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CIS501
Introduction to Computer Architecture

Prof. Milo Martin

Unit 1: Technology, Cost, Performance, Power, and Reliability
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This Unit

• What is a computer and what is computer architecture

• Forces that shape computer architecture

• Applications (covered last time)

• Semiconductor technology

• Evaluation metrics: parameters and technology basis

• Cost

• Performance

• Power

• Reliability
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Readings

• H+P

• Chapters 1

• Paper

• G. Moore, “Cramming More Components onto Integrated Circuits”

• Reminders

• Pre-quiz

• Paper review

• Groups of 3-4, send via e-mail to cis501+review@cis.upenn.edu

• Don’t worry (much) about power question, as we might not get
to it today
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What is Computer Architecture? (review)

• Design of interfaces and implementations…

• Under constantly changing set of external forces…
• Applications: change from above (discussed last time)

• Technology: changes transistor characteristics from below

• Inertia: resists changing all levels of system at once

• To satisfy different constraints
• CIS 501 mostly about performance

• Cost

• Power

• Reliability

• Iterative process driven by empirical evaluation

• The art/science of tradeoffs
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Abstraction and Layering

• Abstraction: only way of dealing with complex systems

• Divide world into objects, each with an…

• Interface: knobs, behaviors, knobs ! behaviors

• Implementation: “black box” (ignorance+apathy)

• Only specialists deal with implementation, rest of us with interface

• Example: car, only mechanics know how implementation works

• Layering: abstraction discipline makes life even simpler

• Removes need to even know interfaces of most objects

• Divide objects in system into layers

• Layer X objects

• Implemented in terms of interfaces of layer X-1 objects

• Don’t even need to know interfaces of layer X-2 objects

• But sometimes helps if they do
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Abstraction, Layering, and Computers

• Computers are complex systems, built in layers

• Applications

• O/S, compiler

• Firmware, device drivers

• Processor, memory, raw I/O devices

• Digital circuits, digital/analog converters

• Gates

• Transistors

• 99% of users don’t know hardware layers implementation

• 90% of users don’t know implementation of any layer

• That’s OK, world still works just fine

• But unfortunately, the layers sometimes breakdown

• Someone needs to understand what’s “under the hood”
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CIS501: A Picture

• Computer architecture

• Definition of ISA to facilitate implementation of software layers

• CIS 501 mostly about computer micro-architecture

• Design CPU, Memory, I/O to implement ISA …

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

Hardware

Software

Instruction Set Architecture (ISA)
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Semiconductor Technology Background

• Transistor

• invention of the century

• Fabrication

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors
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Shaping Force: Technology

• Basic technology element: MOSFET

• Invention of 20th century

• MOS: metal-oxide-semiconductor

• Conductor, insulator, semi-conductor

• FET: field-effect transistor

• Solid-state component acts like electrical switch

• Channel conducts source!drain when voltage applied to gate

• Channel length: characteristic parameter (short ! fast)

• Aka “feature size” or “technology”

• Currently: 0.09 µm (0.09 micron), 90 nm

• Continued miniaturization (scaling) known as “Moore’s Law”

• Won’t last forever, physical limits approaching (or are they?)

channel

source

drain

gate
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Complementary MOS (CMOS)

• Voltages as values

• Power (VDD) = 1, Ground = 0

• Two kinds of MOSFETs

• N-transistors

• Conduct when gate voltage is 1

• Good at passing 0s

• P-transistors

• Conduct when gate voltage is 0

• Good at passing 1s

• CMOS: complementary n-/p- networks form boolean logic

power (1)

ground (0)

input output

(“node”)

n-transistor

p-transistor
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CMOS Examples

• Example I: inverter
• Case I: input = 0

• P-transistor closed, n-transistor open

• Power charges output (1)

• Case II: input = 1

• P-transistor open, n-transistor closed

• Output discharges to ground (0)

• Example II: look at truth table
• 0, 0 ! 1         0, 1 ! 1

• 1, 0 ! 1         1, 1 ! 0

• Result: this is a NAND (NOT AND)

• NAND is universal (can build any logic function)

• More examples, details
• http://…/~amir/cse371/lecture_slides/tech.pdf

0
1

1 0

BA

A

B
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More About CMOS and Technology

• Two different CMOS families

• SRAM (logic): used to make processors

• Storage implemented as inverter pairs

• Optimized for speed

• DRAM (memory): used to make memory

• Storage implemented as capacitors

• Optimized for density, cost, power

• Disk is also a “technology”, but isn’t transistor-based
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Aside: VLSI + Manufacturing

• VLSI (very large scale integration)

• MOSFET manufacturing process

• As important as invention of MOSFET itself

• Multi-step photochemical and electrochemical process

• Fixed cost per step

• Cost per transistor shrinks with transistor size

• Other production costs

• Packaging

• Test

• Mask set

• Design
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MOSFET Side View

• MOS: three materials needed to make a transistor

• Metal - Aluminum, Tungsten, Copper: conductor

• Oxide - Silicon Dioxide (SiO2): insulator

• Semiconductor - doped Si: conducts under certain conditions

• FET: field effect (the mechanism) transistor

• Voltage on gate: current flows source to drain (transistor on)

• No voltage on gate: no current (transistor off)

channel
source drain

insulator
gate

Substrate
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Manufacturing Process

• Start with silicon wafer

• “Grow” photo-resist

• Molecular beam epitaxy

• Burn positive bias mask

• Ultraviolet light lithography

• Dissolve unburned photo-resist

• Chemically

• Bomb wafer with negative ions (P)

• Doping

• Dissolve remaining photo-resist

• Chemically

• Continue with next layer
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Manufacturing Process

• Grow SiO2

• Grow photo-resist

• Burn “via-level-1” mask

• Dissolve unburned photo-resist

• And underlying SiO2

• Grow tungsten “vias”

• Dissolve remaining photo-resist

• Continue with next layer
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Manufacturing Process

• Grow SiO2

• Grow photo-resist

• Burn “wire-level-1” mask

• Dissolve unburned photo-resist

• And underlying SiO2

• Grow copper “wires”

• Dissolve remaining photo-resist

• Continue with next wire layer…

• Typical number of wire layers: 3-6
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Defects

• Defects can arise

• Under-/over-doping

• Over-/under-dissolved insulator

• Mask mis-alignment

• Particle contaminants

• Try to minimize defects

• Process margins

• Design rules

• Minimal transistor size, separation

• Or, tolerate defects

• Redundant or “spare” memory cells

Defective:

Defective:

Slow:
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Empirical Evaluation

• Metrics

• Cost

• Performance

• Power

• Reliability

• Often more important in combination than individually

• Performance/cost (MIPS/$)

• Performance/power (MIPS/W)

• Basis for

• Design decisions

• Purchasing decisions
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Cost

• Metric: $

• In grand scheme: CPU accounts for fraction of cost

• Some of that is profit (Intel’s, Dell’s)

• We are concerned about Intel’s cost (transfers to you)

• Unit cost: costs to manufacture individual chips

• Startup cost: cost to design chip, build the fab line, marketing

Memory, display, power supply/battery, disk, packagingOther costs

20-30%20–30%10–20%10–30%% of total

$10–$20$50–$100$150-$350$100–$300$

PhonePDALaptopDesktop



UPenn's CIS501 (Martin/Roth): Technology, cost, performance, power, and reliability 21

Unit Cost: Integrated Circuit (IC)

• Chips built in multi-step chemical processes on wafers

• Cost / wafer is constant, f(wafer size, number of steps)

• Chip (die) cost is proportional to area

• Larger chips means fewer of them

• Larger chips means fewer working ones

• Why? Uniform defect density

• Chip cost ~ chip area"

•  " = 2#3

• Wafer yield: % wafer that is chips

• Die yield: % chips that work

• Yield is increasingly non-binary - fast vs slow chips
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Yield/Cost Examples

• Parameters
• wafer yield = 90%, " = 2, defect density = 2/cm2

400324256196144100Die size (mm2)

10%11%12%16%19%23%Die yield

90(9)116(13)153(20)206(32)290(53)431(96)10” Wafer

52(5)68(7)90(11)124(19)177(32)256(59)8” Wafer

23(2)32(3)44(5)62(9)90(16)139(31)6” Wafer

$473

$202

$119

$35

Total

$37

$23

$21

$12

Test
Cost

$19(273)

$30(431)

$3(304)

$11(168)

Package
Cost (pins)

$417

$149

$95

$12

Die
Cost

9%402961.5$1500Intel Pentium

19%532341.2$1500DEC Alpha

27%661961.3$1700IBM PPC601

54%181811.0$1200Intel 486DX2

YieldDiesArea
(mm2)

Defect
(/cm2)

Wafer
Cost
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Startup Costs

• Startup costs: must be amortized over chips sold

• Research and development: ~$100M per chip

• 500 person-years @ $200K per

• Fabrication facilities: ~$2B per new line

• Clean rooms (bunny suits), lithography, testing equipment

• If you sell 10M chips, startup adds ~$200 to cost of each

• Companies (e.g., Intel) don’t make money on new chips

• They make money on proliferations (shrinks and frequency)

• No startup cost for these
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Moore’s Effect on Cost

• Scaling has opposite effects on unit and startup costs

+ Reduces unit integrated circuit cost

• Either lower cost for same functionality…

• Or same cost for more functionality

– Increases startup cost

• More expensive fabrication equipment

• Takes longer to design, verify, and test chips
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Performance

• Two definitions

• Latency (execution time): time to finish a fixed task

• Throughput (bandwidth): number of tasks in fixed time

• Very different: throughput can exploit parallelism, latency cannot

• Baking bread analogy

• Often contradictory

• Choose definition that matches goals (most frequently thruput)

• Example: move people from A to B, 10 miles

• Car: capacity = 5, speed = 60 miles/hour

• Bus: capacity = 60, speed = 20 miles/hour

• Latency: car = 10 min, bus = 30 min

• Throughput: car = 15 PPH (count return trip), bus = 60 PPH
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Performance Improvement

• Processor A is X times faster than processor B if

• Latency(P,A) = Latency(P,B) / X

• Throughput(P,A) = Throughput(P,B) * X

• Processor A is X% faster than processor B if

• Latency(P,A) = Latency(P,B) / (1+X/100)

• Throughput(P,A) = Throughput(P,B) * (1+X/100)

• Car/bus example

• Latency? Car is 3 times (and 200%) faster than bus

• Throughput? Bus is 4 times (and 300%) faster than car
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What Is ‘P’ in Latency(P,A)?

• Program

• Latency(A) makes no sense, processor executes some program

• But which one?

• Actual target workload?

+ Accurate

– Not portable/repeatable, overly specific, hard to pinpoint problems

• Some representative benchmark program(s)?

+ Portable/repeatable, pretty accurate

– Hard to pinpoint problems, may not be exactly what you run

• Some small kernel benchmarks (micro-benchmarks)

+ Portable/repeatable, easy to run, easy to pinpoint problems

– Not representative of complex behaviors of real programs
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SPEC Benchmarks

• SPEC (Standard Performance Evaluation Corporation)

• http://www.spec.org/

• Consortium of companies that collects, standardizes, and
distributes benchmark programs

• Post SPECmark results for different processors

• 1 number that represents performance for entire suite

• Benchmark suites for CPU, Java, I/O, Web, Mail, etc.

• Updated every few years: so companies don’t target benchmarks

• SPEC CPU 2000

• 12 “integer”: gzip, gcc, perl, crafty (chess), vortex (DB), etc.

• 14 “floating point”: mesa (openGL), equake, facerec, etc.

• Written in C and Fortran (a few in C++)
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Other Benchmarks

• Parallel benchmarks

• SPLASH2 - Stanford Parallel Applications for Shared Memory

• NAS

• SPEC’s OpenMP benchmarks

• SPECjbb - Java multithreaded database-like workload

• Transaction Processing Council (TPC)

• TPC-C: On-line transaction processing (OLTP)

• TPC-H/R: Decision support systems (DSS)

• TPC-W: E-commerce database backend workload

• Have parallelism (intra-query and inter-query)

• Heavy I/O and memory components
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Adding/Averaging Performance Numbers

• You can add latencies, but not throughput

• Latency(P1+P2, A) = Latency(P1,A) + Latency(P2,A)

• Throughput(P1+P2,A) != Throughput(P1,A) + Throughput(P2,A)

• 1 mile @ 30 miles/hour + 1 mile @ 90 miles/hour

• Average is not 60 miles/hour

• 0.033 hours at 30 miles/hour + 0.01 hours at 90 miles/hour

• Average is only 47 miles/hour! (2 miles / (0.033 + 0.01 hours))

• Throughput(P1+P2,A) =

              1 / [(1/ Throughput(P1,A)) + (1/ Throughput(P2,A))]

• Same goes for means (averages)

• Arithmetic: (1/N) * !P=1..N Latency(P)

• For units that are proportional to time (e.g., latency)

• Harmonic: N / !P=1..N 1/Throughput(P)

• For units that are inversely proportional to time (e.g., throughput)

• Geometric: N"#P=1..N Speedup(P)

• For unitless quantities (e.g., speedups)
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SPECmark

• Reference machine: Sun SPARC 10

• Latency SPECmark

• For each benchmark

• Take odd number of samples: on both machines

• Choose median

• Take latency ratio (Sun SPARC 10 / your machine)

• Take GMEAN of ratios over all benchmarks

• Throughput SPECmark

• Run multiple benchmarks in parallel on multiple-processor system

• Recent (latency) leaders

• SPECint: Intel 3.4 GHz Pentium4 (1705)

• SPECfp: IBM 1.9 GHz Power5 (2702)
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CPU Performance Equation

• Multiple aspects to performance: helps to isolate them

• Latency(P,A) = seconds / program =
• (instructions / program) * (cycles / instruction) * (seconds / cycle)

• Instructions / program: dynamic instruction count
• Function of program, compiler, instruction set architecture (ISA)

• Cycles / instruction: CPI
• Function of program, compiler, ISA, micro-architecture

• Seconds / cycle: clock period
• Function of micro-architecture, technology parameters

• For low latency (better performance) minimize all three
• Hard: often pull against the other
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Danger: Partial Performance Metrics

• Micro-architects often ignore dynamic instruction count
• Typically work in one ISA/one compiler ! treat it as fixed

• CPU performance equation becomes

• seconds / instruction = (cycles / instruction) * (seconds / cycle)

• This is a latency measure, if we care about throughput …

• Instructions / second = (instructions / cycle) * (cycles / second)

• MIPS (millions of instructions per second)
• Instructions / second * 10-6

• Cycles / second: clock frequency (in MHz)

• Example: CPI = 2, clock = 500 MHz, what is MIPS?

• 0.5 * 500 MHz * 10-6 = 250 MIPS

• Example problem situation:

• compiler removes instructions, program faster

• However, “MIPS” goes down (misleading)
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MIPS and MFLOPS (MegaFLOPS)

• Problem: MIPS may vary inversely with performance
– Some optimizations actually add instructions

– Work per instruction varies (e.g., FP mult vs. integer add)

– ISAs are not equivalent

• MFLOPS: like MIPS, but counts only FP ops, because…
+ FP ops can’t be optimized away

+ FP ops have longest latencies anyway

+ FP ops are same across machines

• May have been valid in 1980, but today…
– Most programs are “integer”, i.e., light on FP

– Loads from memory take much longer than FP divide

– Even FP instructions sets are not equivalent

• Upshot: MIPS not perfect, but more useful than MFLOPS
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Danger: Partial Performance Metrics II

• Micro-architects often ignore dynamic instruction count…

• … but general public (mostly) also ignores CPI

• Equates clock frequency with performance!!

• Which processor would you buy?

• Processor A: CPI = 2, clock = 500 MHz

• Processor B: CPI = 1, clock = 300 MHz

• Probably A, but B is faster (assuming same ISA/compiler)

• Classic example

• 800 MHz PentiumIII faster than 1 GHz Pentium4

• Same ISA and compiler
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Cycles per Instruction (CPI)

• CIS501 is mostly about improving CPI
• Cycle/instruction for average instruction

• IPC = 1/CPI

• Used more frequently than CPI, but harder to compute with

• Different instructions have different cycle costs

• E.g., integer add typically takes 1 cycle, FP divide takes > 10

• Assumes you know something about instruction frequencies

• CPI example
• A program executes equal integer, FP, and memory operations

• Cycles per instruction type: integer = 1, memory = 2, FP = 3

• What is the CPI? (0.33 * 1) + (0.33 * 2) + (0.33 * 3) = 2

• Caveat: this sort of calculation ignores dependences completely

• Back-of-the-envelope arguments only
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Another CPI Example

• Assume a processor with instruction frequencies and costs

• Integer ALU: 50%, 1 cycle

• Load: 20%, 5 cycle

• Store: 10%, 1 cycle

• Branch: 20%, 2 cycle

• Which change would improve performance more?

• A. Branch prediction to reduce branch cost to 1 cycle?

• B. A bigger data cache to reduce load cost to 3 cycles?

• Compute CPI

• Base = 0.5*1 + 0.2*5 + 0.1*1 + 0.2*2 = 2

• A = 0.5*1 + 0.2*5 + 0.1*1 + 0.2*1 = 1.8

• B = 0.5*1 + 0.2*3 + 0.1*1 + 0.2*2 = 1.6  (winner)
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Increasing Clock Frequency: Pipelining

• CPU is a pipeline: compute stages separated by latches
• http://…/~amir/cse371/lecture_slides/pipeline.pdf

• Clock period: maximum delay of any stage
• Number of gate levels in stage

• Delay of individual gates (these days, wire delay more important)

PC
Insn

Mem

Register

File

s1 s2 d

Data

Mem

a

d

+

4
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Increasing Clock Frequency: Pipelining

• Reduce pipeline stage delay
• Reduce logic levels and wire lengths (better design)

• Complementary to technology efforts (described later)

• Increase number of pipeline stages (multi-stage operations)

– Often causes CPI to increase

– At some point, actually causes performance to decrease

• “Optimal” pipeline depth is program and technology specific

• Remember example
• PentiumIII: 12 stage pipeline, 800 MHz

                  faster than

• Pentium4: 22 stage pipeline, 1 GHz

• Next Intel design: more like PentiumIII

• Much more about this later
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CPI and Clock Frequency

• System components “clocked” independently
• E.g., Increasing processor clock frequency doesn’t improve

memory performance

• Example
• Processor A: CPICPU = 1, CPIMEM = 1, clock = 500 MHz

• What is the speedup if we double clock frequency?

• Base: CPI = 2 ! IPC = 0.5 ! MIPS = 250

• New: CPI = 3 ! IPC = 0.33 ! MIPS = 333

• Clock *= 2 ! CPIMEM *= 2

• Speedup = 333/250 = 1.33 << 2

• What about an infinite clock frequency?
• Only a x2 speedup (Example of Amdahl’s Law)
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Measuring CPI

• How are CPI and execution-time actually measured?
• Execution time: time (Unix): wall clock + CPU + system

• CPI = CPU time / (clock frequency * dynamic insn count)

• How is dynamic instruction count measured?

• More useful is CPI breakdown (CPICPU, CPIMEM, etc.)

• So we know what performance problems are and what to fix

• CPI breakdowns
• Hardware event counters

• Calculate CPI using counter frequencies/event costs

• Cycle-level micro-architecture simulation (e.g., SimpleScalar)

+ Measure exactly what you want

+ Measure impact of potential fixes

• Must model micro-architecture faithfully

• Method of choice for many micro-architects (and you)
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Improving CPI

• CIS501 is more about improving CPI than frequency
• Historically, clock accounts for 70%+ of performance improvement

• Achieved via deeper pipelines

• That will (have to) change

• Deep pipelining is not power efficient

• Physical speed limits are approaching

• 1GHz: 1999, 2GHz: 2001, 3GHz: 2002, 4GHz? almost 2006

• Techniques we will look at

• Caching, speculation, multiple issue, out-of-order issue

• Vectors, multiprocessing, more…

• Moore helps because CPI reduction requires transistors
• The definition of parallelism is “more transistors”

• But best example is caches
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Moore’s Effect on Performance

• Moore’s Curve: common interpretation of Moore’s Law

• “CPU performance doubles every 18 months”

• Self fulfilling prophecy

• 2X every 18 months is ~1% per week

• Q: Would you add a feature that improved performance 20% if
it took 8 months to design and test?

• Processors under Moore’s Curve (arrive too late) fail spectacularly

• E.g., Intel’s Itanium, Sun’s Millennium
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Performance Rules of Thumb

• Make common case fast

• Sometimes called “Amdahl’s Law”

• Corollary: don’t optimize 1% to the detriment of other 99%

• Build a balanced system

• Don’t over-engineer capabilities that cannot be utilized

• Design for actual, not peak, performance

• For actual performance X, machine capability must be > X
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Transistor Speed, Power, and Reliability

• Transistor characteristics and scaling impact:

• Switching speed

• Power

• Reliability

• “Undergrad” gate delay model for architecture

• Each Not, NAND, NOR, AND, OR gate has delay of “1”

• Reality is not so simple
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Transistors and Wires

IBM SOI Technology

©
IB

M

From slides © Krste Asanovi!, MIT
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Transistors and Wires

IBM CMOS7, 6 layers of copper wiring

©
IB

M

From slides © Krste Asanovi!, MIT
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Simple RC Delay Model

• Switching time is a RC circuit (charge or discharge)

• R - Resistance: slows rate of current flow

• Depends on material, length, cross-section area

• C - Capacitance: electrical charge storage

• Depends on material, area, distance

• Voltage affects speed, too
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1!0

I
0!1

1!0

1!0

Resistance

• Transistor channel resistance

• function of Vg (gate voltage)

• Wire resistance (negligible for short wires)

1

1

Off
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1!0
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Capacitance

• Source/Drain capacitance

• Gate capacitance

• Wire capacitance (negligible for short wires)

1

1
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Which is faster?  Why?
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Transistor Width

• Useful for driving large “loads” like long or off-chip wires

• “Wider” transistors have lower resistance, more drive

• Specified per-device
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1!0

I
0!1

1!0

1!0

RC Delay Model Ramifications

• Want to reduce resistance

• “wide” drive transistors (width specified per device)

• Short wires

• Want to reduce capacitance

• Number of connected devices

• Less-wide transistors
(gate capacitance
of next stage)

• Short wires

1

1
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Transistor Scaling

• Transistor length is key property of a “process generation”

• 90nm refers to the transistor gate length, same for all transistors

• Shrink transistor length:

• Lower resistance of channel (shorter)

• Lower gate/source/drain capacitance

• Result: transistor drive strength linear as gate length shrinks

Gate

Source
Drain

Bulk

Width

Length

Minimum Length=2&

Width=4&Source Drain

Gate

Diagrams © Krste Asanovi!, MIT
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Wires
Pitch

Width

Length
Height

• Resistance fixed by (length*resistivity) / (height*width)
• bulk aluminum 2.8 µ$-cm, bulk copper 1.7 µ$-cm

• Capacitance depends on geometry of surrounding wires
and relative permittivity, %r,of dielectric

• silicon dioxide %r = 3.9, new low-k dielectrics in range 1.2-3.1

From slides © Krste Asanovi!, MIT
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Wire Delay

• RC Delay of wires

• Resistance proportional to length

• Capacitance proportional to length

• Result: delay of a wire is quadratic in length

• Insert “inverter” repeaters for long wires to

• Bring it back to linear delay
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Moore’s Effect on RC Delay

• Scaling helps reduce wire and gate delays

• In some ways, hurts in others

+ Wires become shorter (Length( ! Resistance()

+ Wire “surface areas” become smaller (Capacitance()

+ Transistors become shorter (Resistance()

+ Transistors become narrower (Capacitance(, Resistance*)

– Gate insulator thickness becomes smaller (Capacitance*)

– Distance between wires becomes smaller (Capacitance*)
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Improving RC Delay

• Exploit good effects of scaling

• Fabrication technology improvements

+ Use copper instead of aluminum for wires ('( ! Resistance()

+ Use lower-dielectric insulators ()( ! Capacitance()

+ Increase Voltage

+ Design implications

+ Use bigger cross-section wires (Area* ! Resistance()

• Typically means taller, otherwise fewer of them

– Increases “surface area” and capacitance (Capacitance*)

+ Use wider transistors (Area* ! Resistance()

– Increases capacitance (not for you, for upstream transistors)

– Use selectively
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Another Constraint: Power and Energy

• Power (Watt or Joule/Second): short-term (peak, max)

• Mostly a dissipation (heat) concern

• Power-density (Watt/cm2): important related metric

– Thermal cycle: power dissipation* !  power density* !
temperature* ! resistance* ! power dissipation*…

• Cost (and form factor): packaging, heat sink, fan, etc.

• Energy (Joule): long-term

• Mostly a consumption concern

• Primary issue is battery life (cost, weight of battery, too)

• Low-power implies low-energy, but not the other way around

• 10 years ago, nobody cared
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Sources of Energy Consumption

CL

Diode Leakage Current

Subthreshold Leakage Current

Short-Circuit

Current

Capacitor

Charging

Current
Dynamic power:
• Capacitor Charging (85-90% of active power)

• Energy is $ CV2 per transition

• Short-Circuit Current (10-15% of active power)
• When both p and n transistors turn on during signal transition

Static power:
• Subthreshold Leakage (dominates when inactive)

• Transistors don’t turn off completely

• Diode Leakage (negligible)
• Parasitic source and drain diodes leak to substrate

From slides © Krste Asanovi!, MIT
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Moore’s Effect on Power

• Scaling has largely good effects on local power
+ Shorter wires/smaller transistors (Length( ! Capacitance()

– Shorter transistor length (Resistance(, Capacitance()

– Global effects largely undone by increased transistor counts

• Scaling has a largely negative effect on power density

+ Transistor/wire power decreases linearly

– Transistor/wire density decreases quadratically

– Power-density increases linearly

• Thermal cycle

• Controlled somewhat by reduced VDD (5!3.3!1.6!1.3!1.1)

• Reduced VDD sacrifices some switching speed
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Reducing Power

• Reduce supply voltage (VDD)

+ Reduces dynamic power quadratically and static power linearly

• But poses a tough choice regarding VT

– Constant VT slows circuit speed ! clock frequency ! performance

– Reduced VT increases static power exponentially

• Reduce clock frequency (f)

+ Reduces dynamic power linearly

– Doesn’t reduce static power

– Reduces performance linearly

• Generally doesn’t make sense without also reduced VDD …

• Except that frequency can be adjusted cycle-to-cycle and locally

• More on this later
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Dynamic Voltage Scaling (DVS)

• Dynamic voltage scaling (DVS)
• OS reduces voltage/frequency when peak performance not needed

± X-Scale is power efficient (6200 MIPS/W), but not IA32 compatible

62MIPS @ 0.01W300MIPS @ 0.25W1100MIPS @ 4.5WLow-power

800MIPS @ 0.9W1600MIPS @ 2W3400MIPS @ 34WHigh-speed

0.7–1.65V
(continuous)

1.1–1.6V
(continuous)

0.9–1.7V
(0.1V steps)

Voltage

50–800MHz
(50MHz steps)

200–700MHz
(33MHz steps)

300–1000MHz
(50MHz steps)

Frequency

Intel X-Scale
(StrongARM2)

TM5400
“LongRun”

Mobile PentiumIII
“SpeedStep”
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Reducing Power: Processor Modes

• Modern electrical components have low-power modes
• Note: no low-power disk mode, magnetic (non-volatile)

• “Standby” mode
• Turn off internal clock

• Leave external signal controller and pins on

• Restart clock on interrupt

± Cuts dynamic power linearly, doesn’t effect static power

• Laptops go into this mode between keystrokes

• “Sleep” mode
• Flush caches, OS may also flush DRAM to disk

• Turn off processor power plane

– Needs a “hard” restart

+ Cuts dynamic and static power

• Laptops go into this mode after ~10 idle minutes
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Reliability

• Mean Time Between Failures (MTBF)

• How long before you have to reboot or buy a new one

• Not very quantitative yet, people just starting to think about this

• CPU reliability small in grand scheme

• Software most unreliable component in a system

• Much more difficult to specify & test

• Much more of it

• Most unreliable hardware component … disk

• Subject to mechanical wear
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Moore’s Bad Effect on Reliability

• CMOS devices: CPU and memory
• Historically almost perfectly reliable

• Moore has made them less reliable over time

• Two sources of electrical faults
• Energetic particle strikes (from sun)

• Randomly charge nodes, cause bits to flip, transient

• Electro-migration: change in electrical interfaces/properties

• Temperature-driven, happens gradually, permanent

• Large, high-energy transistors are immune to these effects
– Scaling makes node energy closer to particle energy

– Scaling increases power-density which increases temperature

• Memory (DRAM) was hit first: denser, smaller devices than SRAM
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Moore’s Good Effect on Reliability

• The key to providing reliability is redundancy
• The same scaling that makes devices less reliable…

• Also increase device density to enable redundancy

• Classic example
• Error correcting code (ECC) for DRAM

• ECC also starting to appear for caches

• More reliability techniques later

• Today’s big open questions
• Can we protect logic?

• Can architectural techniques help hardware reliability?

• Can architectural techniques help with software reliability?
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Summary: A Global Look at Moore

• Device scaling (Moore’s Law)
+ Increases performance

• Reduces transistor/wire delay

• Gives us more transistors with which to reduce CPI

+ Reduces local power consumption

– Which is quickly undone by increased integration

– Aggravates power-density and temperature problems

– Aggravates reliability problem

+ But gives us the transistors to solve it via redundancy

+ Reduces unit cost

– But increases startup cost

• Will we fall off Moore’s Cliff? (for real, this time?)
• What’s next: nanotubes, quantum-dots, optical, spin-tronics, DNA?
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Summary

• What is computer architecture

• Abstraction and layering: interface and implementation, ISA

• Shaping forces: application and semiconductor technology

• Moore’s Law

• Cost

• Unit and startup

• Performance

• Latency and throughput

• CPU performance equation: insn count * CPI * clock frequency

• Power and energy

• Dynamic and static power

• Reliability
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CIS501

• CIS501: Computer Architecture

• Mostly about micro-architecture

• Mostly about CPU/Memory

• Mostly about general-purpose

• Mostly about performance

• We’ll still only scratch the surface

• Next time

• Instruction set architecture

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors


