CIS 371

Computer Organization and Design

Unit 3: Arithmetic

App		App
System software		

- A little review
- Binary $+2 s$ complement
- Ripple-carry addition (RCA)
- Fast integer addition
- Carry-select (CSeA)
- Shifters
- Integer Multiplication and division
- Floating point arithmetic

Readings

- P\&H
- Chapter 3

The Importance of Fast Addition

- Addition of two numbers is most common operation
- Programs use addition frequently
- Loads and stores use addition for address calculation
- Branches use addition to test conditions and calculate targets
- All insns use addition to calculate default next PC
- Fast addition critical to high performance

Review: Binary Integers

- Computers represent integers in binary (base2)

$$
3=11,4=100,5=101,30=11110
$$

+ Natural since only two values are represented
- Addition, etc. take place as usual (carry the 1 , etc.)

| $17=$ | 10001 |
| ---: | ---: | ---: |
| $+5=$ | 101 |
| $22=$ | 10110 |

- Some old machines use decimal (base10) with only $0 / 1$
$30=011000$
- Unnatural for digial logic, implementation complicated \& slow

What About Negative Integers?

- Sign/magnitude
- Unsigned plus one bit for sign

$$
10=000001010,-10=100001010
$$

+ Matches our intuition from "by hand" decimal arithmetic
- Both 0 and -0
- Addition is difficult
- Range: $-\left(2^{\mathrm{N}-1}-1\right)$ to $2^{\mathrm{N}-1}-1$
- Option II: two's complement (2C)
- Leading $0 s$ mean positive number, leading 1 s negative $10=00001010,-10=11110110$
+ One representation for 0
+ Easy addition
- Range: -(2 $2^{\mathrm{N}-1}$) to $2^{\mathrm{N}-1}-1$

Fixed Width

- On pencil and paper, integers have infinite width
- In hardware, integers have fixed width
- N bits: 16, 32 or 64
- LSB is $2^{0}, \mathrm{MSB}$ is $2^{\mathrm{N}-1}$
- Range: 0 to $2^{\mathrm{N}}-1$
- Numbers $>2^{\mathrm{N}}$ represented using multiple fixed-width integers - In software

The Tao of 2C

- How did 2C come about?
- "Let's design a representation that makes addition easy"
- Think of subtracting 10 from 0 by hand
- Have to "borrow" is from some imaginary leading 1

$$
\begin{aligned}
0 & =100000000 \\
-10 & =00001010 \\
\hline-10 & =011110110
\end{aligned}
$$

- Now, add the conventional way...

$$
\begin{aligned}
-10 & =11110110 \\
+10 & =00001010 \\
\hline 0 & =1000000000
\end{aligned}
$$

Still More On 2C

- What is the interpretation of 2 C ?
- Same as binary, except MSB represents $-2^{\mathrm{N}-1}$, not $2^{\mathrm{N}-1}$

$$
\text { - }-10=11110110=-2^{7}+2^{6}+2^{5}+2^{4}+2^{2}+2^{1}
$$

+ Extends to any width
- $-10=110110=-2^{5}+2^{4}+2^{2}+2^{1}$
- Why? $2^{\mathrm{N}}=2^{*} 2^{\mathrm{N}-1}$
- $-2^{5}+2^{4}+2^{2}+2^{1}=\left(-2^{6}+2^{*} 2^{5}\right)-2^{5}+2^{4}+2^{2}+2^{1}=-2^{6}+2^{5}+2^{4}+2^{2}+2^{1}$
- Trick to negating a number quickly: $-\mathrm{B}=\mathrm{B}^{\prime}+\mathbf{1}$
- $-(1)=(0001)^{\prime}+1=1110+1=1111=-1$
- $-(-1)=(1111)^{\prime}+1=0000+1=0001=1$
- $-(0)=(0000)^{\prime}+1=1111+1=0000=0$
- Think about why this works

Binary Addition: Works the Same Way

$$
\begin{array}{rr}
1 & 111111 \\
43 & =00101011 \\
+29 & =00011101 \\
\hline 72 & =01001000
\end{array}
$$

- Repeat N times
- Add least significant bits and any overflow from previous add
- Carry the overflow to next addition
- Shift two addends and sum one bit to the right
- Sum of two N -bit numbers can yield an $\mathrm{N}+1$ bit number
- More steps (smaller base)
+ Each one is simpler (adding just 1 and 0)
- So simple we can do it in hardware

1st Grade: Decimal Addition

1

43
$+29$

- Repeat N times
- Add least significant digits and any overflow from previous add
- Carry "overflow" to next addition
- Overflow: any digit other than least significant of sum
- Shift two addends and sum one digit to the right
- Sum of two N -digit numbers can yield an $\mathrm{N}+1$ digit number

The Half Adder

- How to add two binary integers in hardware?
- Start with adding two bits
- When all else fails ... look at truth table
$\begin{array}{llll}A B & =C 0 & S \\ 0 & 0 & = & 0 \\ 0 & 1 & = & 0 \\ 1 & 0 & = & 1 \\ 1 & 1= & 0\end{array}$
- $\mathbf{S}=\mathbf{A}^{\wedge} \mathbf{B}$
- CO (carry out) = AB
- This is called a half adder

The Other Half

- We could chain half adders together, but to do that...
- Need to incorporate a carry out from previous adder

C	A	$B=C O$	S	
0	0	0	$=$	0
0	0			
0	0	1	$=$	0
0	1	0	$=$	1
0	1	$1=$	1	0
1	0	$0=$	0	1
1	0	$1=$	1	0
1	1	$0=$	1	0
1	1	$1=$	1	1

- $S=C^{\prime} A^{\prime} B+C^{\prime} A B^{\prime}+C A^{\prime} B^{\prime}+C A B=C \wedge A \wedge B$
- $C O=C^{\prime} A B+C A^{\prime} B+C A B^{\prime}+C A B=C A+C B+A B$
- This is called a full adder

CIS371 (Roth/Martin): Arithmetic

Quantifying Adder Delay

- Combinational logic dominated by gate (transistor) delays
- Array storage dominated by wire delays
- Longest delay or "critical path" is what matters
- Can implement any combinational function in " 2 " logic levels - 1 level of AND + 1 level of OR (PLA)
- NOTs are "free": push to input (DeMorgan's) or read from latch
- Example: delay(FullAdder) = 2
- $d($ CarryOut $)=\operatorname{delay}(A B+A C+B C)$
- $d($ Sum $)=d\left(A^{\wedge} B^{\wedge} C\right)=d\left(A B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B C^{\prime}+A B C\right)=2$
- Note '^' means Xor (just like in C \& Java)
- Caveat: " 2 " assumes gates have few (<8 ?) inputs

Ripple-Carry Adder

- N-bit ripple-carry adder
- N 1-bit full adders "chained" together
- $\mathrm{CO}_{0}=\mathrm{CI}_{1}, \mathrm{CO}_{1}=\mathrm{CI}_{2}$, etc.
- $\mathrm{CI}_{0}=0$
- $\mathrm{CO}_{\mathrm{N}-1}$ is carry-out of entire adder
- $\mathrm{CO}_{\mathrm{N}-1}=1 \rightarrow$ "overflow"
- Example: 16 -bit ripple carry adder

- How fast is this?
- How fast is an N -bit ripple-carry adder?

Ripple-Carry Adder Delay

- Longest path is to CO_{15} (or S_{15})
- $\mathrm{d}\left(\mathrm{CO}_{15}\right)=2+\mathrm{MAX}\left(\mathrm{d}\left(\mathrm{A}_{15}\right) \mathrm{d}\left(\mathrm{B}_{15}\right), \mathrm{d}\left(\mathrm{CI}_{15}\right)\right)$ - $\mathrm{d}\left(\mathrm{A}_{15}\right)=\mathrm{d}\left(\mathrm{B}_{15}\right)=0, \mathrm{~d}\left(\mathrm{Cl}_{15}\right)=\mathrm{d}\left(\mathrm{CO}_{14}\right)$
- $\mathrm{d}\left(\mathrm{CO}_{15}\right)=2+\mathrm{d}\left(\mathrm{CO}_{14}\right)=2+2+\mathrm{d}\left(\mathrm{CO}_{13}\right)$...
- $d\left(\mathrm{CO}_{15}\right)=32$
- $D\left(\mathrm{CO}_{\mathrm{N}-1}\right)=2 \mathrm{~N}$
- Too slow!
- Linear in number of bits
- Number of gates is also linear

Bad idea: a PLA-based Adder?

- If any function can be expressed as two-level logic...
- ...why not use a PLA for an entire 8 -bit adder?
- Not small
- Approx. 2^{15} AND gates, each with 2^{16} inputs
- Then, 2^{16} OR gates, each with 2^{16} inputs
- Number of gates exponential in bit width!
- Not that fast, either
- An AND gate with 65 thousand inputs != 2-input AND gate
- Many-input gates made a tree of, say, 4-input gates
- 16 -input gates would have at least 8 logic levels
- So, at least 16 levels of logic for a 16-bit PLA
- Even so, delay is still logarithmic in number of bits
- There are better (faster, smaller) ways

Carry-Select Adder

- Carry-select adder
- Do $\mathrm{A}_{15-8}+\mathrm{B}_{15-8}$ twice, once assuming $\mathrm{C}_{8}\left(\mathrm{CO}_{7}\right)=0$, once $=1$
- Choose the correct one when CO_{7} finally becomes available
+ Effectively cuts carry chain in half (break critical path)
- But adds mux
- Delay?

CIS371 (Roth/Martin): Arithmetic

Theme: Hardware != Software

- Hardware can do things that software fundamentally can't
- And vice versa (of course)
- In hardware, it's easier to trade resources for latency
- One example of this: speculation
- Slow computation is waiting for some slow input?
- Input one of two things?
- Compute with both (slow), choose right one later (fast)
- Does this make sense in software? Not on a uni-processor
- Difference? hardware is parallel, software is sequential

CIS371 (Roth/Martin): Arithmetic
18

Multi-Segment Carry-Select Adder

- Multiple segments
- Example: 5, 5, 6 bit = 16 bit
- Hardware cost
- Still mostly linear ($\sim 2 x$)
- Compute each segment with 0 and 1 carry-in
- Serial mux chain
- Delay
- 5-bit adder (10) +

Two muxes (4) $=14$

Carry-Select Adder Delay

- What is carry-select adder delay (two segment)?
- $\mathrm{d}\left(\mathrm{CO}_{15}\right)=\mathrm{MAX}\left(\mathrm{d}\left(\mathrm{CO}_{15-8}\right) \mathrm{d}\left(\mathrm{CO}_{7-0}\right)\right)+2$
- $\mathrm{d}\left(\mathrm{CO}_{15}\right)=\operatorname{MAX}(2 * 8,2 * 8)+2=18$
- In general: $2 *(N / 2)+2=\mathbf{N + 2}$ (vs $\mathbf{2 N}$ for RCA)
- What if we cut adder into 4 equal pieces?
- Would it be $2^{*}(\mathrm{~N} / 4)+2=10$? Not quite
- $\mathrm{d}\left(\mathrm{CO}_{15}\right)=\mathrm{MAX}\left(\mathrm{d}\left(\mathrm{CO}_{15-12}\right) \mathrm{d}\left(\mathrm{CO}_{11-0}\right)\right)+2$
- $\mathrm{d}\left(\mathrm{CO}_{15}\right)=\operatorname{MAX}\left(2 * 4, \operatorname{MAX}\left(\mathrm{~d}\left(\mathrm{CO}_{11-8}\right), \mathrm{d}\left(\mathrm{CO}_{7-0}\right)\right)+2\right)+2$
- $\mathrm{d}\left(\mathrm{CO}_{15}\right)=\operatorname{MAX}\left(2 * 4, \operatorname{MAX}\left(2 * 4, \operatorname{MAX}\left(\mathrm{~d}\left(\mathrm{CO}_{7-4}\right), \mathrm{d}\left(\mathrm{CO}_{3-0}\right)\right)+2\right)+2\right)+2$
- $\mathrm{d}\left(\mathrm{CO}_{15}\right)=\operatorname{MAX}(2 * 4, \operatorname{MAX}(2 * 4, \operatorname{MAX}(2 * 4,2 * 4)+2)+2)+2$
- $\mathrm{d}\left(\mathrm{CO}_{15}\right)=2 * 4+3 * 2=14$
- N-bit adder in M equal pieces: $\mathbf{2}^{*}(\mathrm{~N} / \mathrm{M})+(\mathrm{M}-\mathbf{1}) * \mathbf{2}$
- 16-bit adder in 8 parts: $2^{*}(16 / 8)+7 * 2=18$

CIS371 (Roth/Martin): Arithmetic

Carry Lookahead Adder (CLA)

- Calculate "propagate" and "generate" based on A, B
- Not based on carry in
- Combine with tree structure
- Prior years: CLA covered
in great detail
- Dozen slides or so
- Not this year
- Take aways
- Tree gives logarithmic delay
- Reasonable area

CIS371 (Roth/Martin): Arithmetic

Another Option: Carry Lookahead

- Is carry-select adder as fast as we can go?
- Nope
- Another approach to using additional resources
- Instead of redundantly computing sums assuming different carries
- Use redundancy to compute carries more quickly
- This approach is called carry lookahead (CLA)

Adders In Real Processors

- Real processors super-optimize their adders
- Ten or so different versions of CLA
- Highly optimized versions of carry-select
- Other gate techniques: carry-skip, conditional-sum
- Sub-gate (transistor) techniques: Manchester carry chain
- Combinations of different techniques
- Alpha 21264 uses CLA+CSeA+RippleCA
- Used a different levels
- Even more optimizations for incrementers
- Why?

FIG 10.47 Area vs. delay of synthesized adders
CIS371 (Roth/Martin): Arithmetic

A 16-bit ALU

- Build an ALU with functions: add/sub, and, or, not, xor
- All of these already in CLA adder/subtracter
- add A B, sub A B ... check
- not B is needed for subtraction
- and A B are first level Gs
- or A B are first level Ps
- xor A B?
- $S_{i}=A_{i} \wedge B_{i} \wedge C_{i}$
- What is still missing?

Subtraction: Addition's Tricky Pal

- Sign/magnitude subtraction is mental reverse addition
- 2C subtraction is addition
- How to subtract using an adder?
- sub A B = add A -B
- Negate B before adding (fast negation trick: $-B=B^{\prime}+1$)
- Isn't a subtraction then a negation and two additions?
+ No, an adder can implement $A+B+1$ by setting the carry-in to 1

26

Shift and Rotation Instructions

- Left/right shifts are useful...
- Fast multiplication/division by small constants (next)
- Bit manipulation: extracting and setting individual bits in words
- Right shifts
- Can be logical (shift in 0 s) or arithmetic (shift in copies of MSB)

$$
\text { srl 110011, } 2=001100
$$

$$
\text { sra } 110011,2=111100
$$

- Caveat: sra is not equal to division by 2 of negative numbers
- Rotations are less useful...
- But almost "free" if shifter is there
- MIPS and LC4 have only shifts, x86 has shifts and rotations

A Simple Shifter

- The simplest 16-bit shifter: can only shift left by 1
- Implement using wires (no logic!)
- Slightly more complicated: can shift left by 1 or 0
- Implement using wires and a multiplexor (mux16_2to1)

CIS371 (Roth/Martin): Arithmetic

3rd Grade: Decimal Multiplication

	19
$+\quad 12$	multiplicand
38	
+190	
228	$/ /$ product

- Start with product 0 , repeat steps until no multiplier digits
- Multiply multiplicand by least significant multiplier digit
- Add to product
- Shift multiplicand one digit to the left (multiply by 10)
- Shift multiplier one digit to the right (divide by 10)
- Product of N -digit, M-digit numbers may have N+M digits

Barrel Shifter

- What about shifting left by any amount $0-15$?
- 16 consecutive "left-shift-by-1-or-0" blocks?
- Would take too long (how long?)
- Barrel shifter: 4 "shift-left-by-X-or-0" blocks (X = 1,2,4,8)
- What is the delay?

- Similar barrel designs for right shifts and rotations

Binary Multiplication: Same Refrain

19	$=$	010011	$/ /$ multiplicand
$* \quad 12$	$=$	001100	$/ /$ multiplier
00	$=000000000000$		
0	$=00000000000$		
76	$=000001001100$		
152	$=000010011000$		
0	$=000000000000$		
+0	$=000000000000$		
228	$=000011100100$	$/ /$ product	

\pm Smaller base \rightarrow more steps, each is simpler

- Multiply multiplicand by least significant multiplier digit +0 or $1 \rightarrow$ no actual multiplication, add multiplicand or not
- Add to total: we know how to do that
- Shift multiplicand left, multiplier right by one digit

Software Multiplication

- Can implement this algorithm in software
- Inputs: md (multiplicand) and mr (multiplier)

```
int pd = 0; // product
int i = 0;
for (i = 0; i < 16 && mr != 0; i++) {
    if (mr & 1) {
        pd = pd + md;
    }
    md = md << 1; // shift left
    mr = mr >> 1; // shift right
}
```


Hardware Multiply: Multiple Adders

- Multiply by N bits at a time using N adders
- Example: $N=5$, terms ($P=$ product, $C=m u l t i p l i c a n d, ~ M=m u l t i p l i e r) ~$
- $P=(M[0]$? (C) : 0) + (M[1] ? (C<<1) : 0) +

$$
(M[2] ?(C \ll 2): 0)+(M[3] ?(C \ll 3): 0)+\ldots
$$

- Arrange like a tree to reduce gate delay critical path
- Delay? N^{2} vs $\mathrm{N}^{*} \log \mathrm{~N}$? Not that simple, depends on adder CIS371 (Roth/Martin): Arithmetic

Hardware Multiply: Iterative

- Control: repeat 16 times
- If least significant bit of multiplier is 1 ...
- Then add multiplicand to product
- Shift multiplicand left by 1
- Shift multiplier right by 1

CIS371 (Roth/Martin): Arithmetic

Consecutive Addition

- 2 N -bit RC adders
$+2+\mathrm{d}$ (add) gate delays
- M N-bit RC adders delay
- Naïve: $\mathrm{O}\left(\mathrm{M}^{*} \mathrm{~N}\right)$
- Actual: $\mathrm{O}(\mathrm{M}+\mathrm{N})$

- M N-bit Carry Select?
- Delay calculation tricky
- Carry Save Adder (CSA)
- 3-to-2 CSA tree + adder
- Delay: $\mathrm{O}(\log \mathrm{M}+\log \mathrm{N})$

CIS371 (Roth/Martin): Arithmetic

Hardware != Software: Part Deux

- Recall: hardware is parallel, software is sequential
- Exploit: evaluate independent sub-expressions in parallel
- Example I: S = A + B + C + D
- Software? 3 steps: (1) $\mathrm{S} 1=\mathrm{A}+\mathrm{B}$, (2) $\mathrm{S} 2=\mathrm{S} 1+\mathrm{C}$, (3) $\mathrm{S}=\mathrm{S} 2+\mathrm{D}$
+ Hardware? 2 steps: (1) $S 1=A+B, S 2=C+D,(2) S=S 1+S 2$
- Example II: S = A + B + C
- Software? 2 steps: (1) $S 1=A+B$, (2) $S=S 1+C$
- Hardware? 2 steps: (1) S1 = A+B (2) S = S1+C
+ Actually hardware can do this in 1.2 steps!
- Sub-expression parallelism exists below 16 -bit addition level

4th Grade: Decimal Division

- Shift divisor left (multiply by 10) until MSB lines up with dividend's
- Repeat until remaining dividend (remainder) < divisor
- Find largest single digit q such that (q*divisor) < dividend
- Set LSB of quotient to q
- Subtract (q^{*} divisor) from dividend
- Shift quotient left by one digit (multiply by 10)
- Shift divisor right by one digit (divide by 10)

Aside: Strength Reduction

- Strength reduction: compilers will do this (sort of)

A * $4=A \ll 2$
A/8=A>>3
$A * 5=(A \ll 2)+A$

- Useful for address calculation: all basic data types are 2^{M} in size int A[100];
$\& A[N]=A+(N *$ sizeof(int) $)=A+N * 4=A+N \ll 2$

Binary Division

Binary Division Hardware

- Same as decimal division, except (again)
- More individual steps (base is smaller)
+ Each step is simpler
- Find largest bit q such that (q*divisor) < dividend

$$
\text { - } q=0 \text { or } 1
$$

- Subtract (q^{*} divisor) from dividend
- $\mathrm{q}=0$ or $1 \rightarrow$ no actual multiplication, subtract divisor or not
- Complication: largest q such that (q^{*} divisor) < dividend
- How do you know if (1 *divisor) < dividend?
- Human can "eyeball" this
- Computer does not have eyeballs
- Subtract and see if result is negative

Divide Example

- Input: Divisor = 00011 , Dividend $=11101$

Step	Remainder	Quotient	Remainder	Dividend
$\mathbf{0}$	00000	00000	00000	11101
1	0000	00000	00001	11010
2	00011	00001	00000	10100
3	00001	00010	00001	01000
4	00010	00100	00001	10000
5	00101	01001	00010	00000

- Result: Quotient: 1001, Remainder: 10

Software Divide Algorithm

- Can implement this algorithm in software
- Inputs: dividend and divisor

```
for (int i = 0; i < 32; i++) {
    remainder = (remainder << 1) | (dividend >> 31);
    if (remainder >= divisor) {
        quotient = (quotient << 1) | 1;
        remainder = remainder - divisor;
    } else {
        quotient = quotient << 1
    }
    dividend = dividend << 1;
}
```


Divider Circuit

- N cycles for n -bit divide

Arithmetic Latencies

- Latency in cycles of common arithmetic operations
- Source: Software Optimization Guide for AMD Family 10h Processors, Dec 2007
- Intel "Core 2" chips similar

	Int 32	Int 64
Add/Subtract	1	1
Multiply	3	5
Divide	14 to 40	23 to 87

- Divide is variable latency based on the size of the dividend
- Detect number of leading zeros, then divide

Summary

App		App
System software		

```
Mem CPU
I/O
```

Integer addition

- Most timing-critical operation in datapath
- Hardware != software
- Exploit sub-addition parallelism
- Fast addition
- Carry-select: parallelism in sum
- Multiplication
- Chains and trees of additions
- Division
- Next up: Floating point

