
CIS 371 (Roth/Martin): Superscalar Pipelines 1

CIS 371
Computer Organization and Design

Unit 6: Superscalar Pipelines

CIS 371 (Roth/Martin): Superscalar Pipelines 2

A Key Theme of CIS 371: Parallelism

•! Last unit: pipeline-level parallelism

•! Work on execute of one instruction in parallel with decode of next

•! Next: instruction-level parallelism (ILP)
•! Execute multiple independent instructions fully in parallel

•! Today: multiple issue

•! Later:
•! Static & dynamic scheduling

•! Extract much more ILP

•! Data-level parallelism (DLP)

•! Single-instruction, multiple data (one insn., four 64-bit adds)

•! Thread-level parallelism (TLP)

•! Multiple software threads running on multiple cores

CIS 371 (Roth/Martin): Superscalar Pipelines 3

This Unit: (In-Order) Superscalar Pipelines

•! Superscalar hardware issues

•! Bypassing and register file

•! Stall logic

•! Fetch and branch prediction

•! Multiple-issue designs
•! “Superscalar”

•! VLIW/EPIC

CPU Mem I/O

System software

App App App

CIS 371 (Roth/Martin): Superscalar Pipelines 4

Readings

•! P&H

•! Chapter 4.10

CIS 371 (Roth/Martin): Superscalar Pipelines 5

Scalar Pipeline and the Flynn Bottleneck

•! So far we have looked at scalar pipelines

•! One instruction per stage

•! With control speculation, bypassing, etc.

–! Performance limit (aka “Flynn Bottleneck”) is CPI = IPC = 1

–! Limit is never even achieved (hazards)

–! Diminishing returns from “super-pipelining” (hazards + overhead)

regfile

D$ I$

B
P

CIS 371 (Roth/Martin): Superscalar Pipelines 6

Multiple-Issue Pipeline

•! Overcome this limit using multiple issue

•! Also called superscalar

•! Two instructions per stage at once, or three, or four, or eight…

•! “Instruction-Level Parallelism (ILP)” [Fisher, IEEE TC’81]

•! Today, typically “4-wide” (Intel Core 2, AMD Opteron)

•! Some more (Power5 is 5-issue; Itanium is 6-issue)

•! Some less (dual-issue is common for simple cores)

regfile

D$ I$

B
P

CIS 371 (Roth/Martin): Superscalar Pipelines 7

Scalar Pipelines

•! So far we have looked at scalar pipelines

•! One instruction per stage

•! With control speculation

•! With bypassing (not shown)

•! With floating-point …

PC IM
intRF

DM

4

BP <>

CIS 371 (Roth/Martin): Superscalar Pipelines 8

Superscalar Pipeline Diagrams - Ideal

scalar 1 2 3 4 5 6 7 8 9 10 11 12

lw 0(r1)!r2 F D X M W
lw 4(r1)!r3 F D X M W
lw 8(r1)!r4 F D X M W
add r14,r15!r6 F D X M W
add r12,r13!r7 F D X M W
add r17,r16!r8 F D X M W
lw 0(r18)!r9 F D X M W

2-way superscalar 1 2 3 4 5 6 7 8 9 10 11 12

lw 0(r1)!r2 F D X M W
lw 4(r1)!r3 F D X M W
lw 8(r1)!r4 F D X M W
add r14,r15!r6 F D X M W
add r12,r13!r7 F D X M W
add r17,r16!r8 F D X M W
lw 0(r18)!r9 F D X M W

CIS 371 (Roth/Martin): Superscalar Pipelines 9

Superscalar Pipeline Diagrams - Realistic

scalar 1 2 3 4 5 6 7 8 9 10 11 12

lw 0(r1)!r2 F D X M W
lw 4(r1)!r3 F D X M W
lw 8(r1)!r4 F D X M W
add r4,r5!r6 F d* D X M W
add r2,r3!r7 F D X M W
add r7,r6!r8 F D X M W
lw 0(r8)!r9 F D X M W

2-way superscalar 1 2 3 4 5 6 7 8 9 10 11 12

lw 0(r1)!r2 F D X M W
lw 4(r1)!r3 F D X M W
lw 8(r1)!r4 F D X M W
add r4,r5!r6 F d* d* D X M W
add r2,r3!r7 F d* D X M W
add r7,r6!r8 F D X M W
lw 0(r8)!r9 F d* D X M W

CIS 371 (Roth/Martin): Superscalar Pipelines 10

Superscalar CPI Calculations

•! Base CPI for scalar pipeline is 1

•! Base CPI for N-way superscalar pipeline is 1/N
–! Amplifies stall penalties

•! Assumes no data stalls (an overly optmistic assumption)

•! Example: Branch penalty calculation
•! 20% branches, 75% taken, no explicit branch prediction

•! Scalar pipeline
•! 1 + 0.2*0.75*2 = 1.3 ! 1.3/1 = 1.3 ! 30% slowdown

•! 2-way superscalar pipeline
•! 0.5 + 0.2*0.75*2 = 0.8 ! 0.8/0.5 = 1.6 ! 60% slowdown

•! 4-way superscalar
•! 0.25 + 0.2*0.75*2 = 0.55 ! 0.55/0.25 = 2.2 ! 120% slowdown

CIS 371 (Roth/Martin): Superscalar Pipelines 11

How Much ILP is There?

•! The compiler tries to “schedule” code to avoid stalls

•! Even for scalar machines (to fill load-use delay slot)

•! Even harder to schedule multiple-issue (superscalar)

•! How much ILP is common?

•! Greatly depends on the application

•! Consider memory copy

•! Unroll loop, lots of independent operations

•! Other programs, less so

•! Even given unbounded ILP, superscalar has limits
•! IPC (or CPI) vs clock frequency trade-off

CIS 371 (Roth/Martin): Superscalar Pipelines 12

A Typical Dual-Issue Pipeline

•! Fetch an entire 16B or 32B cache block

•! 4 to 8 instructions (assuming 4-byte fixed length instructions)

•! Predict a single branch per cycle

•! Parallel decode

•! Need to check for conflicting instructions

•! Output of I1 is an input to I2

•! Other stalls, too (for example, load-use delay)

regfile

D$ I$

B
P

CIS 371 (Roth/Martin): Superscalar Pipelines 13

A Typical Dual-Issue Pipeline

•! Multi-ported register file
•! Larger area, latency, power, cost, complexity

•! Multiple execution units
•! Simple adders are easy, but bypass paths are expensive

•! Memory unit
•! Single load per cycle (stall at decode) probably okay for dual issue

•! Alternative: add a read port to data cache

•! Larger area, latency, power, cost, complexity

regfile

D$ I$

B
P

CIS 371 (Roth/Martin): Superscalar Pipelines 14

Superscalar Execution

•! Common design: functional unit mix " insn type mix

•! Integer apps: 20–30% loads, 10–15% stores, 15–20% branches

•! Floating point apps: 30% FP, 20% loads, 10% stores, 5% branches

•! Rest 40–50% are non-branch integer ALU operations

•! Intel Pentium (2-way superscalar): 1 any + 1 integer ALU

•! Alpha 21164: 2 integer (incl. 2 loads or 1 store) + 2 floating point

•! Execution units

•! Simple ALUs are cheap (have N of these for N-wide processor)

•! Complex ALUs are less cheap (have fewer of these)

•! Data memory bandwidth expensive

•! Multi-port, replicate, or ”bank” (more later in memory unit)

CIS 371 (Roth/Martin): Superscalar Pipelines 15

Superscalar Challenges - Front End

•! Wide instruction fetch

•! Modest: need multiple instructions per cycle

•! Aggressive: predict multiple branches

•! Wide instruction decode

•! Replicate decoders

•! Wide instruction issue
•! Determine when instructions can proceed in parallel

•! Not all combinations possible

•! More complex stall logic - order N2 for N-wide machine

•! Wide register read
•! One port for each register read

•! Each port needs its own set of address and data wires

•! Example, 4-wide superscalar ! 8 read ports

CIS 371 (Roth/Martin): Superscalar Pipelines 16

Superscalar Challenges - Back End

•! Wide instruction execution

•! Replicate arithmetic units

•! Perhaps multiple cache ports

•! Wide instruction register writeback

•! One write port per instruction that writes a register

•! Example, 4-wide superscalar ! 4 write ports

•! Wide bypass paths
•! More possible sources for data values

•! Order (N2 * P) for N-wide machine with execute pipeline depth P

•! Fundamental challenge:
•! Amount of ILP (instruction-level parallelism) in the program

•! Compiler must schedule code and extract parallelism

CIS 371 (Roth/Martin): Superscalar Pipelines 17

Superscalar Register File

•! “N-way superscalar register file: 2N read + N write ports
•! < N write ports: stores, branches (35% insns) don’t write registers

•! < 2N read ports: many inputs come from immediates/bypasses

–! Latency and area " #ports2 " (3N)2 (slow for large N)

intRF

DM

CIS 371 (Roth/Martin): Superscalar Pipelines 18

N2 Dependence Cross-Check

•! Stall logic for 1-wide pipeline with full bypassing

•! Full bypassing ! load/use stalls only

X/M.op==LOAD && (D/X.rs1==X/M.rd || D/X.rs2==X/M.rd)

•! Two “terms”: " 2N

•! Now: same logic for a 2-wide pipeline

X/M1.op==LOAD && (D/X1.rs1==X/M1.rd || D/X1.rs2==X/M1.rd) ||

X/M1.op==LOAD && (D/X2.rs1==X/M1.rd || D/X2.rs2==X/M1.rd) ||

X/M2.op==LOAD && (D/X1.rs1==X/M2.rd || D/X1.rs2==X/M2.rd) ||

X/M2.op==LOAD && (D/X2.rs1==X/M2.rd || D/X2.rs2==X/M2.rd)

•! Eight “terms”: " 2N2

•! N2 dependence cross-check

•! Not quite done, also need

•! D/X2.rs1==D/X1.rd || D/X2.rs2==D/X1.rd

CIS 371 (Roth/Martin): Superscalar Pipelines 19

Superscalar Bypass

•! Consider WX bypass for 1st input of each insn

–! 2 non-regfile inputs to bypass mux: in general N

–! 4 point-to-point connections: in general N2

–! Bypass wires long (slow) and are difficult to route

•! And this is just one bypass stage and one input per insn!

•! N2 bypass

intRF

DM

CIS 371 (Roth/Martin): Superscalar Pipelines 20

Not All N2 Problems Created Equal

•! N2 bypass vs. N2 stall logic & dependence cross-check

•! Which is the bigger problem?

•! N2 bypass … by a lot

•! 32- or 64- bit quantities (vs. 5-bit)

•! Multiple levels (MX, WX) of bypass (vs. 1 level of stall logic)

•! Must fit in one clock period with ALU (vs. not)

•! Dependence cross-check not even 2nd biggest N2 problem

•! Regfile is also an N2 problem (think latency where N is #ports)

•! And also more serious than cross-check

CIS 371 (Roth/Martin): Superscalar Pipelines 21

Avoid N2 Bypass/RegFile: Clustering

•! Clustering: group ALUs into K clusters
•! Full bypassing within cluster, limited (or no) bypassing between them

•! Get values from regfile with 1 or 2 cycle delay
+! N/K non-regfile inputs at each mux, N2/K point-to-point paths
•! Key to performance: steer dependent insns to same cluster
•! Hurts IPC, but helps clock frequency (or wider issue at same clock)

•! Typically used with replicated regfile: replica per cluster
•! Alpha 21264: 4-way superscalar, 2 clusters, static steering

DM

intRF0

intRF1

cluster 0

cluster 1

CIS 371 (Roth/Martin): Superscalar Pipelines 22

Superscalar Fetch/Decode

•! What is involved in fetching N insns per cycle?
•! Mostly wider instruction memory ports

•! Read N instructions in parallel

•! Most tricky aspects involve branch prediction

•! What about Decode?
•! Easier with fixed-width instructions (MIPS, Alpha, PowerPC, ARM)

•! Harder with variable-length instructions (x86)

PC

BP <>

IM

8

CIS 371 (Roth/Martin): Superscalar Pipelines 23

Wide Non-Sequential Fetch

•! Two related questions
•! How many branches predicted per cycle?

•! Can we fetch across the branch if it is predicted “taken”?

•! Simplest, most common organization: “1” and “No”
•! One prediction, discard post-branch insns if prediction is “taken”

–! Lowers effective fetch width and IPC

•! Average number of instructions per taken branch?

•! Assume: 20% branches, 50% taken ! ~10 instructions

•! Consider a 10-instruction loop body with an 8-issue processor

•! Without smarter fetch, ILP is limited to 5 (not 8)

•! Compiler can help
•! Reduce taken branch frequency (e.g., unroll loops)

CIS 371 (Roth/Martin): Superscalar Pipelines 24

Aside: VLIW/EPIC

•! VLIW: Very Long Insn Word

•! Intel: EPIC (Explicit Parallel Instruction Computing)

•! Effectively, a 1-wide pipeline, but unit is an N-insn group

•! Group travels down pipeline as a unit

•! Compiler guarantees insns within a VLIW group are independent

•! If no independent insns, slots filled with nops

•! Typically “slotted”: 1st insn must be ALU, 2nd mem, etc.

•! E.g., Itanium (two 3-wide bundles per cycle = 6-way issue)

+! Simplifies fetch and branch prediction

+! Simplifies pipeline control (no rigid vs. fluid business)

–! Doesn’t help bypasses or regfile, which are bigger problems

•! Can expose these issues to software, too (yuck)

–! Not really compatible across machines of different widths

•! How does Itanium deal with non-compatibility? Transmeta?

CIS 371 (Roth/Martin): Superscalar Pipelines 25

Predication

•! Branch mis-predictions hurt more on superscalar
•! Replace difficult branches with something else…

•! Convert control flow into data flow (& dependencies)

•! Predication
•! Conditionally executed insns unconditionally fetched

•! Full predication (ARM, Intel Itanium)

•! Can tag every insn with predicate, but extra bits in instruction

•! Conditional moves (Alpha, x86)

•! Construct appearance of full predication from one primitive

cmoveq r1,r2,r3 // if (r1==0) r3=r2;

–!May require some code duplication to achieve desired effect

+!Only good way of adding predication to an existing ISA

•! If-conversion: replacing control with predication

CIS 371 (Roth/Martin): Superscalar Pipelines 26

Trends in Single-Processor Multiple Issue

•! Issue width has saturated at 4-6 for high-performance cores

•! Canceled Alpha 21464 was 8-way issue

•! No justification for going wider

•! Hardware or compiler “scheduling” needed to exploit 4-6 effectively

•! For high-performance per watt cores, issue width is ~2
•! Advanced scheduling techniques not needed

•! Multi-threading (a little later) helps cope with cache misses

486 Pentium PentiumII Pentium4 Itanium ItaniumII Core2

Year 1989 1993 1998 2001 2002 2004 2006

Width 1 2 3 3 3 6 4

CIS 371 (Roth/Martin): Superscalar Pipelines 27

Multiple Issue Summary

•! Superscalar hardware issues

•! Bypassing and register file

•! Stall logic

•! Fetch and branch prediction

•! Multiple-issue designs
•! “Superscalar”

•! VLIW

•! Next up
•! Midterm

CPU Mem I/O

System software

App App App

