
CIS 371 (Martin/Roth): Shared Memory Multiprocessors 1

CIS 371
Computer Organization and Design

Unit 10: Shared Memory Multiprocessors

Mem

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 2

This Unit: Shared Memory Multiprocessors

•! Thread-level parallelism (TLP)

•! Shared memory model
•! Multiplexed uniprocessor

•! Hardware multihreading

•! Multiprocessing

•! Synchronization
•! Lock implementation

•! Locking gotchas

•! Cache coherence
•! Bus-based protocols

•! Directory protocols

•! Memory consistency models

CPU I/O

System software

App App App

CPU CPU CPU CPU CPU

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 3

Multiplying Performance

•! A single processor can only be so fast
•! Limited clock frequency

•! Limited instruction-level parallelism

•! Limited cache hierarchy

•! What if we need even more computing power?
•! Use multiple processors!

•! But how?

•! High-end example: Sun Ultra Enterprise 25k
•! 72 UltraSPARC IV+ processors, 1.5Ghz

•! 1024 GBs of memory

•! Niche: large database servers

•! $$$

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 4

Multicore: Mainstream Multiprocessors

•! Multicore chips

•! IBM Power5
•! Two 2+GHz PowerPC cores

•! Shared 1.5 MB L2, L3 tags

•! AMD Quad Phenom
•! Four 2.5-GHz cores

•! Per-core 512KB L2 cache

•! Shared 2MB L3 cache

•! Intel Core 2 Quad
•! Four cores, shared 4 MB L2

•! Two 4MB L2 caches

•! Sun Niagara
•! 8 cores, each 4-way threaded

•! Shared 2MB L2, shared FP

•! For servers, not desktop

1.5MB L2

L3 tags

Core 1 Core 2

Why multicore? What else would
you do with 500 million transistors?

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 5

Application Domains for Multiprocessors

•! Scientific computing/supercomputing
•! Examples: weather simulation, aerodynamics, protein folding

•! Large grids, integrating changes over time

•! Each processor computes for a part of the grid

•! Server workloads
•! Example: airline reservation database

•! Many concurrent updates, searches, lookups, queries

•! Processors handle different requests

•! Media workloads
•! Processors compress/decompress different parts of image/frames

•! Desktop workloads…

•! Gaming workloads…

But software must be written to expose parallelism

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 6

But First, Uniprocessor Concurrency

•! Software “thread”

•! Independent flow of execution

•! Context state: PC, registers

•! Threads generally share the same memory space

•! “Process” like a thread, but different memory space

•! Java has thread support built in, C/C++ supports P-threads library

•! Generally, system software (the O.S.) manages threads
•! “Thread scheduling”, “context switching”

•! All threads share the one processor

•!Hardware timer interrupt occasionally triggers O.S.

•!Quickly swapping threads gives illusion of concurrent execution

•! Much more in CIS380

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 7

Multithreaded Programming Model

•! Programmer explicitly creates multiple threads

•! All loads & stores to a single shared memory space

•! Each thread has a private stack frame for local variables

•! A “thread switch” can occur at any time
•! Pre-emptive multithreading by OS

•! Common uses:

•! Handling user interaction (GUI programming)

•! Handling I/O latency (send network message, wait for response)

•! Expressing parallel work via Thread-Level Parallelism (TLP)

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 8

Hardware Multithreading

•! Hardware Multithreading (MT)
•! Multiple threads dynamically share a single pipeline (caches)

•! Replicate thread contexts: PC and register file

•! Coarse-grain MT: switch on L2 misses Why?

•! Simultaneous MT: no explicit switching, fine-grain interleaving

•! Pentium4 is 2-way hyper-threaded, leverages out-of-order core

+!MT Improves utilization and throughput

•! Single programs utilize <50% of pipeline (branch, $ misses)

•! MT does not improve single-thread performance

•! Individual threads run as fast or even slower

PC

I$ Regfile0 D$

Regfile1

PC

THR

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 9

Simplest Multiprocessor

•! Replicate entire processor pipeline!
•! Instead of replicating just register file & PC

•! Exception: share caches (we’ll address this bottleneck later)

•! Same “shared memory” or “multithreaded” model
•! Loads and stores from two processors are interleaved

•! Advantages/disadvantages over hardware multithreading?

PC

I$

Regfile

PC

Regfile

D$

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 10

Shared Memory Implementations

•! Multiplexed uniprocessor
•! Runtime system and/or OS occasionally pre-empt & swap threads

•! Interleaved, but no parallelism

•! Hardware multithreading
•! Tolerate pipeline latencies, higher efficiency

•! Same interleaved shared-memory model

•! Multiprocessing
•! Multiply execution resources, higher peak performance

•! Same interleaved shared-memory model

•! Foreshadowing: allow private caches, further disentangle cores

•! All have same shared memory programming model

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 11

Thread-Level Parallelism Example

•! Thread-level parallelism (TLP)
•! Collection of asynchronous tasks: not started and stopped together

•! Data shared “loosely” (sometimes yes, mostly no), dynamically

•! Example: database/web server (each query is a thread)
•! accts is shared, can’t register allocate even if it were scalar

•! id and amt are private variables, register allocated to r1, r2

•! Running example

struct acct_t { int bal; };
shared struct acct_t accts[MAX_ACCT];
int id, amt;
if (accts[id].bal >= amt)
{
 accts[id].bal -= amt;
 give_cash();
}

0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,6
3: sub r4,r2,r4
4: st r4,0(r3)
5: call give_cash

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 12

An Example Execution

•! Two $100 withdrawals from account #241 at two ATMs

•! Each transaction maps to thread on different processor

•! Track accts[241].bal (address is in r3)

Thread 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call give_cash

Thread 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call give_cash

Mem

500

400

300

T
im

e

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 13

A Problem Execution

Thread 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

<<< Interrupt >>>

4: st r4,0(r3)

5: call give_cash

Thread 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call give_cash

Mem

500

400

T
im

e

400

•! Problem: wrong account balance! Why?

•! Solution: synchronize access to account balance

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 14

Synchronization

•! Synchronization: a key issue for shared memory
•! Regulate access to shared data (mutual exclusion)

•! Software constructs: semaphore, monitor, mutex

•! Low-level primitive: lock

•!Operations: acquire(lock)and release(lock)

•!Region between acquire and release is a critical section

•!Must interleave acquire and release

•! Interfering acquire will block

struct acct_t { int bal; };
shared struct acct_t accts[MAX_ACCT];
shared int lock;
int id, amt;
acquire(lock);
if (accts[id].bal >= amt) {
 accts[id].bal -= amt;
 give_cash(); }
release(lock);

// critical section

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 15

A Synchronized Execution

Thread 0

 call acquire(lock)

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

<<< Interrupt >>>

4: st r4,0(r3)

 call release(lock)

5: call give_cash

Thread 1

 call acquire(lock)

 <<< Interrupt >>>

 (still in acquire)

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call give_cash

Mem

500

400

T
im

e

300

•! Fixed, but how do
we implement
acquire & release?

Spins!

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 16

Strawman Lock

•! Spin lock: software lock implementation

•! acquire(lock): while (lock != 0); lock = 1;

•! “Spin” while lock is 1, wait for it to turn 0

A0: ld 0(&lock),r6
A1: bnez r6,A0
A2: addi r6,1,r6
A3: st r6,0(&lock)

•! release(lock): lock = 0;

R0: st r0,0(&lock) // r0 holds 0

(Incorrect)

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 17

Strawman Lock

•! Spin lock makes intuitive sense, but doesn’t actually work

•! Loads/stores of two acquire sequences can be interleaved

•! Lock acquire sequence also not atomic

•! Same problem as before!

•! Note, release is trivially atomic

Thread 0

A0: ld 0(&lock),r6

A1: bnez r6,#A0

A2: addi r6,1,r6

A3: st r6,0(&lock)

CRITICAL_SECTION

Thread 1

A0: ld r6,0(&lock)

A1: bnez r6,#A0

A2: addi r6,1,r6

A3: st r6,0(&lock)

CRITICAL_SECTION

Mem

0

1

T
im

e

1

(Incorrect)

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 18

A Correct Implementation: SYSCALL Lock

•! Implement lock in a SYSCALL

•! Only kernel can control interleaving by disabling interrupts

+!Works…

–! Large system call overhead

–! But not in a hardware multithreading or a multiprocessor…

ACQUIRE_LOCK:

A1: disable_interrupts

A2: ld r6,0(&lock)

A3: bnez r6,#A0

A4: addi r6,1,r6

A5: st r6,0(&lock)

A6: enable_interrupts

A7: return

atomic

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 19

Better Spin Lock: Use Atomic Swap

•! ISA provides an atomic lock acquisition instruction
•! Example: atomic swap

swap r1,0(&lock)

•!Atomically executes:

•! New acquire sequence
 (value of r1 is 1)
 A0: swap r1,0(&lock)
 A1: bnez r1,A0

•! If lock was initially busy (1), doesn’t change it, keep looping

•! If lock was initially free (0), acquires it (sets it to 1), break loop

•! Insures lock held by at most one thread
•! Other variants: exchange, compare-and-swap, test-and-set,

or fetch-and-add

mov r1->r2
ld r1,0(&lock)
st r2,0(&lock)

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 20

Atomic Update/Swap Implementation

•! How is atomic swap implemented?
•! Need to ensure no intervening memory operations

•! Requires blocking access by other threads temporarily (yuck)

•! How to pipeline it?
•! Both a load and a store (yuck)

•! Not very RISC-like

•! Some ISAs provide a “load-link” and “store-conditional” insn. pair

PC

I$

Regfile

PC

Regfile

D$

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 21

Lock Correctness

+!Test-and-set lock actually works…

•! Thread 1 keeps spinning

Thread 0

A0: swap r1,0(&lock)

A1: bnez r1,#A0

CRITICAL_SECTION

Thread 1

A0: swap r1,0(&lock)

A1: bnez r1,#A0

A0: swap r1,0(&lock)

A1: bnez r1,#A0

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 22

Programming With Locks Is Difficult

•! Multicore processors are the way of the foreseeable future

•! TLP anointed as parallelism model of choice

•! Just one problem…

•! Writing lock-based multi-threaded programs is difficult!

•! More precisely:
•! Writing programs that are correct is “easy” (not really)

•! Writing programs that are highly parallel is “easy” (not really)

–! Writing programs that are both correct and parallel is difficult

•!Very difficult (true)

•!Unfortunate goal (but that’s the whole point after all)

•! Locking granularity issues

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 23

Coarse-Grain Locks: Correct but Slow

•! Coarse-grain locks: e.g., one lock for entire database

+!Easy to make correct: no chance for unintended interference

–! No P in TLP: no two critical sections can proceed in parallel

struct acct_t { int bal; };
shared struct acct_t accts[MAX_ACCT];
int id,amt;
shared int lock;

acquire(lock);
if (accts[id].bal >= amt) {
 accts[id].bal -= amt;
 give_cash(); }
release(lock);

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 24

Fine-Grain Locks: Parallel But Difficult

•! Fine-grain locks: e.g., multiple locks, one per record

+!Fast: critical sections (to different records) can proceed in parallel

–! Difficult to make correct: easy to make mistakes

•!This particular example is easy

•!Requires only one lock per critical section

•!Consider critical section that requires two locks…

struct acct_t { int bal,lock; };
shared struct acct_t accts[MAX_ACCT];
int id,amt;

acquire(accts[id].lock);
if (accts[id].bal >= amt) {
 accts[id].bal -= amt;
 give_cash(); }
release(accts[id].lock);

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 25

Multiple Locks

•! Multiple locks: e.g., acct-to-acct transfer
•! Must acquire both id_from, id_to locks

•! Running example with accts 241 and 37

•! Simultaneous transfers 241 ! 37 and 37 ! 241

•! Contrived… but even contrived examples must work correctly too

struct acct_t { int bal,lock; };
shared struct acct_t accts[MAX_ACCT];
int id_from,id_to,amt;

acquire(accts[id_from].lock);
acquire(accts[id_to].lock);
if (accts[id_from].bal >= amt) {
 accts[id_from].bal -= amt;
 accts[id_to].bal += amt; }
release(accts[id_to].lock);
release(accts[id_from].lock);

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 26

Multiple Locks And Deadlock

•! Deadlock: circular wait for shared resources

•! Thread 0 has lock 241 waits for lock 37

•! Thread 1 has lock 37 waits for lock 241

•! Obviously this is a problem

•! The solution is …

Thread 0

id_from = 241;

id_to = 37;

acquire(accts[241].lock);

// wait to acquire lock
37

// waiting…

// still waiting…

Thread 1

id_from = 37;

id_to = 241;

acquire(accts[37].lock);

// wait to acquire lock 241

// waiting…

// …

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 27

Correct Multiple Lock Program

•! Always acquire multiple locks in same order

•! Just another thing to keep in mind when programming

•!Ho hum…

struct acct_t { int bal,lock; };
shared struct acct_t accts[MAX_ACCT];
int id_from,id_to,amt;
int id_first = min(id_from, id_to);
int id_second = max(id_from, id_to);

acquire(accts[id_first].lock);
acquire(accts[id_second].lock);
if (accts[id_from].bal >= amt) {
 accts[id_from].bal -= amt;
 accts[id_to].bal += amt; }
release(accts[id_second].lock);
release(accts[id_first].lock);

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 28

Correct Multiple Lock Execution

•! Great, are we done? No

Thread 0

id_from = 241;

id_to = 37;

id_first = min(241,37)=37;

id_second = max(37,241)=241;

acquire(accts[37].lock);

acquire(accts[241].lock);

// do stuff

release(accts[241].lock);

release(accts[37].lock);

Thread 1

id_from = 37;

id_to = 241;

id_first = min(37,241)=37;

id_second = max(37,241)=241;

// wait to acquire lock 37

// waiting…

// …

// …

// …

acquire(accts[37].lock);

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 29

More Lock Madness

•! What if…

•! Some actions (e.g., deposits, transfers) require 1 or 2 locks…

•! …and others (e.g., prepare statements) require all of them?

•! Can these proceed in parallel?

•! What if…

•! There are locks for global variables (e.g., operation id counter)?

•! When should operations grab this lock?

•! What if… what if… what if…

•! So lock-based programming is difficult…

•! …wait, it gets worse

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 30

And To Make It Worse…

•! Acquiring locks is expensive…

•! By definition requires a slow atomic instructions

•! Specifically, acquiring write permissions to the lock

•! Ordering constraints (see soon) make it even slower

•! …and 99% of the time un-necessary
•! Most concurrent actions don’t actually share data

–! You paying to acquire the lock(s) for no reason

•! Fixing these problem is an area of active research
•! One proposed solution “Transactional Memory”

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 31

Research: Transactional Memory (TM)

•! Transactional Memory

+!Programming simplicity of coarse-grain locks

+!Higher concurrency (parallelism) of fine-grain locks

•!Critical sections only serialized if data is actually shared

+!No lock acquisition overhead

•! Hottest thing since sliced bread

•! No fewer than 9 research projects: Brown, Stanford, MIT, Intel…

•! Penn too

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 32

Transactional Memory: The Big Idea

•! Big idea I: no locks, just shared data

•! Look ma, no locks

•! Big idea II: optimistic (speculative) concurrency
•! Execute critical section speculatively, abort on conflicts

•! “Better to beg for forgiveness than to ask for permission”

struct acct_t { int bal; };
shared struct acct_t accts[MAX_ACCT];
int id_from,id_to,amt;

begin_transaction();
if (accts[id_from].bal >= amt) {
 accts[id_from].bal -= amt;
 accts[id_to].bal += amt; }
end_transaction();

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 33

Transactional Memory: Read/Write Sets

•! Read set: set of shared addresses critical section reads

•! Example: accts[37].bal, accts[241].bal

•! Write set: set of shared addresses critical section writes
•! Example: accts[37].bal, accts[241].bal

struct acct_t { int bal; };
shared struct acct_t accts[MAX_ACCT];
int id_from,id_to,amt;

begin_transaction();
if (accts[id_from].bal >= amt) {
 accts[id_from].bal -= amt;
 accts[id_to].bal += amt; }
end_transaction();

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 34

Transactional Memory: Begin

•! begin_transaction

•! Take a local register checkpoint

•! Begin locally tracking read set (remember addresses you read)

•! See if anyone else is trying to write it

•! Locally buffer all of your writes (invisible to other processors)

+!Local actions only: no lock acquire

struct acct_t { int bal; };
shared struct acct_t accts[MAX_ACCT];
int id_from,id_to,amt;

begin_transaction();
if (accts[id_from].bal >= amt) {
 accts[id_from].bal -= amt;
 accts[id_to].bal += amt; }
end_transaction();

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 35

Transactional Memory: End

•! end_transaction

•! Check read set: is all data you read still valid (i.e., no writes to any)

•! Yes? Commit transactions: commit writes

•! No? Abort transaction: restore checkpoint

struct acct_t { int bal; };
shared struct acct_t accts[MAX_ACCT];
int id_from,id_to,amt;

begin_transaction();
if (accts[id_from].bal >= amt) {
 accts[id_from].bal -= amt;
 accts[id_to].bal += amt; }
end_transaction();

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 36

Transactional Memory Implementation

•! How are read-set/write-set implemented?

•! Track locations accessed using bits in the cache

•! Read-set: additional “transactional read” bit per block

•! Set on reads between begin_transaction and end_transaction

•! Any other write to block with set bit ! triggers abort

•! Flash cleared on transaction abort or commit

•! Write-set: additional “transactional write” bit per block
•! Set on writes between begin_transaction and end_transaction

•! Flash cleared on transaction commit

•! On transaction abort: blocks with set bit are invalidated

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 37

Transactional Execution

Thread 0

id_from = 241;

id_to = 37;

begin_transaction();

if(accts[241].bal > 100) {

 …

 // write accts[241].bal

 // abort

Thread 1

id_from = 37;

id_to = 241;

begin_transaction();

if(accts[37].bal > 100) {

 accts[37].bal -= amt;

 acts[241].bal += amt;

}

end_transaction();

// no writes to accts[241].bal

// no writes to accts[37].bal

// commit

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 38

Transactional Execution II (More Likely)

•! Critical sections execute in parallel

Thread 0

id_from = 241;

id_to = 37;

begin_transaction();

if(accts[241].bal > 100) {

 accts[241].bal -= amt;

 acts[37].bal += amt;

}

end_transaction();

// no write to accts[240].bal

// no write to accts[37].bal

// commit

Thread 1

id_from = 450;

id_to = 118;

begin_transaction();

if(accts[450].bal > 100) {

 accts[450].bal -= amt;

 acts[118].bal += amt;

}

end_transaction();

// no write to accts[450].bal

// no write to accts[118].bal

// commit

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 39

So, Let’s Just Do Transactions?

•! What if…

•! Read-set or write-set bigger than cache?

•! Transaction gets swapped out in the middle?

•! Transaction wants to do I/O or SYSCALL (not-abortable)?

•! How do we transactify existing lock based programs?

•! Replace acquire with begin_trans does not always work

•! Several different kinds of transaction semantics
•! Which one do we want?

•! That’s what these research groups are looking at

•! Industry adoption:

•! Sun’s Rock processor has best-effort hardware TM

•! Speculative locking: Azul systems and Intel (rumor)

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 40

Roadmap Checkpoint

•! Thread-level parallelism (TLP)

•! Shared memory model
•! Multiplexed uniprocessor

•! Hardware multihreading

•! Multiprocessing

•! Synchronization
•! Lock implementation

•! Locking gotchas

•! Cache coherence
•! Bus-based protocols

•! Directory protocols

•! Memory consistency models

Mem CPU I/O

System software

App App App

CPU CPU CPU CPU CPU

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 41

Recall: Simplest Multiprocessor

•! What if we don’t want to share the L1 caches?
•! Bandwidth and latency issue

•! Solution: use per-processor (“private”) caches
•! Coordinate them with a Cache Coherence Protocol

PC

I$

Regfile

PC

Regfile

D$

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 42

Shared-Memory Multiprocessors

•! Conceptual model

•! The shared-memory abstraction

•! Familiar and feels natural to programmers

•! Life would be easy if systems actually looked like this…

P0 P1 P2 P3

Memory

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 43

Shared-Memory Multiprocessors

•! …but systems actually look more like this

•! Processors have caches

•! Memory may be physically distributed

•! Arbitrary interconnect

P0 P1 P2 P3

$ M0

Router/interface

Interconnect

$ M1

Router/interface

$ M2

Router/interface

$ M3

Router/interface

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 44

Revisiting Our Motivating Example

•! Two $100 withdrawals from account #241 at two ATMs

•! Each transaction maps to thread on different processor

•! Track accts[241].bal (address is in $r3)

Processor 0

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

Processor 1

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

critical section
(locks not shown)

critical section
(locks not shown)

CPU0 Mem CPU1

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 45

No-Cache, No-Problem

•! Scenario I: processors have no caches

•! No problem

Processor 0

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

Processor 1

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

$500

$500

$400

$400

$300

CPU0 Mem CPU1

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 46

Cache Incoherence

•! Scenario II(a): processors have write-back caches

•! Potentially 3 copies of accts[241].bal: memory, p0$, p1$

•! Can get incoherent (inconsistent)

Processor 0

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

Processor 1

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

$500

$500 $500

$400 $500

$400 $500 $500

$400 $500 $400

CPU0 Mem CPU1

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 47

Write-Through Doesn’t Fix It

•! Scenario II(b): processors have write-through caches

•! This time only 2 (different) copies of accts[241].bal

•! No problem? What if another withdrawal happens on processor 0?

Processor 0

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

Processor 1

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

$500

$500 $500

$400 $400

$400 $400 $400

$400 $300 $300

CPU0 Mem CPU1

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 48

What To Do?

•! No caches?
–! Slow

•! Make shared data uncachable?
–! Faster, but still too slow

•! Entire accts database is technically “shared”

•!Definition of “loosely shared”

•!Data only really shared if two ATMs access same acct at once

•! Flush all other caches on writes to shared data?
•! May as well not have caches

•! Hardware cache coherence
•! Rough goal: all caches have same data at all times

+!Minimal flushing, maximum caching ! best performance

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 49

Bus-based Multiprocessor

•! Simple multiprocessors use a bus
•! All processors see all requests at the same time, same order

•! Memory
•! Single memory module, -or-

•! Banked memory module

P0 P1 P2 P3

$

M0

Bus

$

M1

$

M2

$

M3
CIS 371 (Martin/Roth): Shared Memory Multiprocessors 50

Hardware Cache Coherence

•! Coherence
•! all copies have same data at all times

•! Coherence controller:
•! Examines bus traffic (addresses and data)

•! Executes coherence protocol

•!What to do with local copy when you see
different things happening on bus

•! Three processor-initiated events
•! R: read W: write WB: write-back

•! One response event: SD: send data

•! Two remote-initiated events
•! BR: bus-read, read miss from another processor

•! BW: bus-write, write miss from another processor

CPU

D
$
 d

a
ta

D
$
 t

a
g

s

CC

bus

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 51

VI (MI) Coherence Protocol

•! VI (valid-invalid) protocol: aka MI
•! Two states (per block in cache)

•!V (valid): have block

•! I (invalid): don’t have block

+!Can implement with valid bit

•! Protocol diagram (left)
•! Convention: event"generated-event

•! Summary

•! If anyone wants to read/write block

•!Give it up: transition to I state

•!Write-back if your own copy is dirty

•! This is an invalidate protocol

•! Update protocol: copy data, don’t invalidate
•! Sounds good, but wastes a lot of bandwidth

I

V

R
"

B
R

,
W
"

B
W

B
R

/B
W
"

S
D

,
W

B
"

S
D

R/W

BR/BW

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 52

VI Protocol (Write-Back Cache)

•! lw by processor 1 generates a BR (bus read)

•! processor 0 responds by sending its dirty copy, transitioning to I

Processor 0

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

Processor 1

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

500

V:500 500

V:400 500

I: 400 V:400

400 V:300

CPU0 Mem CPU1

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 53

VI ! MSI

•! VI protocol is inefficient

–! Only one cached copy allowed in entire system

–! Multiple copies can’t exist even if read-only

•!Not a problem in example

•!Big problem in reality

•! MSI (modified-shared-invalid)

•! Fixes problem: splits “V” state into two states

•!M (modified): local dirty copy

•!S (shared): local clean copy

•! Allows either

•!Multiple read-only copies (S-state) --OR--

•! Single read/write copy (M-state)

I

M

W
"

B
W

B
W
"

S
D

,
W

B
"

S
D

R",W"

BR",BW"

S
W"BW

R",BR"

BR"SD

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 54

MSI Protocol (Write-Back Cache)

•! lw by processor 1 generates a BR

•! Processor 0 responds by sending its dirty copy, transitioning to S

•! sw by processor 1 generates a BW

•! Processor 0 responds by transitioning to I

Processor 0

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

Processor 1

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

500

S:500 500

M:400 500

S:400 400 S:400

I: 400 M:300

CPU0 Mem CPU1

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 55

Exclusive Clean Protocol Optimization

•! Most modern protocols also include E (exclusive) state

•! Interpretation: “I have the only cached copy, and it’s a clean copy”

•! Why would this state be useful?

Processor 0

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

Processor 1

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

500

E:500 500

M:400 500

S:400 400 S:400

I: 400 M:300

CPU0 Mem CPU1

(No miss)

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 56

Cache Coherence and Cache Misses

•! A coherence protocol can effect a cache’s miss rate (%miss)

•! Requests from other processors can invalidate (evict) local blocks

•! 4C miss model: compulsory, capacity, conflict, coherence

•! Coherence miss: miss to a block evicted by bus event

•!As opposed to a processor event

•! Cache parameters interact with coherence misses
–! Larger capacity: more coherence misses

•!But offset by reduction in capacity misses

–! Increased block size: more coherence misses

•!False sharing: “sharing” a cache line without sharing data

•!Creates pathological “ping-pong” behavior

•!Careful data placement may help, but is difficult

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 57

Cache Coherence and Cache Misses

•! A coherence protocol can effect a cache’s miss rate (%miss)

•! Requests from other processors can invalidate (evict) local blocks

•! 4C miss model: compulsory, capacity, conflict, coherence

•! Coherence miss: miss to a block evicted by bus event

•!As opposed to a processor event

•! Example: direct-mapped 4B cache, 1B blocks, 4-bit memory

Coherence Miss

Compulsory Miss

S!I Invalidation

Nothing

Upgrade Miss

Outcome

S:0000, M:0001, S:0010, S:1011
Rd:0010

S:0000, M:0001, I:0010, S:1011
Rd:1011

S:0000, M:0001, I:0010, M:0011
BusWr:0010

S:0000, M:0001, S:0010, M:0011
BusRd:0000

S:0000, M:0001, S:0010, M:0011
Wr:0011

S:0000, M:0001, S:0010, S:0011

Event Set00 Set01 Set10 Set11

Cache contents (state:address)

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 58

Snooping Bandwidth Requirements

•! Coherence events generated on…

•! L2 misses (and writebacks)

•! Some parameters
•! 2 GHz CPUs, 2 IPC, 33% memory operations,

•! 2% of which miss in the L2, 64B blocks, 50% dirty

•! (0.33 * 0.02 * 1.5) = 0.01 events/insn

•! 0.01 events/insn * 2 insn/cycle * 2 cycle/ns = 0.04 events/ns

•! Address request: 0.04 events/ns * 4 B/event = 0.16 GB/s

•! Data response: 0.04 events/ns * 64 B/event = 2.56 GB/s

•! That’s 2.5 GB/s … per processor

•! With 16 processors, that’s 40 GB/s!

•! With 128 processors, that’s 320 GB/s!!

•! You can use multiple buses… but that hinders global ordering

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 59

More Snooping Bandwidth Problems

•! Bus bandwidth is not the only problem

•! Also processor snooping bandwidth
•! 0.01 events/insn * 2 insn/cycle = 0.02 events/cycle per processor

•! 16 processors: 0.32 bus-side tag lookups per cycle

•!Add 1 port to cache tags? Sure

•! Invalidate over upgrade: Tags smaller data, ports less expensive

•! 128 processors: 2.56 bus-side tag lookups per cycle!

•!Add 3 ports to cache tags? Oy vey!

•! Implementing inclusion (L1 is strict subset of L2) helps a little

•! 2 additional ports on L2 tags only

•! Processor doesn’t use existing tag port most of the time

•! If L2 doesn’t care (99% of the time), no need to bother L1

–!Still kind of bad though

•! Upshot: bus-based coherence doesn’t scale well

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 60

Scalable Cache Coherence

•! Part I: bus bandwidth

•! Replace non-scalable bandwidth substrate (bus)…

•! …with scalable one (point-to-point network, e.g., mesh)

•! Part II: processor snooping bandwidth

•! Most snoops result in no action

•! Replace non-scalable broadcast protocol (spam everyone)…

•! …with scalable directory protocol (only notify processors that care)

I

BR/BW

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 61

Scalable Cache Coherence

•! Point-to-point interconnects

•! Glueless MP: no need for additional “glue” chips

+!Can be arbitrarily large: 1000’s of processors

•!Massively parallel processors (MPPs)

•!Only government (DoD) has MPPs…

•! Companies have much smaller systems: 32–64 processors

•!Scalable multi-processors

•! AMD Opteron/Phenom – point-to-point, glueless MP, uses broadcast

CPU($)

Mem R

CPU($)

Mem R

CPU($)

Mem R

CPU($)

Mem R

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 62

Directory Coherence Protocols

•! Observe: address space statically partitioned

+!Can easily determine which memory module holds a given line

•!That memory module sometimes called “home”

–! Can’t easily determine which processors have line in their caches

•! Bus-based protocol: broadcast events to all processors/caches

±!Simple and fast, but non-scalable

•! Directories: non-broadcast coherence protocol
•! Extend memory to track caching information

•! For each physical cache line whose home this is, track:

•!Owner: which processor has a dirty copy (I.e., M state)

•!Sharers: which processors have clean copies (I.e., S state)

•! Processor sends coherence event to home directory

•!Home directory only sends events to processors that care

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 63

MSI Directory Protocol

•! Processor side

•! Directory follows its own protocol (obvious in principle)

•! Similar to bus-based MSI
•! Same three states

•! Same five actions (keep BR/BW names)

•! Minus grayed out arcs/actions

•!Bus events that would not trigger action anyway

+!Directory won’t bother you unless you need to act

I

M

W
"

B
W

B
W
"

S
D

,
W

B
"

R",W"

BR/BW

S
W"BW

R", BR"

BR"SD

63 CIS 371 (Martin/Roth): Shared Memory Multiprocessors 64

Directory MSI Protocol

•! ld by P1 sends BR to directory
•! Directory sends BR to P0, P0 sends P1 data, does WB, goes to S

•! st by P1 sends BW to directory
•! Directory sends BW to P0, P0 goes to I

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call dispense_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call dispense_cash

–:–:500

S:500 S:0:500

M:400 M:0:500

S:400 S:0,1:400 S:400

M:1:400 M:300

 P0 P1 Directory

(stale)

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 65

Directory Flip Side: Latency

•! Directory protocols
+!Lower bandwidth consumption ! more scalable

–! Longer latencies

•! Two read miss situations

•! Unshared: get data from memory
•! Snooping: 2 hops (P0!memory!P0)

•! Directory: 2 hops (P0!memory!P0)

•! Shared or exclusive: get data from other processor (P1)
•! Assume cache-to-cache transfer optimization

•! Snooping: 2 hops (P0!P1!P0)

–! Directory: 3 hops (P0!memory!P1!P0)

•! Common, with many processors high probability someone has it

P0 P1

Dir

3 hop miss

P0

Dir

2 hop miss

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 66

Directory Flip Side: Complexity

•! Latency not only issue for directories
•! Subtle correctness issues as well

•! Stem from unordered nature of underlying inter-connect

•! Individual requests to single cache must be ordered
•! Bus-based Snooping: all processors see all requests in same order

•!Ordering automatic

•! Point-to-point network: requests may arrive in different orders

•!Directory has to enforce ordering explicitly

•!Cannot initiate actions on request B…

•!Until all relevant processors have completed actions on request A

•!Requires directory to collect acks, queue requests, etc.

•! Directory protocols
•! Obvious in principle

–! Complicated in practice

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 67

Coherence on Real Machines

•! Many uniprocessors designed with on-chip snooping logic

•! Can be easily combined to form multi-processors

•!E.g., Intel Pentium4 Xeon

•! Multi-core

•! Larger scale (directory) systems built from smaller MPs
•! E.g., Sun Wildfire, NUMA-Q, IBM Summit

•! Some shared memory machines are not cache coherent

•! E.g., CRAY-T3D/E

•! Shared data is uncachable

•! If you want to cache shared data, copy it to private data section

•! Basically, cache coherence implemented in software

•!Have to really know what you are doing as a programmer

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 68

Best of Both Worlds?

•! Ignore processor snooping bandwidth for a minute

•! Can we combine best features of snooping and directories?
•! From snooping: fast two-hop cache-to-cache transfers

•! From directories: scalable point-to-point networks

•! In other words…

•! Can we use broadcast on an unordered network?

•! Yes, and most of the time everything is fine

•! But sometimes it isn’t … protocol race

•! Research Proposal: Token Coherence (TC)

•! An unordered broadcast snooping protocol … without data races

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 69

Roadmap Checkpoint

•! Thread-level parallelism (TLP)

•! Shared memory model
•! Multiplexed uniprocessor

•! Hardware multihreading

•! Multiprocessing

•! Synchronization
•! Lock implementation

•! Locking gotchas

•! Cache coherence
•! Bus-based protocols

•! Directory protocols

•! Memory consistency models

Mem CPU I/O

System software

App App App

CPU CPU CPU CPU CPU

Hiding Store Miss Latency

•! Recall (back from caching unit)
•! Hiding store miss latency

•! How? Write buffer

•! Said it would complicate multiprocessors
•! Yes. It does.

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 70

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 71

Recall: Write Misses and Write Buffers

•! Read miss?
•! Load can’t go on without the data, it must stall

•! Write miss?
•! Technically, no instruction is waiting for data, why stall?

•! Write buffer: a small buffer
•! Stores put address/value to write buffer, keep going

•! Write buffer writes stores to D$ in the background

•! Loads must search write buffer (in addition to D$)

+!Eliminates stalls on write misses (mostly)
–! Creates some problems (later)

•! Write buffer vs. writeback-buffer
•! Write buffer: “in front” of D$, for hiding store misses

•! Writeback buffer: “behind” D$, for hiding writebacks

Cache

Next-level
cache

WBB

WB

Processor

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 72

Memory Consistency

•! Memory coherence

•! Creates globally uniform (consistent) view…

•! Of a single memory location (in other words: cache line)

–! Not enough

•!Cache lines A and B can be individually consistent…

•!But inconsistent with respect to each other

•! Memory consistency
•! Creates globally uniform (consistent) view…

•! Of all memory locations relative to each other

•! Who cares? Programmers
–! Globally inconsistent memory creates mystifying behavior

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 73

Coherence vs. Consistency

•! Intuition says: P1 prints A=1

•! Coherence says: absolutely nothing
•! P1 can see P0’s write of flag before write of A!!! How?

•!Maybe coherence event of A is delayed somewhere in network

•!Or P0 has a coalescing write buffer that reorders writes

•! Imagine trying to figure out why this code sometimes
“works” and sometimes doesn’t

•! Real systems act in this strange manner

 A=flag=0;

Processor 0

A=1;

flag=1;

Processor 1

while (!flag); // spin

print A;

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 74

Sequential Consistency (SC)

•! Sequential consistency (SC)
•! Formal definition of memory view programmers expect

•! Processors see their own loads and stores in program order

+!Provided naturally, even with out-of-order execution

•! But also: processors see others’ loads and stores in program order

•! And finally: all processors see same global load/store ordering

–!Last two conditions not naturally enforced by coherence

•! Lamport definition: multiprocessor ordering…
•! Corresponds to some sequential interleaving of uniprocessor orders

•! I.e., indistinguishable from multi-programmed uni-
processor

 A=flag=0;

Processor 0

A=1;

flag=1;

Processor 1

while (!flag); // spin

print A;

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 75

SC Doesn’t “Happen Naturally” Why?

•! What is consistency concerned with?

•! P1 doesn’t actually view P0’s committed loads and stores

•! Views their coherence events instead

•! “Consistency model”: how observed order of coherence events
relates to order of committed insns

•! What does SC say?

•! Coherence event order must match committed insn order

•!And be identical for all processors

•! Let’s see what that implies

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 76

SC + Write Buffers

•! Store misses are slow

•! Global acquisition of M state (write permission)

–! Multiprocessors have more store misses than uniprocessors

•!Upgrade miss: I have block in S, require global upgrade to M

•! Apparent solution: write buffer

•! Commit store to write buffer, let it absorb store miss latency

•! But a write buffer means…

•! I see my own stores commit before everyone else sees them

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 77

SC + Write Buffers

•! Possible for both (B==0) and (A==0) to be true

•! Because B=1 and A=1 are just sitting in the write buffers
•! Which is wrong

•! So does SC mean no write buffer?

–! Yup, and that hurts

 A=0; B=0;

Processor 0

A=1; // in-order to WB

if(B==0) // in-order commit

A=1; // in-order to D$

Processor 1

B=1; // in-order to WB

if(A==0) // in-order commit

B=1; // in-order to D$

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 78

Is SC Really Necessary?

•! SC

+!Most closely matches programmer’s intuition (don’t under-estimate)

–! Restricts optimization by compiler, CPU, memory system

•! Supported by MIPS, HP PA-RISC

•! Is full-blown SC really necessary? What about…
•! All processors see others’ loads/stores in program order

•! But not all processors have to see same global order

+!Allows processors to have in-order write buffers

–! Doesn’t confuse programmers too much

•! Synchronized programs (e.g., our example) work as expected

•! Processor Consistency (PC): e.g., Intel iA32, SPARC

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 79

Weak Memory Ordering

•! For properly synchronized programs…

•! …only acquires/releases must be strictly ordered

•! Why? acquire-release pairs define critical sections
•! Between critical-sections: data is private

•!Globally unordered access OK

•! Within critical-section: access to shared data is exclusive

•!Globally unordered access also OK

•! Implication: compiler or dynamic scheduling is OK

•!As long as re-orderings do not cross synchronization points

•! Weak Ordering (WO): Alpha, IA-64, PowerPC
•! ISA provides fence insns to indicate scheduling barriers

•! Proper use of fences is somewhat subtle

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 80

•! Answer the following two questions:

Pop Quiz!

 st 1 ! y
 st 1 ! x

thread 1 thread 2

 ld x
 ld y

Initially: x==0, y==0

 st 1 ! x
 ld y

thread 1 thread 2

 st 1 ! y
 ld x

Initially: x==0, y==0

•!What value pairs can be read by the two loads?

•!(x, y) pairs:

•!What value pairs can be read by the two loads?

•!(x, y) pairs:

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 81

Fences aka Memory Barriers

•! Fences (memory barriers): special insns
•! Ensure that loads/stores don’t cross acquire release boundaries

•! Very roughly

acquire

fence

critical section

fence

release

•! How do they work?
•! fence insn must commit before any younger insn dispatches

•!This also means write buffer is emptied

–! Makes lock acquisition and release slow(er)

•! Use synchronization library, don’t write your own

CIS 371 (Martin/Roth): Shared Memory Multiprocessors 82

Summary

•! Thread-level parallelism (TLP)

•! Shared memory model
•! Multiplexed uniprocessor

•! Hardware multihreading

•! Multiprocessing

•! Synchronization
•! Lock implementation

•! Locking gotchas

•! Cache coherence
•! Bus-based protocols

•! Directory protocols

•! Memory consistency models

Mem CPU I/O

System software

App App App

CPU CPU CPU CPU CPU

