., page faults) have highest priority

• High-bandwidth I/O devices have higher priority than low-
bandwidth ones
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Interrupt Overhead

• Parameters

• 500 MHz CPU

• Interrupt handler takes 400 cycles

• Data transfer takes 100 cycles

• 4 MB/s, 16 B interface disk transfers data only 5% of time

• Data transfer (x) time

• 0.05 * (4M B/s)/(16 B/xfer)*[(100 c/xfer)/(500M c/s)] = 0.25%

• Overhead for polling?

• (4M B/s)/(16 B/poll) * [(400 c/poll)/(500M c/s)] = 20%

• Overhead for interrupts?

+ 0.05 * (4M B/s)/(16 B/poll) * [(400 c/poll)/(500M c/s)] = 1%
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Direct Memory Access (DMA)

• Interrupts remove overhead of polling…

• But still requires OS to transfer data one word at a time

• OK for low bandwidth I/O devices: mice, microphones, etc.

• Bad for high bandwidth I/O devices: disks, monitors, etc.

• Direct Memory Access (DMA)

• Block I/O memory transfers without processor control

• Transfers entire blocks (e.g., pages, video frames) at a time

• Can use bus “burst” transfer mode if available

• Only interrupts processor when done (or if error occurs)
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DMA Controllers

• To do DMA, I/O device attached to DMA controller
• Multiple devices can be connected to one controller

• Controller itself seen as a memory mapped I/O device

• Processor initializes start memory address, transfer size, etc.

• DMA controller takes care of bus arbitration and transfer details

• That’s why buses support arbitration and multiple masters

CPU

Memory

Disk
kbd

DMA DMA

display NIC

I/O ctrl

“System” (I/O) busMemory bus

CPU

Memory

bridge

Cache Cache
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I/O Processors

• A DMA controller is a very simple component
• May be as simple as a FSM with some local memory

• Some I/O requires complicated sequences of transfers
• I/O processor: heavier DMA controller that executes instruction

• Can be programmed to do complex transfers

CPU

Memory

Disk
kbd

DMA DMA

display NIC

I/O ctrl

“System” (I/O) busMemory bus

CPU

Memory

bridge

Cache Cache
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DMA Overhead

• Parameters

• 500 MHz CPU

• Interrupt handler takes 400 cycles

• Data transfer takes 100 cycles

• 4 MB/s, 16 B interface disk transfers data 50% of time

• DMA setup takes 1600 cycles, transfer one 16KB page at a time

• Processor overhead for interrupt-driven I/O?

• 0.5 * (4M B/s)/(16 B/i-xfer)*[(500 c/i-xfer)/(500M c/s)] = 12.5%

• Processor overhead with DMA?

• Processor only gets involved once per page, not once per 16 B

+ 0.5 * (4M B/s)/(16K B/page) * [(2000 c/page)/(500M c/s)] = 0.05%
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DMA and Address Translation

• Which addresses does processor specify to DMA controller?

• Virtual DMA

+ Can specify large cross-page transfers

– DMA controller has to do address translation internally

• DMA contains small translation lookaside buffer (TLB)

• OS initializes buffer contents when it requests an I/O transfer

• Physical DMA

+ DMA controller is simple

– Can only do short page-size transfers

• OS breaks large transfers into page-size chunks
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DMA and Caching

• Caches are good

• Reduce CPU’s observed instruction and data access latency

+ But also, reduce CPU’s use of memory…

+ …leaving majority of memory/bus bandwidth for DMA I/O

• But they also introduce a coherence problem for DMA

• Input problem: all caches

• DMA write into memory version of cached location

• Cached version now stale

• Output problem: write-back caches only

• DMA read from memory version of “dirty” cached location

• Output stale value
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Hardware Cache Coherence

• D$ and L2 “snoop” bus traffic
• Observe transactions

• Check if written addresses are resident

• Self-invalidate those blocks

+ Doesn’t require access to data part

– Does require access to tag part

• May need 2nd copy of tags for this

• That’s OK, tags smaller than data

• Bus addresses are physical
• L2 is easy (physical index/tag)

• D$ is harder (virtual index/physical tag)

• Reverse translation? No

• Remember: page size vs. D$ size

CPU

D$

L2

I$TLB

PA

PA

VA VA

TLB

Main
Memory Disk

DMA

Bus
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Designing an I/O System for Bandwidth

• Approach
• Find bandwidths of individual components

• Configure components you can change…

• To match bandwidth of bottleneck component you can’t

• Example
• Parameters

• 300 MIPS CPU, 100 MB/s I/O bus

• 50K OS insns + 100K user insns per I/O operation

• SCSI-2 controllers (20 MB/s): each accommodates up to 7 disks

• 5 MB/s disks with tseek + trotation = 10 ms, 64 KB reads

• Determine

• What is the maximum sustainable I/O rate?

• How many SCSI-2 controllers and disks does it require?

• Assuming random reads
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Designing an I/O System for Bandwidth

• First: determine I/O rates of components we can’t change
• CPU: (300M insn/s) / (150K Insns/IO) = 2000 IO/s

• I/O bus: (100M B/s) / (64K B/IO) = 1562 IO/s

• Peak I/O rate determined by bus: 1562 IO/s

• Second: configure remaining components to match rate
• Disk: 1 / [10 ms/IO + (64K B/IO) / (5M B/s)] = 43.9  IO/s

• How many disks?

• (1562 IO/s) / (43.9 IO/s) = 36 disks

• How many controllers?

• (43.9 IO/s) * (64K B/IO) = 2.74M B/s

• (20M B/s) / (2.74M B/s) = 7.2

• (36 disks) / (7 disks/SCSI-2) = 6 SCSI-2 controllers

• Caveat: real I/O systems modeled with simulation
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Designing an I/O System for Latency

• Previous system designed for bandwidth

• Some systems have latency requirements as well

• E.g., database system may require maximum or average latency

• Latencies are actually harder to deal with than bandwidths

• Unloaded system: few concurrent IO transactions

• Latency is easy to calculate

• Loaded system: many concurrent IO transactions

• Contention can lead to queuing

• Latencies can rise dramatically

• Queuing theory can help if transactions obey fixed distribution

• Otherwise simulation is needed
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Summary

• Role of the OS

• Device characteristics

• Data bandwidth

• Disks

• Structure and latency: seek, rotation, transfer, controller delays

• Bus characteristics

• Processor-memory, I/O, and backplane buses

• Width, multiplexing, clocking, switching, arbitration

• I/O control

• I/O instructions vs. memory mapped I/O

• Polling vs. interrupts

• Processor controlled data transfer vs. DMA

• Interaction of DMA with memory system


