CIS 371 Computer Organization and Design

Unit 13: (Low) Power and Energy

CIS 371 (Martin/Roth): Power

Energy & Power

٠	Energy: measured in Joules or Watt-seconds
	Total amount of energy stored/used
	Battery life, electric bill, environmental impact
	Instructions per Joule (car analogy: miles per gallon)
٠	Power : energy per unit time (measured in Watts)
	• Related to "performance" (which is also a "per unit time" metric
	Power impacts power supply and cooling requirements
	Peak power vs average power
	 E.g., camera, power "spike" when you actually take a picture
	 Joules per second (car analogy: gallons per hour)
٠	Two sources:
	Dynamic power: active switching of transistors
	Static power: leakage of transistors even while inactive
CI	S 371 (Martin/Roth): Power

Power/Energy Are Increasingly Important

- Battery life for mobile devices
 - Laptops, phones, cameras
- Tolerable temperature for devices without active cooling
 - Power means temperature, active cooling means cost
 - No room for a fan in a cell phone, no market for a hot cell phone
- Electric bill for compute/data centers
 - Pay for power twice: once in, once out (to cool)

Environmental concerns

"Computers" account for growing fraction of energy consumption

2

CIS 371 (Martin/Roth): Power

1

Dynamic Power

 Dynamic power (P_{dynamic}): aka switching or active pow Energy to switch a gate (0 to 1, 1 to 0) Each gate has "capacitance" (you know, from physics) Energy to charge (or discharge) a capacitor is ~ to C * V² Time to charge (or discharge) a capacitor is ~ to V Result: frequency ~ to V P_{dyn} ~ N * C * V² * f * A N: number of transistors 	er - ,
 C: capacitance per transistor (size of transistors) V: voltage (supply voltage for gate) f: frequency (transistor switching freq. is ~ to clock freq.) A: activity factor (not all transistors may switch this cycle) 	7
CIS 371 (Martin/Roth): Power 4	

Reducing Dynamic Power

- Target each component: P_{dynamic} ~ N * C * V² * f * A
- Reduce number of transistors (N)
 - Use fewer transistors/gates
- Reduce capacitance (C)
 - Smaller transistors (Moore's law)
- Reduce voltage (V)
 - Quadratic reduction in energy consumption!
 - But also slows transistors (transistor speed is ~ to V)
- Reduce frequency (f)
 - Slower clock frequency (reduces power but not energy) Why?

5

7

- Reduce activity (A)
 - "Clock gating" disable clocks to unused parts of chip
 - Don't switch gates unnecessarily
- CIS 371 (Martin/Roth): Power

Reducing Static Power

 Target each component: P_{static} ~ N * V * e^{-Vt} • Reduce number of transistors (N) Use fewer transistors/gates Reduce voltage (V) Linear reduction in static energy consumption But also slows transistors (transistor speed is ~ to V) Disable transistors (also targets N) • "Power gating" disable power to unused parts (long latency to power up) Power down gates (or entire cores) not being used • **Dual V**₊ – use a mixture of high and low V₊ transistors Use slow, low-leak transistors in SRAM arrays Requires extra fabrication steps (cost) Low-leakage transistors High-K/Metal-Gates in Intel's 45nm process Note: reducing frequency can actually hurt static power. Why? CIS 371 (Martin/Roth): Power

Static Power

 Transistors don't turn 	off all the way
 Transistors "leak" 	
 P_{stat} ~ N * V * e^{-Vt} 	
• N: number of transisto	ors
V: voltage	
 V_t (threshold voltage transistor conducts (be 	e): voltage at which egins to switch)
 Switching speed vs le 	akage trade-off –d🚺
The higher the V _t :	1
Faster transistors (line	ar)
Leakier transistors (ex	ponential)
CIS 371 (Martin/Roth): Power	

Dynamic Voltage/Frequency Scaling

Dynamically trade-off power for performance	2
Change the voltage and frequency at runtime	
Under control of operating system	
 Recall: P_{dynamic} ~ N * C * V² * f * A 	
Because frequency ~ to V	
 P_{dynamic} ∼ to V³ 	
Reduce both V and f linearly	
Cubic decrease in dynamic power	
Sub-linear decrease in performance	
Thus, only about quadratic in energy	
Linear decrease in static power	
Thus, only modest static energy improvement	
Newer chips can do this on a per-core basis	
CIS 371 (Martin/Roth): Power	8

Dynamic Voltage/Frequency Scaling

	Mobile PentiumIII " SpeedStep "	Transmeta 5400 "LongRun"	Intel X-Scale (StrongARM2)
f (MHz)	300–1000 (step=50)	200–700 (step=33)	50-800 (step=50)
V (V)	0.9–1.7 (step=0.1)	1.1–1.6V (cont)	0.7–1.65 (cont)
High-speed	3400MIPS @ 34W	1600MIPS @ 2W	800MIPS @ 0.9W
Low-power	1100MIPS @ 4.5W	300MIPS @ 0.25W	62MIPS @ 0.01W

9

Dynamic voltage/frequency scaling

• Favors parallelism

- Example: Intel Xscale
 - 1 GHz \rightarrow 200 MHz reduces energy used by 30x • But around 5x slower
 - 5 x 200 MHz in parallel, use 1/6th the energy
 - Power is driving the trend toward multi-core

Implications on Software

 Software-controlled dynamic voltage/frequency scaling OS? Application? Example: video decoding Too high a frequency – wasted energy (battery life) 	
Too low a frequency – quality of video suffers	
 Managing low-power modes Don't want to "wake up" the processor every millisecond 	
Tuning software	
Faster algorithms can be converted to lower-power algorithmsVia dynamic voltage/frequency scaling	
Exploiting parallelism	
CIS 371 (Martin/Roth): Power 11	

Processor Power Breakdown

- Power breakdown for IBM POWER4
 - Two 4-way superscalar, 2-way multi-threaded cores, 1.5MB L2
 - Big power components are L2, D\$, out-of-order logic, clock, I/O
 - Implications on out-of-order vs in-order

