

This Unit: I/O

One Instance of I/O

A More General/Realistic I/O System

- A computer system
 - CPU/Memory: connected by memory bus
 - I/O peripherals: disks, input devices, displays, network cards, ...
 - With built-in or separate I/O (or DMA) controllers
 - All connected by a system bus

I/O Devices: Mouse, Keyboard, Display

 Many I/O devices have low performance needs 	
Keyboard	
• 1 B/key * 10 keys/s = 10 B/s	
Mouse	
• 2 B/transfer * 10 transfers/s = 20 B/s	
Display	
• 4 B/pixel * 1M pixel/display * 60 displays/s = 240M B/s	
CIS 501 (Martin/Roth): I/O	7

I/O Device Performance

atency is re	ally only an iss	sue for disk	
Partner: hu Input/outp	actors mans have slo ut/both	wer data rates	than machines
Device	Partner	I? O?	Data Rate (KB/s)
Keyboard	Human	Input	0.01
Mouse	Human	Input	0.02
Speaker	Human	Output	0.60
Printer	Human	Output	200.00
Display	Human	Output	240,000.00
Modem	Machine	I/O	8.00
Ethernet card	Machine	I/O	10,000.00
Disk	Machine	I/O	10.000.00

I/O Device: Disk pead • Disk: like stack of record players platter Collection of platters • Each with read/write head Platters divided into concentric tracks Head seeks to track • All heads move in unison Each track divided into sectors More sectors on outer tracks Sectors rotate under head Controller • Seeks heads, waits for sectors Turns heads on/off • May have its own cache (a few MBs) Exploit spatial locality CIS 501 (Martin/Roth): I/O 8

Disk Parameters

	Seagate ST3200	Seagate Savvio	Toshiba MK1003
Diameter	3.5″	2.5″	1.8′
Capacity	200 GB	73 GB	10 GE
RPM	7200 RPM	10000 RPM	4200 RPM
Cache	8 MB	?	512 KE
Discs/Heads	2/4	2/4	1/2
Average Seek	8 ms	4.5 ms	7 ms
Peak Data Rate	150 MB/s	200 MB/s	200 MB/s
Sustained Data Rate	58 MB/s	94 MB/s	16 MB/s
Interface	ATA	SCSI	ATA
Use	Desktop	Laptop	iPoc

9

• 0.85", 4 GB drives, used in iPod-mini

_				
Dis	< Late	encv l	Exan	nple

CIS 501 (Martin/Roth): I/O

• 128 se	ectors/track, 512 B/sector, 6000 RPM, 10 ms t_{seek} 1 ms t_{contr}
• 6000 F	RPM \rightarrow 100 R/s \rightarrow 10 ms/R \rightarrow t _{rotation} = 10 ms / 2 = 5 ms
• 4 KB p	page → 8 sectors → $t_{transfer}$ = 10 ms * 8/128 = 0.6 ms
• t _{disk} =	$t_{seek} + t_{rotation} + t_{transfer} + t_{controller} = 16.6 \text{ ms}$
• t _{disk} =	10 + 5 + 0.6 + 1 = 16.6 ms
CIC EQ1 (Martin /D	oth)x 1/0

Disk Latency

 Seek delay (t_{seek}): head seeks to right trac 	Ж
 Average of ~5ms - 15ms 	
 Less in practice because of shorter seeks 	5)
 Rotational delay (t_{rotation}): right sector rot 	tates under head
On average: time to go halfway around c	disk
 Based on rotation speed (RPM) 	
 10,000 to 15,000 RPMs 	
• ~3ms	
 Transfer time (t_{transfer}): data actually being 	g transferred
Fast for small blocks	
 Controller delay (t_{controller}): controller over 	rhead (on either side)

Disk Bandwidth: Sequential vs Random

 Sequential vs random accesses 	1 3
Random accesses:	
One read each disk access latency	$(\sim 10 \text{ms})$
Bandomly reading 4KB pages	(*10113)
 10ms is 0.01 seconds → 100 s 	access per second
	R/socond bandwidth
• 4KB * 100 access/sec - 400K	
 Sequential accesses: 	
 Stream data from disk (no seeks) 	
 128 sectors/track, 512 B/sector, 6 	000 RPM
 64KB per rotation, 100 rotation 	n/per sec
 6400KB/sec → 6.4MB/sec 	
Sequential access is w10v or m	ore bandwidth than random
 Still no where near the 1GB/sec to 	0 10GB/sec of memory
CIS 501 (Martin/Roth): I/O	12

Increasing Disk Bandwidth

• Single disk:

- Shorter access times (latency helps bandwidth)
- · Schedule access efficiently for multiple parallel requests
 - Reduce seek time by scheduling seeks
- Higher RPMs
- More sequential seeks (layout files on disk intelligently)

• More disks: stripe data across multiple disks

- Increases both sequential and random access bandwidth
- More later on these disk arrays

CIS 501 (Martin/Roth): I/O

Other Storage Devices

- CD/DVD read/write
 Disk-like interface and performance
 Optical, not magnetic
 Capacity throttled by standardization

 One-time improvement every 5-10 years
 Bandwidth
 - Controller by rotation speed
- Tape drives
 - Used to backup disk
 - Cheaper per bit
 - Low volume, surprisingly high cost

CIS 501 (Martin/Roth): I/O

Disks Interfaces Disks talk a "language", too Much like an ISA for a processor ATA/IDE Simple, one request at a time Limited number of devices Cheap, high volume SCSI Many parallel requests

- Split request from response
- Many devices, high transfer rates
- Expensive, high-end

• Newcomers: Serial-ATA (S-ATA) and iSCSI

- S-ATA single device, allows parallel requests
- iSCSI same SCSI commands, use ethernet for physical link

14

CIS 501 (Martin/Roth): I/O

13

15

Storage Backup

Data is more valuable than hardware! Almost always true Protecting data - three aspects User error - accidental deletion Aside: ".snapshot" on enaic-l/halfdome filesystem Disk failure - mechanical, wears out over time Disaster recovery - An entire site is disabled Two approaches: Frequent tape backups, taken off site (most common today) Handle each problem distinctly File system, redundant disks (next), network-based remote backup

Reliability: RAID

- Error correction: more important for disk than for memory
 - Error correction/detection per block (handled by disk hardware)
 - Mechanical disk failures (entire disk lost) most common failure mode
 - Many disks means high failure rates
 - Entire file system can be lost if files striped across multiple disks

RAID (redundant array of inexpensive disks)

- Add redundancy
- Similar to DRAM error correction, but...
- Major difference: which disk failed is known
 - Even parity can be used to recover from single failures
 - Parity disk can be used to reconstruct data faulty disk
- RAID design balances bandwidth and fault-tolerance
- Implemented in hardware (fast, expensive) or software

CIS 501 (Martin/Roth): I/O

Levels of RAID - Summary

• RAID-0 - no redundancy

- Multiplies read and write bandwidth
- RAID-1 mirroring
 - Pair disks together (write both, read one)
 - 2x storage overhead
 - Multiples only read bandwidth (not write bandwidth)
- RAID-3 bit-level parity (dedicated parity disk)
 - N+1 disks, calculate parity (write all, read all)
 - Good sequential read/write bandwidth, poor random accesses

18

• If N=8, only 13% overhead

• RAID-4/5 - block-level parity

- Reads only data you need
- Writes require read, calculate parity, write data&parity
- CIS 501 (Martin/Roth): I/O

17

RAID-3: Bit-level parity

 RAID-3 - bit-level parity dedicated parity disk N+1 disks, calculate parity (write all, read all) Good sequential read/write bandwidth, poor random accesses If N=8, only 13% overhead 	0 4 8 12 16 20 	1 5 9 13 17 21 	2 6 10 14 18 22 	3 7 11 15 19 23 	P0 P1 P2 P3 P4 P5
CIS 501 (Martin/Roth): I/O	\smile	© 200)3 Elsevier :	Science	19

RAID 4/5 - Block-level Parity

RAID-4 vs RAID-5

• RAID-5 rotates the parity disk, avoid single-disk bottleneck

0	1	2	3	PO		1	2	3	PO
4	5	6	7	P1	4	5	6	P1	7
8	9	10	11	P2	8	9	P2	10	11
12	13	14	15	P3	12	P3	13	14	15
16	17	18	19	P4	P4	16	17	18	19
20	21	22	23	P5	20	21	22	23	P5
	\smile	RAID 4		© 2003 E	Elsevier Science	\smile	RAID 5		\smile
CIS 501 (Martin/Ro	th): I/O							21

<u> </u>		
	data lines address lines control lines	
Goals		
 Performance: latency and bandwidt 	h	
 Standardization: flexibility in dealin 	g with many devices	
• Cost		
Memory bus emphasize performar	nce, then cost	
• I/O buses emphasize standardizat	ion, then performance	
Design issues		
Width/multiplexing: shared or sep	arate wires	
Clocking: bus clocked or not?		
• Switching: how/when bus control is	acquired and released	
Arbitration: deciding who gets the h	us next	
IS 501 (Martin/Roth): I/O		23

Bus Width and Multiplexing

• Wider

- + More bandwidth
- More expensive and more susceptible to skew
- Multiplexed: address and data on same lines
 - + Cheaper
 - Less bandwidth
- Burst transfers
 - Multiple sequential data transactions for single address
 - + Increase bandwidth at relatively little cost

```
CIS 501 (Martin/Roth): I/O
```

Bus Clocking

Synchr	onous: clocked	
+ Fast		
– Must	be short: to minimize clock skew	
Asynch	Ironous: un-clocked	
+ Longe	r: no clock skew, deals with devices of different speeds	
– Slowe	r: requires "hand-shaking" protocol	
• F(or example, asynchronous read	
1	. Processor drives address onto bus, asserts Request li	ne
2	. Memory asserts Ack line, processor stops driving	
3	. Memory drives data on bus, asserts DataReady line	
4	Processor asserts Ack line, memory stops driving	
Source	synchronous	
 A hyb 	rid: send clock with data	
Trend	s away from asynchronous buses	
IS 501 (Martin/Ro	th): I/O 2	5

Standard Bus Examples

	PCI	SCSI	USB
Туре	Backplane	I/O - disks	I/O
Width	32–64 bits	8–32 bits	1
Multiplexed?	Yes	Yes	Yes
Clocking	33 (66) MHz	5 (10) MHz	Asynchronous
Data rate	133 (266) MB/s	10 (20) MB/s	0.2, 1.5, 80 MB/s
Arbitration	Parallel	Self-selection	Daisy-chain
Maximum masters	1024	7–31	127
Maximum length	0.5 m	2.5 m	-

USB (universal serial bus)

• Popular for low-/moderate-bandwidth external peripherals

- + Packetized interface (like TCP) extremely flexible
- + Also supplies power to the peripheral

CIS 501 (Martin/Roth): I/O

Bus Arbitration

•	Bus master: component that can initiate a bus request									
	 Dus typically has several masters Processor, but I/O devices can also be masters (Why? See in a bit) 									
•	Arbitration: choosing a master among multiple requests									
	 Try to implement priority and fairness (no device "starves") 									
	 Several different schemes (e.g., centralized, distributed) 									
•	Daisy-chain: devices connect to bus in priority order									
	High-priority devices intercept/deny requests by low-priority ones									
	± Simple, but slow and can't ensure fairness									
•	 New trend: Point-to-point busses 									
	 Pro: No arbitration, no "master", fast, simple, source synchronous 									
	Con: need lots of wires or requires high per-wire bandwidth									
CIS	5 501 (Martin/Roth): I/O 26									

I/O Interfaces

- Now that we know how I/O devices and buses work...
- How does I/O actually happen?
 - How does CPU give commands to I/O devices?
 - How do I/O devices execute data transfers?
 - How does CPU know when I/O devices are done?

CIS 501 (Martin/Roth): I/O

27

28

I/O: Control + Data Transfer

- I/O devices have two ports
 - Control: commands and status reports
 - Tricky part (especially status reports)
 - Data: data
 - Labor intensive part
 - "Interesting" I/O devices do data transfers (to/from memory)
 - Display: video memory \rightarrow monitor
 - Disk: memory \Leftrightarrow disk
 - Network interface: memory ↔ network card

CIS 501 (Martin/Roth): I/O

Sending Commands to I/O Devices

- Remember: only OS can do this
- I/O instructions
 - OS only? Instructions are privileged
 - E.g., IA32
- Memory-mapped I/O
 - Portion of physical address space reserved for I/O
 - OS maps physical addresses to I/O device control registers
 - Stores/loads to these addresses are commands to I/O devices
 - Main memory ignores them, I/O devices recognize and respond
 - Address specifies both I/O device and command
 - Obviously, these address are not cached
 - OS only? I/O physical addresses only mapped in OS address space
 - E.g., almost every architecture other than IA32

CIS 501 (Martin/Roth): I/O

OS Plays a Big Role

- I/O interface is typically under OS control
 - User applications access I/O devices indirectly (e.g., SYSCALL)
 - Why?
- Virtualization: same argument as for memory
 - Physical devices shared among multiple apps
 - Direct access could lead to conflicts
- Synchronization
 - Most have asynchronous interfaces, require unbounded waiting
 - OS handles asynchrony internally, presents synchronous interface

• Standardization

• Devices of a certain type (disks) can/will have different interfaces

30

- OS handles differences (via drivers), presents uniform interface
- CIS 501 (Martin/Roth): I/O

29

31

Querying I/O Device Status

Sent command to I/O device check	
 How to query I/O device status? 	
 So that you know if data you asked for is ready? 	
So that you know if device is ready to receive next co	ommand?
• Polling: Ready now? How about now? How ab	out now?
 Processor queries I/O device status register 	
 Loops until it gets status it wants (ready for next) 	command)
Or tries again a little later	
+ Simple	
 Waste of processor's time 	
Processor much faster than I/O device	
- Worse for higher bandwidth I/O devices (e.g., disks)	
CIS 501 (Martin/Roth): I/O	33

Polling Overhead

• Parameters

- 500 MHz CPU
- Polling event takes 400 cycles
- Overhead for polling a mouse 30 times per second?
 - (30 poll/s) * [(400 c/poll)/(500M c/s)] = 0.002%
 - + Not bad

• Overhead for polling a 4 MB/s disk with 16 B interface?

- (4M B/s)/(16 B/poll) * [(400 c/poll)/(500M c/s)] = 20%
- Not good
- This is the overhead of polling, not actual data transfer
 - Really bad if disk is not being used

CIS 501 (Martin/Roth): I/O

Interrupt Overhead

500 MHz CPU John Stranger to kee 100 publics	
Interrupt handler takes 400 cycles Data transfer takes 100 cycles	
• 4 MB/s, 16 B interface disk transfers data only 50	% of time
Data transfer (x) time	
 0.05 * (4M B/s)/(16 B/xfer)*[(100 c/xfer)/(500N 	1 c/s)] = 0.25%
Overhead for polling?	
• (4M B/s)/(16 B/poll) * [(400 c/poll)/(500M c/s)]	= 20%
Overhead for interrupts?	
+ 0.05 * (4M B/s)/(16 B/poll) * [(400 c/poll)/(500	M c/s)] = 1%
IS 501 (Martin/Roth): I/O	35

Interrupt-Driven I/O Interrupts: alternative to polling I/O device generates interrupt when status changes, data ready OS handles interrupts just like exceptions (e.g., page faults) Identity of interrupting I/O device recorded in ECR

- I/O interrupts are asynchronous
 - Not associated with any one insn
 - Don't need to be handled immediately
- I/O interrupts are prioritized
 - Synchronous interrupts (e.g., page faults) have highest priority

34

 High-bandwidth I/O devices have higher priority than lowbandwidth ones

CIS 501 (Martin/Roth): I/O

33

Direct Memory Access (DMA)

But still requires OS to transfer data one word at	a time
 OK for low bandwidth I/O devices: mice, microphones. 	etc.
Bad for high bandwidth I/O devices: disks, monitors, e	tc.
Direct Memory Access (DMA)	
Block I/O memory transfers without processor control	
• Transfers entire blocks (e.g., pages, video frames) at a	time
 Can use bus "burst" transfer mode if available 	
Only interrupts processor when done (or if error occurs	5)
S 501 (Martin/Roth): I/O	36

DMA Controllers

• To do DMA, I/O device attached to DMA controller

- Multiple devices can be connected to one controller
- Controller itself seen as a memory mapped I/O device
- Processor initializes start memory address, transfer size, etc.
- DMA controller takes care of bus arbitration and transfer details

DMA Overhead

Parameters 500 MHz CPU Interrupt handler takes 400 cycles Data transfer takes 100 cycles 4 MB/s, 16 B interface disk transfers data 50% of time DMA setup takes 1600 cycles, transfer one 16KB page at a time Processor overhead for interrupt-driven I/O? 0.5 * (4M B/s)/(16 B/i-xfer)*[(500 c/i-xfer)/(500M c/s)] = 12.5% Processor overhead with DMA? Processor only gets involved once per page, not once per 16 B 0.5 * (4M B/s)/(16K B/page) * [(2000 c/page)/(500M c/s)] = 0.05%

I/O Processors

DMA and Address Translation

• Which addresses does processor specify to DMA controller?

Virtual DMA

- + Can specify large cross-page transfers
- DMA controller has to do address translation internally
 - DMA contains small translation lookaside buffer (TLB)
 - OS initializes buffer contents when it requests an I/O transfer

Physical DMA

- + DMA controller is simple
- Can only do short page-size transfers
 - OS breaks large transfers into page-size chunks

CIS 501 (Martin/Roth): I/O

DMA and Caching

Caches are good

- Reduce CPU's observed instruction and data access latency
- + But also, reduce CPU's use of memory...
- + ...leaving majority of memory/bus bandwidth for DMA I/O
- But they also introduce a coherence problem for DMA
 - Input problem: all caches
 - DMA write into memory version of cached location
 - Cached version now stale
 - Output problem: write-back caches only
 - DMA read from memory version of "dirty" cached location
 - Output stale value

CIS 501 (Martin/Roth): I/O

Hardware Cache Coherence

Designing an I/O System for Bandwidth

Approach		• First: determi
 Find bandwidths of individual components 		• CPU: (300M
Configure components you can changeTo match bandwidth of bottleneck component	you can't	 I/O bus: (10 Peak I/O rate
Example		
Parameters		 Second: confi
 300 MIPS CPU, 100 MB/s I/O bus 		• Disk: 1 / [10
 50K OS insns + 100K user insns per I/O op 	 How many d 	
 SCSI-2 controllers (20 MB/s): each accomn 	• (1562 IO	
• 5 MB/s disks with $t_{seek} + t_{rotation} = 10$ ms, 64	4 KB reads	How many c
Determine		• (43.9 IO
 What is the maximum sustainable I/O rate 	?	• (20M B/s
 How many SCSI-2 controllers and disks doe Assuming random reads 	es it require?	• (36 disks
		Caveat: real 1
CIS 501 (Martin/Roth): I/O	43	CIS 501 (Martin/Roth): I/O
		1

41

Designing an I/O System for Bandwidth

			-													
•	Firct	· do	torm	nino	T/O	rate	ac of	com	non	ont			n't	cha	nao	
	11150	. uc	ιεπ	iii ie	1/0	race	22 01	COL	ιρυπ	CIIU	5 VVC	ະແ	ט ווג	uia	nyc	
									a han a a a han a h						-	

- CPU: (300M insn/s) / (150K Insns/IO) = 2000 IO/s
- I/O bus: (100M B/s) / (64K B/IO) = 1562 IO/s
- Peak I/O rate determined by bus: 1562 IO/s

econd: configure remaining components to match rate

- Disk: 1 / [10 ms/IO + (64K B/IO) / (5M B/s)] = 43.9 IO/s
- How many disks?
 - (1562 IO/s) / (43.9 IO/s) = 36 disks
- How many controllers?
 - (43.9 IO/s) * (64K B/IO) = 2.74M B/s
 - (20M B/s) / (2.74M B/s) = 7.2
 - (36 disks) / (7 disks/SCSI-2) = 6 SCSI-2 controllers

44

aveat: real I/O systems modeled with simulation

Designing an 1/O System for Latency	Summary							
 Previous system designed for bandwidth 	Role of the OS							
 Some systems have latency requirements as well 	Device characteristics							
 E.g., database system may require maximum or average latency 	Data bandwidth							
	• Disks							
 Latencies are actually harder to deal with than bandwidths 	Structure and latency: seek, rotation, transfer, controller delays							
 Unloaded system: few concurrent IO transactions 	Bus characteristics							
Latency is easy to calculate	 Processor-memory, I/O, and backplane buses 							
Loaded system: many concurrent IO transactions	 Width, multiplexing, clocking, switching, arbitration 							
Contention can lead to queuing	I/O control							
Latencies can rise dramatically	I/O instructions vs. memory mapped I/O							
 Queuing theory can help if transactions obey fixed distribution 	Polling vs. interrupts							
Otherwise simulation is needed	 Processor controlled data transfer vs. DMA 							
	 Interaction of DMA with memory system 							
CIS 501 (Martin/Roth): I/O 45	CIS 501 (Martin/Roth): I/O 46							