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CIS 371 
Computer Organization and Design 

Part III: Memory Hierarchy 

Unit 9: Caches 
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Recall: Binary Tree Performance vs Size 
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Recall: Binary Tree Performance vs Size 

5x 

1M 

What is going on here? 

5x difference 
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Average Instructions per Lookup 

So number of instructions isn’t the problem 
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This Unit: Caches 

•! Basic memory hierarchy concepts 

•! Speed vs capacity 

•! Caches 

•! Later 
•! Organizing an entire memory hierarchy 

•! Main memory 

•! Virtual memory 

CPU Mem I/O 

System software 

App App App 
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Readings 

•! P+H 

•! Chapter 7 

•! Except 7.4 
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Motivation: Types of Memory 

•! Static RAM (SRAM) 
•! 6 transistors per bit (two inverters, two other transistors for off/on) 

•! Optimized for speed (first) and density (second) 

•! Fast (sub-nanosecond latencies for small SRAM) 

•! Speed proportional to its area 

•! Mixes well with standard processor logic 

•! Dynamic RAM (DRAM) 
•! 1 transistor + 1 capacitor per bit 

•! Optimized for density (in terms of cost per bit) 

•! Slow (>40ns internal access, ~100ns pin-to-pin)  

•! Different fabrication steps (does not mix well with logic) 

•! Nonvolatile storage: Magnetic disk, Flash RAM 
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Memory & Storage Technologies 

•! Cost - what can $200 buy today? 
•! SRAM - 4MB 

•! DRAM - 1,000MB (1GB)  ---  250x cheaper than SRAM 

•! Disk - 500,000MB (500GB) ---  500x cheaper than DRAM 

•! Latency  
•! SRAM - <1 to 5ns (on chip) 

•! DRAM - ~100ns  --- 100x or more slower 

•! Disk - 10,000,000ns or 10ms --- 100,000x slower (mechanical) 

•! Bandwidth 
•! SRAM - 10-100GB/sec 

•! DRAM - ~1GB/sec 

•! Disk - 100MB/sec (0.1 GB/sec) - sequential access only  

•! Aside: Flash, a non-traditional (and nonvolatile) memory 
•! 16GB for $200, 16x cheaper than DRAM!  (But 30x more than disk) 
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Storage Technology Trends 

Cost 

Access Time 
Copyright Elsevier Scientific 2003 
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The “Memory Wall” 

•! Processors are get faster more quickly than memory (note log scale) 

•! Processor speed improvement: 35% to 55% 

•! Memory latency improvement: 7% 

Copyright Elsevier Scientific 2003 

Log scale 

+35 to 55% 

+7% 
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Locality to the Rescue 

•! Locality of memory references 

•! Property of real programs, few exceptions 

•! Books and library analogy 

•! Temporal locality 

•! Recently referenced data is likely to be referenced again soon 

•! Reactive: cache recently used data in small, fast memory 

•! Spatial locality 

•! More likely to reference data near recently referenced data 

•! Proactive: fetch data in large chunks to include nearby data 

•! Holds for data and instructions 
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Known From the Beginning 

 “Ideally, one would desire an infinitely large memory 
capacity such that any particular word would be 
immediately available … We are forced to recognize the 
possibility of constructing a hierarchy of memories, each 
of which has a greater capacity than the preceding but 
which is less quickly accessible.” 

Burks, Goldstine, VonNeumann  

“Preliminary discussion of the logical design of an 
electronic computing instrument” 

 IAS memo 1946  



Library Analogy 

•! Consider books in a library 

•! Library has lots of books, but it is slow to access 

•! Far away (time to walk to the library) 

•! Big (time to walk within the library) 

•! How can you avoid these latencies? 

•! Check out books, take them home with you 

•! Put them on desk, on bookshelf, etc. 

•! But desks & bookshelves have limited capacity 

•!Keep recently used books around (temporal locality) 

•!Grab books on related topic at the same time (spatial locality) 

•!Guess what books you’ll need in the future (prefetching)  
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Exploiting Locality: Memory Hierarchy 

•! Hierarchy of memory components 

•! Upper components 

•! Fast ! Small ! Expensive 

•! Lower components 

•! Slow ! Big ! Cheap 

•! Connected by “buses” 

•! Which also have latency and bandwidth issues 

•! Most frequently accessed data in M1 

•! M1 + next most frequently accessed in M2, etc. 

•! Move data up-down hierarchy 

•! Optimize average access time 
•! latencyavg = latencyhit + %miss * latencymiss 

•! Attack each component 

CPU 

M1 

M2 

M3 

M4 
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Concrete Memory Hierarchy 

•! 0th level: Registers 

•! 1st level: Primary caches 
•! Split instruction (I$) and data (D$) 

•! Typically 8KB to 64KB each 

•! 2nd level: Second-level cache (L2$) 

•! On-chip, certainly on-package (with CPU) 

•! Made of SRAM (same circuit type as CPU) 

•! Typically 512KB to 16MB 

•! 3rd level: main memory 
•! Made of DRAM (“Dynamic” RAM) 

•! Typically 1GB to 4GB for desktops/laptops 

•! Servers can have 100s of GB  

•! 4th level: disk (swap and files) 
•! Uses magnetic disks 

Processor 

D$ 

L2$ 

Main 
Memory 

I$ 

Disk 

Compiler 
Managed 

Hardware 
Managed 

Software 
Managed 
(by OS) 

Regs 
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Evolution of Cache Hierarchies 

Intel 486 

8KB 
I/D$ 

1.5MB L2 

L3 tags 

64KB D$ 

64KB I$ 

IBM Power5 (dual core) 

•! Chips today are 30–70% cache by area 



Library Analogy Revisited 

•! Registers ! books on your desk 

•! Actively being used, small capacity 

•! Caches ! bookshelves 

•! Moderate capacity, pretty fast to access 

•! Main memory ! library 

•! Big, holds almost all data, but slow 

•! Disk (swap) ! inter-library loan 

•! Very slow, but hopefully really uncommon 
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This Unit: Caches 

•! “Cache”: hardware managed 
•! Hardware automatically retrieves missing data 

•! Built from fast SRAM, usually on-chip today 

•! In contrast to off-chip, DRAM “main memory” 

•! Cache organization 
•! ABC 

•! Miss classification 

•! High-performance techniques 
•! Reducing misses 

•! Improving miss penalty 

•! Improving hit latency 

•! Some example performance calculations 

CPU 

D$ 

L2 

Main 
Memory 

I$ 

Disk 
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Looking forward: Memory and Disk 

•! Main memory 

•! DRAM-based memory systems 

•! Virtual memory 

•! Disks and Storage 

•! Properties of disks 

•! Disk arrays (for performance and reliability) 

CPU 

Main 
Memory 

Disk 

D$ 

L2$ 

I$ 
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Basic Memory Array Structure 

•! Number of entries 

•! 2n, where n is number of address bits 

•! Example:  1024 entries, 10 bit address 

•! Decoder changes n-bit address to  
2n bit “one-hot” signal 

•! One-bit address travels on “wordlines” 

•! Size of entries 
•! Width of data accessed 

•! Data travels on “bitlines”  

•! 256 bits (32 bytes) in example 

0 

1 

1021 

1022 

1023 
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3 

1024*256bit 
SRAM 

bitlines 
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o
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10 bits 
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FYI: Physical Memory Layout 

•! Logical layout 

•! Arrays are vertically contiguous 

•! Physical layout - roughly square 
•! Vertical partitioning to minimize wire lengths 

•! H-tree: horizontal/vertical partitioning layout 

•!Applied recursively 

•!Each node looks like an H 

512 

513 

1022 

1023 

767 

data address 

0 

1 

510 

511 

255 

256 768 

CIS371 (Roth/Martin): Caches 22 

Physical Cache Layout 

•! Arrays and h-trees make caches easy to spot in µgraphs 
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Caches: Finding Data via Indexing 

•! Basic cache: array of block frames 
•! Example: 32KB cache (1024 frames, 32B blocks) 

•! “Hash table in hardware” 

•! To find frame: decode part of address 
•! Which part? 

•! 32-bit address 

•! 32B blocks " 5 lowest bits locate byte in block 

•!These are called offset bits 

•! 1024 frames " next 10 bits find frame 

•!These are the index bits 

•! Note: nothing says index must be these bits 

•! But these work best (think about why) 

0 

1 

1021 

1022 

1023 

2 

3 

[4:0] [31:15] index [14:5] << 

1024* 
256bit 
SRAM 

bitlines 

w
o
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e
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data address 
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Knowing that You Found It: Tags 

•! Each frame can hold one of 217 blocks 

•! All blocks with same index bit pattern 

•! How to know which if any is currently there? 
•! To each frame attach tag and valid bit 

•! Compare frame tag to address tag bits 

•!No need to match index bits (why?) 

•! Lookup algorithm 
•! Read frame indicated by index bits 

•! “Hit” if tag matches and valid bit is set 

•! Otherwise, a “miss”.  Get data from next level 

0 

1 
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2 

3 
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= 
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w
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Calculating Tag Overhead 

•! “32KB cache” means cache holds 32KB of data 

•! Called capacity 

•! Tag storage is considered overhead 

•! Tag overhead of 32KB cache with 1024 32B frames 

•! 32B frames " 5-bit offset 

•! 1024 frames " 10-bit index 

•! 32-bit address – 5-bit offset – 10-bit index = 17-bit tag 

•! (17-bit tag + 1-bit valid)* 1024 frames = 18Kb tags = 2.2KB tags 

•! ~6% overhead 

•! What about 64-bit addresses? 

•! Tag increases to 49bits, ~20% overhead (worst case) 
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Handling a Cache Miss 

•! What if requested data isn’t in the cache? 

•! How does it get in there? 

•! Cache controller: finite state machine 

•! Remembers miss address 

•! Accesses next level of memory 

•! Waits for response 

•! Writes data/tag into proper locations 

•! All of this happens on the fill path 

•! Sometimes called backside 

26 
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Cache Misses and Pipeline Stalls 

•! I$ and D$ misses stall pipeline just like data hazards 

•! Stall logic driven by miss signal 

•!Cache “logically” re-evaluates hit/miss every cycle 

•!Data is filled " miss signal de-asserts " pipeline restarts 

I$ Regfile 
D$ 

a 

d 

+ 
4 

nop nop 
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Cache Performance Equation 

•! For a cache 
•! Access: read or write to cache 

•! Hit: desired data found in cache 

•! Miss: desired data not found in cache 

•!Must get from another component 

•!No notion of “miss” in register file 

•! Fill: action of placing data into cache 

•! %miss (miss-rate): #misses / #accesses 

•! thit: time to read data from (write data to) cache 

•! tmiss: time to read data into cache 

•! Performance metric: average access time 

tavg = thit + %miss * tmiss 

Cache 

thit 

tmiss 

%miss 
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CPI Calculation with Cache Misses 

•! In a pipelined processor, I$/D$ thit is “built in” (effectively 0) 
•! High thit will simply require multiple F or M stages (deeper pipeline) 

•! Parameters 
•! Simple pipeline with base CPI of 1 

•! Instruction mix: 30% loads/stores 

•! I$: %miss = 2%, tmiss = 10 cycles 

•! D$: %miss = 10%, tmiss = 10 cycles 

•! What is new CPI? 
•! CPII$ = %missI$*tmiss = 0.02*10 cycles = 0.2 cycle 

•! CPID$ = %load/store*%missD$*tmissD$ = 0.3 * 0.1*10 cycles = 0.3 cycle 

•! CPInew = CPI + CPII$ + CPID$ = 1+0.2+0.3 = 1.5 
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Measuring Cache Performance 

•! Ultimate metric is tavg 

•! Cache capacity and circuits roughly determines thit 

•! Lower-level memory structures determine tmiss 

•! Measure %miss 

•!Hardware performance counters (Pentium)  

•! Simulation (homework) 

•! Paper simulation (next) 
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Cache Miss Paper Simulation 

•! 4-bit addresses " 16B memory 
•! Simpler cache diagrams than 32-bits 

•! 8B cache, 2B blocks 
•! Figure out number of sets: 4 (capacity / block-size) 

•! Figure out how address splits into offset/index/tag bits 

•!Offset: least-significant log2(block-size) = log2(2) = 1 " 0000  

•! Index: next log2(number-of-sets) = log2(4) = 2 " 0000  

•!Tag: rest = 4 – 1 – 2 = 1 " 0000 

•! Cache diagram 
•! 0000|0001 are addresses of bytes in this block, values don’t matter 

Cache contents Address Outcome 

Set00 Set01 Set10 Set11 

0000|0001 0010|0011 0100|0101 0110|0111 
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Cache Miss Paper Simulation 

•! 8B cache, 2B blocks 

Cache contents (prior to access) Address Outcome 

Set00 Set01 Set10 Set11 

0000|0001 0010|0011 0100|0101 0110|0111 1100 Miss 

0000|0001 0010|0011 1100|1101 0110|0111 1110 Miss 

0000|0001 0010|0011 1100|1101 1110|1111 1000 Miss 

1000|1001 0010|0011 1100|1101 1110|1111 0011 Hit 

1000|1001 0010|0011 1100|1101 1110|1111 1000 Hit 

1000|1001 0010|0011 1100|1101 1110|1111 0000 Miss 

0000|0001 0010|0011 1100|1101 1110|1111 1000 Miss 

•! How to reduce %miss? And hopefully tavg? 

1 bit tag (1 bit) index (2 bits) 
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Capacity and Performance 

•! Simplest way to reduce %miss: increase capacity 
+!Miss rate decreases monotonically 

•!“Working set”: insns/data program is actively using 

•!Diminishing returns 

–! However thit increases 

•! Latency proportional to 
sqrt(capacity) 

•! tavg ? 

•! Given capacity, manipulate %miss by changing organization 

Cache Capacity 

%miss 
“working set” size 
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Block Size 

•! Given capacity, manipulate %miss by changing organization 

•! One option: increase block size 
•! Exploit spatial locality 

•! Notice index/offset bits change 

•! Tag remain the same 

•! Ramifications 
+!Reduce %miss  (up to a point) 

+!Reduce tag overhead (why?) 

–! Potentially useless data transfer 

–! Premature replacement of useful data 

–! Fragmentation 

0 

1 

510 

511 

2 

[5:0] [31:15] 

data 

[14:6] 

address 

= 

hit? 

<< 

512*512bit 
SRAM 

9-bit 

block size# 
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Block Size and Tag Overhead 

•! Tag overhead of 32KB cache with 1024 32B frames 

•! 32B frames " 5-bit offset 

•! 1024 frames " 10-bit index 

•! 32-bit address – 5-bit offset – 10-bit index = 17-bit tag 

•! (17-bit tag + 1-bit valid) * 1024 frames = 18Kb tags = 2.2KB tags 

•! ~6% overhead 

•! Tag overhead of 32KB cache with 512 64B frames 
•! 64B frames " 6-bit offset 

•! 512 frames " 9-bit index 

•! 32-bit address – 6-bit offset – 9-bit index = 17-bit tag 

•! (17-bit tag + 1-bit valid) * 512 frames = 9Kb tags = 1.1KB tags 

+!~3% overhead 
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Block Size Cache Miss Paper Simulation 

•! 8B cache, 4B blocks 

+!Spatial “prefetching”: miss on 1100 brought in 1110 

–! Conflicts: miss on 1000 kicked out 0011 

Cache contents (prior to access) Address Outcome 

Set0 Set1 

0000|0001|0010|0011 0100|0101|0110|0111 1100 Miss 

0000|0001|0010|0011 1100|1101|1110|1111 1110 Hit (spatial locality) 

0000|0001|0010|0011 1100|1101|1110|1111 1000 Miss 

1000|1001|1010|1011 1100|1101|1110|1111 0011 Miss (conflict) 

0000|0001|0010|0011 1100|1101|1110|1111 1000 Miss (conflict) 

1000|1001|1010|1011 1100|1101|1110|1111 0000 Miss 

0000|0001|0010|0011 1100|1101|1110|1111 1000 Miss 

2 bits tag (1 bit) index (1 bit) 



CIS371 (Roth/Martin): Caches 37 

Effect of Block Size on Miss Rate 

•! Two effects on miss rate 
+!Spatial prefetching (good) 

•! For blocks with adjacent addresses 

•! Turns miss/miss into miss/hit pairs 

–! Interference (bad) 

•! For blocks with non-adjacent 
addresses (but in adjacent frames) 

•! Turns hits into misses by disallowing 
simultaneous residence 

•! Consider entire cache as one big block 

•! Both effects always present  
•! Spatial prefetching dominates initially 

•! Depends on size of the cache 

•! Good block size is 16–128B  

•! Program dependent 

Block Size 

%miss 
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Block Size and Miss Penalty 

•! Does increasing block size increase tmiss? 

•! Don’t larger blocks take longer to read, transfer, and fill? 

•! They do, but…  

•! tmiss of an isolated miss is not affected  

•! Critical Word First / Early Restart (CRF/ER) 

•! Requested word fetched first, pipeline restarts immediately 

•! Remaining words in block transferred/filled in the background 

•! tmiss’es of a cluster of misses will suffer 

•! Reads/transfers/fills of two misses can’t happen at the same time 

•! Latencies can start to pile up 

•! This is a bandwidth problem (more later) 
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Conflicts 

•! 8B cache, 2B blocks 

Cache contents (prior to access) Address Outcome 

Set00 Set01 Set10 Set11 

0000|0001 0010|0011 0100|0101 0110|0111 1100 Miss 

0000|0001 0010|0011 1100|1101 0110|0111 1110 Miss 

0000|0001 0010|0011 1100|1101 1110|1111 1000 Miss 

1000|1001 0010|0011 1100|1101 1110|1111 0011 Hit 

1000|1001 0010|0011 1100|1101 1110|1111 1000 Hit 

1000|1001 0010|0011 1100|1101 1110|1111 0000 Miss 

0000|0001 0010|0011 1100|1101 1110|1111 1000 Miss 

•! Pairs like 0000/1000 conflict  

•! Regardless of block-size (assuming capacity < 16)  

•! Q: can we allow pairs like these to simultaneously reside? 

•! A: yes, reorganize cache to do so 

1 bit tag (1 bit) index (2 bits) 
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Set-Associativity 

•! Set-associativity 
•! Block can reside in one of few frames 

•! Frame groups called sets 

•! Each frame in set called a way 

•! This is 2-way set-associative (SA) 

•! 1-way " direct-mapped (DM) 

•! 1-set " fully-associative (FA) 

+!Reduces conflicts 

–! Increases latencyhit:  

•! additional tag match & muxing 

•! Note: valid bit not shown 
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Set-Associativity 

•! Lookup algorithm 

•! Use index bits to find set 

•! Read data/tags in all frames in parallel 

•! Any (match and valid bit), Hit 

•! Notice tag/index/offset bits 

•!Only 9-bit index (versus 10-bit  
for direct mapped) 

•! Notice block numbering 
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Associativity and Miss Paper Simulation 

+!Avoid conflicts: 0000 and 1000 can both be in set 0 

–! Introduce some new conflicts: notice address re-arrangement 

•!Happens, but conflict avoidance usually dominates 

•! 8B cache, 2B blocks, 2-way set-associative 

Cache contents (prior to access) Address Outcome 

Set0.Way0 Set0.Way1 Set1.Way0 Set1.Way1 

0000|0001 0100|0101 0010|0011 0110|0111 1100 Miss 

1100|1101 0100|0101 0010|0011 0110|0111 1110 Miss 

1100|1101 0100|0101 1110|1111 0110|0111 1000 Miss 

1100|1101 1000|1001 1110|1111 0110|0111 0011 Miss (new conflict) 

1100|1101 1000|1001 1110|1111 0010|0011 1000 Hit 

1100|1101 1000|1001 1110|1111 0010|0011 0000 Miss 

0000|0001 1000|1001 1110|1111 0010|0011 1000 Hit (avoid conflict) 
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Replacement Policies 

•! Set-associative caches present a new design choice 
•! On cache miss, which block in set to replace (kick out)? 

•! Some options 
•! Random 

•! FIFO (first-in first-out) 

•! LRU (least recently used) 

•! Fits with temporal locality, LRU = least likely to be used in future 

•! NMRU (not most recently used)  

•!An easier to implement approximation of LRU 

•! Is LRU for 2-way set-associative caches 

•! Belady’s: replace block that will be used furthest in future 

•!Unachievable optimum 

•! Which policy is simulated in previous example? 
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NMRU and Miss Handling 

•! Add MRU field to each set 
•! MRU data is encoded “way” 

•! Hit? update MRU 

•! MRU/LRU bits updated on 
each access 
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Parallel or Serial Tag Access? 

•! Note: data and tags actually physically separate 

•! Split into two different arrays 

•! Parallel access example: 

data 

<< 

= = = = 

offset tag 2-bit index 

2-bit 

2-bit 

Four blocks transferred  
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Serial Tag Access 

•! Tag match first, then access only one data block 

•! Advantages: lower power, fewer wires/pins 

•! Disadvantages: slow 

<< 

= = = = 

offset tag 2-bit index 

2-bit 

2-bit 

4-bit 

Only one block transferred  

CPU 
Data 
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Best of Both? Way Prediction 

•! Predict “way” of block 
•! Just a “hint” 

•! Use the index plus some tag bits 

•! Table of n-bit entries for 2n associative cache 

•! Update on mis-prediction or replacement 

•! Advantages 
•! Fast 

•! Low-power 

•! Disadvantage 
•! More “misses” 
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Associativity And Performance 

•! Higher associative caches  
+!Have better (lower) %miss 

•!Diminishing returns 

–! However thit increases 

•!The more associative, the slower 

•! What about tavg? 

•! Block-size and number of sets should be powers of two 
•! Makes indexing easier (just rip bits out of the address) 

•! 3-way set-associativity? No problem 

Associativity 

%miss ~5 
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Classifying Misses: 3(4)C Model 

•! Divide cache misses into three categories 
•! Compulsory (cold): never seen this address before 

•!Would miss even in infinite cache 

•! Identify? easy 

•! Capacity: miss caused because cache is too small 

•!Would miss even in fully associative cache 

•! Identify? Consecutive accesses to block separated by access to 
at least N other distinct blocks (N is number of frames in cache) 

•! Conflict: miss caused because cache associativity is too low 

•! Identify? All other misses 

•! (Coherence): miss due to external invalidations 

•!Only in shared memory multiprocessors (later) 

•! Who cares? Different techniques for attacking different misses 
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Miss Rate: ABC 

•! Capacity  
+!Decreases capacity misses 

–! Increases latencyhit 

•! Associativity 
+!Decreases conflict misses 

–! Increases latencyhit 

•! Block size 
–! Increases conflict/capacity misses (fewer frames) 

+!Decreases compulsory/capacity misses (spatial locality) 

•! No significant effect on latencyhit 

•! Why do we care about 3C miss model? 
•! So that we know what to do to eliminate misses 

•! If you don’t have conflict misses, increasing associativity won’t help 
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Reducing Conflict Misses: Victim Buffer 

•! Conflict misses: not enough associativity 

•! High-associativity is expensive, but also rarely needed 

•! 3 blocks mapping to same 2-way set and accessed (XYZ)+ 

•! Victim buffer (VB): small fully-associative cache 

•! Sits on I$/D$ miss path 

•! Small so very fast (e.g., 8 entries) 

•! Blocks kicked out of I$/D$ placed in VB 

•! On miss, check VB: hit? Place block back in I$/D$ 

•! 8 extra ways, shared among all sets 

+!Only a few sets will need it at any given time 

+!Very effective in practice 

•! Does VB reduce %miss or latencymiss?  

I$/D$ 

L2 

VB 
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Lockup Free Cache 

•! Lockup free: allows other accesses while miss is pending 
•! Consider: Load [r1] -> r2;   Load [r3] -> r4;    Add r2, r4 -> r5 

•! Handle misses in parallel 

•! “memory-level parallelism” 

•! Makes sense for… 

•! Processors that can go ahead despite D$ miss (out-of-order) 

•! Implementation: miss status holding register (MSHR) 

•!Remember: miss address, chosen frame, requesting instruction 

•!When miss returns know where to put block, who to inform 

•! Common scenario: “hit under miss” 

•!Handle hits while miss is pending 

•!Easy 

•! Less common, but common enough: “miss under miss” 

•!A little trickier, but common anyway 

•!Requires multiple MSHRs: search to avoid frame conflicts 
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Software Restructuring: Data 

•! Capacity misses: poor spatial or temporal locality 

•! Several code restructuring techniques to improve both 

–! Compiler must know that restructuring preserves semantics 

•! Loop interchange: spatial locality 

•! Example: row-major matrix: X[i][j] followed by X[i][j+1] 

•! Poor code: X[I][j] followed by X[i+1][j] 
for (j = 0; j<NCOLS; j++) 

  for (i = 0; i<NROWS; i++) 

     sum += X[i][j];   // say 

•! Better code 

for (i = 0; i<NROWS; i++) 

   for (j = 0; j<NCOLS; j++) 

     sum += X[i][j]; 
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Software Restructuring: Data 

•! Loop blocking: temporal locality 
•! Poor code 

for (k=0; k<NITERATIONS; k++) 

   for (i=0; i<NELEMS; i++) 

      sum += X[i];   // say 

•! Better code 

•!Cut array into CACHE_SIZE chunks 

•!Run all phases on one chunk, proceed to next chunk 

for (i=0; i<NELEMS; i+=CACHE_SIZE) 

   for (k=0; k<NITERATIONS; k++) 

      for (ii=0; ii<i+CACHE_SIZE-1; ii++) 

         sum += X[ii]; 

–! Assumes you know CACHE_SIZE, do you? 

•! Loop fusion: similar, but for multiple consecutive loops 
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Software Restructuring: Code 

•! Compiler an layout code for temporal and spatial locality 
•! If (a) { code1; } else { code2; } code3; 

•! But, code2 case never happens (say, error condition) 

•! Fewer taken branches, too 

•! Intra-procedure, inter-procedure 

Better 
locality 

Better 
locality 
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Prefetching 

•! Prefetching: put blocks in cache proactively/speculatively 

•! Key: anticipate upcoming miss addresses accurately 

•!Can do in software or hardware 

•! Simple example: next block prefetching 

•!Miss on address X " anticipate miss on X+block-size 

+!Works for insns: sequential execution 

+!Works for data: arrays 

•! Timeliness: initiate prefetches sufficiently in advance 

•! Coverage: prefetch for as many misses as possible 

•! Accuracy: don’t pollute with unnecessary data 

•! It evicts useful data 

I$/D$ 

L2 

prefetch logic 



CIS371 (Roth/Martin): Caches 57 

Software Prefetching 

•! Use a special “prefetch” instruction 

•! Tells the hardware to bring in data, doesn’t actually read it 

•! Just a hint  

•! Inserted by programmer or compiler 

•! Example 

for (i = 0; i<NROWS; i++) 

   for (j = 0; j<NCOLS; j+=BLOCK_SIZE) { 

      prefetch(&X[i][j]+BLOCK_SIZE); 

      for (jj=j; jj<j+BLOCK_SIZE-1; jj++) 

         sum += x[i][jj]; 

   } 

•! Multiple prefetches bring multiple blocks in parallel 

•! Using lockup-free caches 

•! “Memory-level” parallelism 
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Hardware Prefetching 

•! What to prefetch? 

•! Stride-based sequential prefetching 

•!Can also do N blocks ahead to hide more latency 

+!Simple, works for sequential things: insns, array data 

+!Works better than doubling the block size 

•! Address-prediction 

•!Needed for non-sequential data: lists, trees, etc. 

•!Use a hardware table to detect strides, common patterns 

•! When to prefetch? 

•! On every reference? 

•! On every miss? 
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Extra Cache Examples 

•! 4-bit address (16-byte memory) 

•! 8-byte cache 
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4-bit Address, 8B Cache, 2B Blocks 
0000 A 

0001 B 

0010 C 

0011 D 

0100 E 

0101 F 

0110 G 

0111 H 

1000 I 

1001 J 

1010 K 

1011 L 

1100 M 

1101 N 

1110 P 

1111 Q 
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Data 

Set Tag 0 1 

00 

01 

10 

11 

1 bit tag (1 bit) index (2 bits) 
Main memory 

4-bit Address, 8B Cache, 2B Blocks 
0000 A 

0001 B 

0010 C 

0011 D 

0100 E 

0101 F 

0110 G 

0111 H 

1000 I 

1001 J 

1010 K 

1011 L 

1100 M 

1101 N 

1110 P 

1111 Q 

CIS371 (Roth/Martin): Caches 63 

Data 

Set Tag 0 1 

00 0 A B 

01 0 C D 

10 0 E F 

11 0 G H 

1 bit tag (1 bit) index (2 bits) 
Main memory 

Load: 1110  Miss 

4-bit Address, 8B Cache, 2B Blocks 
0000 A 

0001 B 

0010 C 

0011 D 

0100 E 

0101 F 

0110 G 

0111 H 

1000 I 

1001 J 

1010 K 

1011 L 

1100 M 

1101 N 

1110 P 

1111 Q 
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Data 

Set Tag 0 1 

00 0 A B 

01 0 C D 

10 0 E F 

11 1 P Q 

1 bit tag (1 bit) index (2 bits) 
Main memory 

Load: 1110  Miss 



Larger Block Size 

2-byte to 4-byte blocks 
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4-bit Address, 8B Cache, 4B Blocks 
0000 A 

0001 B 

0010 C 

0011 D 

0100 E 

0101 F 

0110 G 

0111 H 

1000 I 

1001 J 

1010 K 

1011 L 

1100 M 

1101 N 

1110 P 

1111 Q 
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Data 

Set Tag 00 01 10 11 

0 0 A B C D 

1 0 E F G H 

2 bit tag (1 bit) index (1 bits) 
Main memory 

Load: 1110  Miss 

4-bit Address, 8B Cache, 4B Blocks 
0000 A 

0001 B 

0010 C 

0011 D 

0100 E 

0101 F 

0110 G 

0111 H 

1000 I 

1001 J 

1010 K 

1011 L 

1100 M 

1101 N 

1110 P 

1111 Q 
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Data 

Set Tag 00 01 10 11 

0 0 A B C D 

1 1 M N P Q 

2 bit tag (1 bit) index (1 bits) 
Main memory 

Load: 1110  Miss 



Set Associative Cache  

•! Direct mapped cache to 2-way set associative cache 
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4-bit Address, 8B Cache, 2B Blocks, 2-way 
0000 A 

0001 B 

0010 C 

0011 D 

0100 E 

0101 F 

0110 G 

0111 H 

1000 I 

1001 J 

1010 K 

1011 L 

1100 M 

1101 N 

1110 P 

1111 Q 

CIS371 (Roth/Martin): Caches 70 

Way 0 LRU Way 1 

Data Data 

Set Tag 0 1 Tag 0 1 

0 

1 

1 bit tag (2 bit) index (1 bits) 
Main memory 

4-bit Address, 8B Cache, 2B Blocks, 2-way 
0000 A 

0001 B 

0010 C 

0011 D 

0100 E 

0101 F 

0110 G 

0111 H 

1000 I 

1001 J 

1010 K 

1011 L 

1100 M 

1101 N 

1110 P 

1111 Q 
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Way 0 LRU Way 1 

Data Data 

Set Tag 0 1 Tag 0 1 

0 00 A B 0 01 E F 

1 00 C D 1 01 G H 

1 bit tag (2 bit) index (1 bits) 
Main memory 

Load: 1110  Miss 

4-bit Address, 8B Cache, 2B Blocks, 2-way 
0000 A 

0001 B 

0010 C 

0011 D 

0100 E 

0101 F 

0110 G 

0111 H 

1000 I 

1001 J 

1010 K 

1011 L 

1100 M 

1101 N 

1110 P 

1111 Q 
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Way 0 LRU Way 1 

Data Data 

Set Tag 0 1 Tag 0 1 

0 00 A B 0 01 E F 

1 00 C D 0 11 P Q 

1 bit tag (2 bit) index (1 bits) 
Main memory 

Load: 1110  Miss 

LRU updated on each access 
(not just misses) 
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Write Issues 

•! So far we have looked at reading from cache 

•! Instruction fetches, loads 

•! What about writing into cache 
•! Stores, not an issue for instruction caches (why they are simpler) 

•! Several new issues 
•! Tag/data access 

•! Write-through vs. write-back 

•! Write-allocate vs. write-not-allocate 

•! Hiding write miss latency 
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Tag/Data Access 

•! Reads: read tag and data in parallel 

•! Tag mis-match " data is garbage (OK, stall until good data arrives) 

•! Writes: read tag, write data in parallel? 

•! Tag mis-match " clobbered data (oops) 

•! For associative caches, which way was written into? 

•! Writes are a pipelined two step (multi-cycle) process 
•! Step 1: match tag 

•! Step 2: write to matching way 

•! Bypass (with address check) to avoid load stalls 

•! May introduce structural hazards 
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Write Propagation 

•! When to propagate new value to (lower level) memory? 

•! Option #1: Write-through: immediately 
•! On hit, update cache 

•! Immediately send the write to the next level 

•! Option #2: Write-back: when block is replaced 
•! Requires additional “dirty” bit per block 

•!Replace clean block: no extra traffic 

•!Replace dirty block: extra “writeback” of block 

+!Writeback-buffer: keep it off critical path of miss 

•! Step#1: Send “fill” request to next-level 

•! Step#2: While waiting, write dirty block to buffer 

•! Step#3: When new blocks arrives, put it into cache 

•! Step#4: Write buffer contents to next-level 

2 
1 

4 

$ 

Next-level-$ 

WBB 

3 
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Write Propagation Comparison 

•! Write-through 
–! Requires additional bus bandwidth 

•!Consider repeated write hits 

–! Next level must handle small writes (1, 2, 4, 8-bytes) 

+!No need for valid bits in cache 

+!No need to handle “writeback” operations 

•! Simplifies miss handling (no WBB) 

•! Sometimes used for L1 caches (for example, by IBM) 

•! Write-back 
+!Key advantage: uses less bandwidth 

•! Reverse of other pros/cons above 

•! Used by Intel and AMD 

•! Second-level and beyond are generally write-back caches 
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Write Miss Handling 

•! How is a write miss actually handled? 

•! Write-allocate: fill block from next level, then write into it 
+!Decreases read misses (next read to block will hit)  

–! Requires additional bandwidth 

•! Commonly used (especially with write-back caches) 

•! Write-non-allocate: just write to next level, no allocate 

–! Potentially more read misses 

+!Uses less bandwidth 

•! Use with write-through 
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Write Misses and Write Buffers 

•! Read miss? 
•! Load can’t go on without the data, it must stall 

•! Write miss? 
•! Technically, no instruction is waiting for data, why stall? 

•! Write buffer: a small buffer 
•! Stores put address/value to write buffer, keep going 

•! Write buffer writes stores to D$ in the background 

•! Loads must search write buffer (in addition to D$) 

+!Eliminates stalls on write misses (mostly) 
–! Creates some problems (later) 

•! Write buffer vs. writeback-buffer 
•! Write buffer: “in front” of D$, for hiding store misses 

•! Writeback buffer: “behind” D$, for hiding writebacks 

Cache 

Next-level 
cache 

WBB 

WB 

Processor 

Write Buffer Examples 

•! Example #1: 

•! Store “1” into address A 

•!Miss in cache, put in store buffer (initiate miss) 

•! Load from address B 

•!Hit in cache, read value from cache 

•! Wait for miss to fill, write a “1” to A when done  

•! Example #2: 
•! Store “1” into address A 

•!Miss, put in store buffer (initiate miss) 

•! Load from address A 

•!Miss in cache, but do we stall?  Don’t need to stall 

•! Just bypass load value from the store buffer 
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Write Buffer Examples 

•! Example #3: 

•! Store byte value “1” into address A 

•!Miss in cache, put in store buffer (initiate miss) 

•! Load word from address A, A+1, A+2, A+3 

•!Hit in cache, read value from where? 

•!Read both cache and store buffer (byte-by-byte merge) 

•! Store buffer holds address, data, and per-byte valid bits 

•! Example #4: 

•! Store byte value “1” into address A (initiate miss) 

•! Store byte value “2” into address B (initiate miss) 

•! Store byte value “3” into Address A (???) 

•!Can the first and last store share the same entry? 

•! What if “B” fills first?  

•!Can the second store leave before the first store? 
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Memory Performance Equation 

•! For memory component M 
•! Access: read or write to M 

•! Hit: desired data found in M 

•! Miss: desired data not found in M 

•!Must get from another (slower) component 

•! Fill: action of placing data in M 

•! %miss (miss-rate): #misses / #accesses 

•! thit: time to read data from (write data to) M 

•! tmiss: time to read data into M 

•! Performance metric 
•! tavg: average access time 

tavg = thit + %miss * tmiss 

CPU 

M 

thit 

tmiss 

%miss 
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Hierarchy Performance 

tavg  

tavg-M1 

thit-M1 + (%miss-M1*tmiss-M1) 

thit-M1 + (%miss-M1*tavg-M2) 

thit-M1 + (%miss-M1*(thit-M2 + (%miss-M2*tmiss-

M2))) 

thit-M1 + (%miss-M1* (thit-M2 + (%miss-M2*tavg-

M3))) 

… 

tmiss-M3 = tavg-M4 

CPU 

M1 

M2 

M3 

M4 

tmiss-M2 = tavg-M3 

tmiss-M1 = tavg-M2 

tavg = tavg-M1 
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Local vs Global Miss Rates 

•! Local hit/miss rate: 

•! Percent of references to cache hit (e.g, 90%) 

•! Local miss rate is (100% - local hit rate), (e.g., 10%) 

•! Global hit/miss rate: 

•! Misses per instruction (1 miss per 30 instructions) 

•! Instructions per miss (3% of instructions miss) 

•! Above assumes loads/stores are 1 in 3 instructions 

•! Consider second-level cache hit rate 

•! L1: 2 misses per 100 instructions 

•! L2: 1 miss per 100 instructions  

•! L2 “local miss rate” -> 50% 
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Performance Calculation I 

•! In a pipelined processor, I$/D$ thit is “built in” (effectively 0) 

•! Parameters 

•! Base pipeline CPI = 1 

•! Instruction mix: 30% loads/stores 

•! I$: %miss = 2%, tmiss = 10 cycles 

•! D$: %miss = 10%, tmiss = 10 cycles 

•! What is new CPI? 
•! CPII$ = %missI$*tmiss = 0.02*10 cycles = 0.2 cycle 

•! CPID$ = %memory*%missD$*tmissD$ = 0.30*0.10*10 cycles = 0.3 cycle 

•! CPInew = CPI + CPII$ + CPID$ = 1+0.2+0.3= 1.5 
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Performance Calculation II 

•! Parameters 

•! Reference stream: all loads 

•! D$: thit = 1ns, %miss = 5% 

•! L2: thit = 10ns, %miss = 20% 

•! Main memory: thit = 50ns 

•! What is tavgD$ without an L2? 

•! tmissD$ = thitM 

•! tavgD$ = thitD$ + %missD$*thitM = 1ns+(0.05*50ns) = 3.5ns 

•! What is tavgD$ with an L2? 

•! tmissD$ = tavgL2 

•! tavgL2 = thitL2+%missL2*thitM = 10ns+(0.2*50ns) = 20ns 

•! tavgD$ = thitD$ + %missD$*tavgL2 = 1ns+(0.05*20ns) = 2ns 
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Performance Calculation III 

•! Memory system parameters 
•! D$: thit = 1ns, %miss = 10%, 50% dirty, writeback-buffer, write-buffer 

•! Main memory: thit = 50ns 

•! 32-byte block size 

•! Reference stream: 20% stores, 80% loads 

•! What is tavgD$? 
•! Write-buffer " hides store misses latency 

•! Writeback-buffer " hides dirty writeback latency 

•! tmissD$ = thitM 

•! tavgD$ = thitD$ + %loads * %missD$*thitM = 1ns+(0.8*0.10*50ns) = 5ns 
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Bandwidth Calculation 

•! Memory system parameters 
•! D$: thit = 1ns, %miss = 10%, 50% dirty, writeback-buffer, write-buffer 

•! Main memory: thit = 50ns 

•! 32-byte block size 

•! Reference stream: 20% stores, 80% loads 

•! What is the average bytes transferred per miss? 
•! All misses: 32-byte blocks 

•! Dirty evictions: 50% of the time * 32-byte block 

•! 48B per miss 

•! Average bytes transfer per memory operation? 
•! 10% of memory operations miss, so 4.8B per memory operation 
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Designing a Cache Hierarchy 

•! For any memory component: thit vs. %miss tradeoff 

•! Upper components (I$, D$) emphasize low thit 

•! Frequent access " thit important 

•! tmiss is not bad " %miss less important 

•! Low capacity/associativity (to reduce thit)  

•! Small-medium block-size (to reduce conflicts) 

•! Moving down (L2, L3) emphasis turns to %miss 
•! Infrequent access " thit less important 

•! tmiss is bad " %miss important 

•! High capacity/associativity/block size (to reduce %miss) 
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Memory Hierarchy Parameters  

•! Some other design parameters 
•! Split vs. unified insns/data 

•! Inclusion vs. exclusion vs. nothing 

•! On-chip, off-chip, or partially on-chip? 

•! SRAM or embedded DRAM? 

Parameter I$/D$ L2 L3 Main Memory 

thit 2ns 10ns 30ns 100ns 

tmiss 10ns 30ns 100ns 10ms (10M ns) 

Capacity 8KB–64KB 256KB–8MB 2–16MB 1-4GBs 

Block size 16B–32B 32B–128B 32B-256B NA 

Associativity 1–4 4–16 4-16 NA 
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Split vs. Unified Caches 

•! Split I$/D$: insns and data in different caches 

•! To minimize structural hazards and thit 

•! Larger unified I$/D$ would be slow, 2nd port even slower 

•! Optimize I$ for wide output (superscalar), no writes 

•! Why is 486 I/D$ unified? 

•! Unified L2, L3: insns and data together 
•! To minimize %miss 

+!Fewer capacity misses: unused insn capacity can be used for data 

–! More conflict misses: insn/data conflicts 

•!A much smaller effect in large caches 

•! Insn/data structural hazards are rare: simultaneous I$/D$ miss 

•! Go even further: unify L2, L3 of multiple cores in a multi-core 
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Hierarchy: Inclusion versus Exclusion 

•! Inclusion 

•! A block in the L1 is always in the L2 

•! Good for write-through L1s (why?) 

•! Exclusion 

•! Block is either in L1 or L2 (never both) 

•! Good if L2 is small relative to L1  

•!Example: AMD’s Duron 64KB L1s, 64KB L2 

•! Non-inclusion 
•! No guarantees 
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Summary 
•! Average access time of a memory component 

•! latencyavg = latencyhit + %miss * latencymiss 

•! Hard to get low latencyhit and %miss in one structure " hierarchy 

•! Memory hierarchy 
•! Cache (SRAM) " memory (DRAM) " swap (Disk) 

•! Smaller, faster, more expensive " bigger, slower, cheaper 

•! Cache ABCs (capacity, associativity, block size) 
•! 3C miss model: compulsory, capacity, conflict 

•! Performance optimizations 
•! %miss: victim buffer, prefetching 

•! latencymiss: critical-word-first/early-restart, lockup-free design 

•! Write issues 
•! Write-back vs. write-through/write-allocate vs. write-no-allocate 


