
CIS 371 (Roth/Martin): Superscalar Pipelines 1

CIS 371
Computer Organization and Design

Unit 7: Superscalar Pipelines

CIS 371 (Roth/Martin): Superscalar Pipelines 2

This Unit: (In-Order) Superscalar Pipelines

• Superscalar hardware issues

• Bypassing and register file

• Stall logic

• Fetch and branch prediction

• Multiple-issue designs

• “Superscalar”

• VLIW

CPUMem I/O

System software

AppApp App

CIS 371 (Roth/Martin): Superscalar Pipelines 3

Readings

• P+H

• Chapter 6.9

CIS 371 (Roth/Martin): Superscalar Pipelines 4

Scalar Pipelines

• So far we have looked at scalar pipelines

• One instruction per stage

• With control speculation

• With bypassing (not shown)

• With floating-point …

PC IM
intRF

DM

4

BP <>

CIS 371 (Roth/Martin): Superscalar Pipelines 5

Floating Point Pipelines

• Floating point (FP) insns typically use separate pipeline

• Splits at decode stage: at fetch you don’t know it’s a FP insn

• Most (all?) FP insns are multi-cycle (here: 3-cycle FP adder)

• Separate FP register file

• FP loads and stores execute on integer pipeline (address is integer)

PC IM
intRF

DM

4

BP <>

fpRF

CIS 371 (Roth/Martin): Superscalar Pipelines 6

The “Flynn Bottleneck”

– Performance limit of scalar pipeline is CPI = IPC = 1
– Hazards ! limit is not even achieved

– Hazards + latch overhead ! diminishing returns on “super-pipelining”

PC IM
intRF

DM

4

BP <>

fpRF

CIS 371 (Roth/Martin): Superscalar Pipelines 7

The “Flynn Bottleneck”

• Overcome IPC limit with super-scalar pipeline
• Two insns per stage, or three, or four, or six, or eight…

• Also called multiple issue

• Exploit “Instruction-Level Parallelism (ILP)”

PC IM
intRF

DM

8

BP <>

fpRF

CIS 371 (Roth/Martin): Superscalar Pipelines 8

Superscalar Pipeline Diagrams - Ideal

WMXDFlw 0(r18)!r9

1211

X
M
W

8

M
W

9

W

10

F
D
X
M
W

6

D
X
M
W

7

add r17,r16!r8

F
D
X
M
W

5

F
D
X
M

4

add r12,r13!r7

add r14,r15!r6

Flw 8(r1)!r4

DFlw 4(r1)!r3

XDFlw 0(r1)!r2

321scalar

WMXDFlw 0(r18)!r9

12118 9 10

M
M
W
W

6

W
W

7

XDFadd r17,r16!r8

X
M
M
W
W

5

D
X
X
M
M

4

Fadd r12,r13!r7

DFadd r14,r15!r6

DFlw 8(r1)!r4

XDFlw 4(r1)!r3

XDFlw 0(r1)!r2

3212-way superscalar

CIS 371 (Roth/Martin): Superscalar Pipelines 9

Superscalar Pipeline Diagrams - Realistic

WMXDFlw 0(r8)!r9

12

W

11

D
X
M

8

X
M
W

9

M
W

10

F
D
M
W

6

F
D
X
W

7

add r7,r6!r8

d*
X
M
W

5

F
D
X
M

4

add r2,r3!r7

add r4,r5!r6

Flw 8(r1)!r4

DFlw 4(r1)!r3

XDFlw 0(r1)!r2

321scalar

WMXDd*Flw 0(r8)!r9

1211

M
W
W

8

W

9 10

D
X
X
W

6

X
M
M

7

Fadd r7,r6!r8

D
D
M
W
W

5

d*
d*
X
M
M

4

Fadd r2,r3!r7

d*Fadd r4,r5!r6

DFlw 8(r1)!r4

XDFlw 4(r1)!r3

XDFlw 0(r1)!r2

3212-way superscalar

CIS 371 (Roth/Martin): Superscalar Pipelines 10

Superscalar CPI Calculations

• Base CPI for scalar pipeline is 1

• Base CPI for N-way superscalar pipeline is 1/N
– Amplifies stall penalties

• Assumes no data stalls (an overly optmistic assumption)

• Example: Branch penalty calculation
• 20% branches, 75% taken, no explicit branch prediction

• Scalar pipeline
• 1 + 0.2*0.75*2 = 1.3 ! 1.3/1 = 1.3 ! 30% slowdown

• 2-way superscalar pipeline
• 0.5 + 0.2*0.75*2 = 0.8 ! 0.8/0.5 = 1.6 ! 60% slowdown

• 4-way superscalar
• 0.25 + 0.2*0.75*2 = 0.55 ! 0.55/0.25 = 2.2 ! 120% slowdown

CIS 371 (Roth/Martin): Superscalar Pipelines 11

How Much ILP is There?

• The compiler tries to “schedule” code to avoid stalls

• Even for scalar machines (to fill load-use delay slot)

• Even harder to schedule multiple-issue (superscalar)

• How much ILP is common?

• Greatly depends on the application

• Consider memory copy

• Unroll loop, lots of independent operations

• Other programs, less so

• Even given unbounded ILP, superscalar has limits

• IPC (or CPI) vs clock frequency trade-off

CIS 371 (Roth/Martin): Superscalar Pipelines 12

Challenges for Superscalar Pipelines

• So you want to build an N-way superscalar…

• Hardware challenges
• Stall logic: N2 terms

• Bypasses: 2N2 paths

• Register file: 3N ports

• IMem/DMem: how many ports?

• Anything else?

• Software challenges
• Does program inherently have ILP of N?

• Even if it does, compiler must schedule code to expose it

• Given these challenges, what is a reasonable N?
• Current answer is 3 or 4

CIS 371 (Roth/Martin): Superscalar Pipelines 13

Superscalar “Execution”

• N-way superscalar = N of every kind of functional unit?

• N ALUs? OK, ALUs are small and integer insns are common

• N FP dividers? No, FP dividers are huge and fdiv is uncommon

• How many loads/stores per cycle? How many branches?

PC IM
intRF

DM

8

BP <>

fpRF

CIS 371 (Roth/Martin): Superscalar Pipelines 14

Superscalar Execution

• Common design: functional unit mix " insn type mix

• Integer apps: 20–30% loads, 10–15% stores, 15–20% branches

• FP apps: 30% FP, 20% loads, 10% stores, 5% branches

• Rest 40–50% are non-branch integer ALU operations

• Intel Pentium (2-way superscalar): 1 any + 1 integer ALU

• Alpha 21164: 2 integer (including 2 loads or 1 store) + 2 FP

• Execution units

• Simple ALUs are cheap (have N of these for N-wide processor)

• Complex ALUs are less cheap (have fewer of these)

• Data memory bandwidth expensive

• Multi-port, replicate, or bank (more later)

CIS 371 (Roth/Martin): Superscalar Pipelines 15

Superscalar Register File

• Except DMem, execution units are easy

• Getting values to/from them is the problem

• N-way superscalar register file: 2N read + N write ports

• < N write ports: stores, branches (35% insns) don’t write registers

• < 2N read ports: many inputs come from immediates/bypasses

– Latency and area " #ports2 " (3N)2 (slow for large N)

intRF

DM

CIS 371 (Roth/Martin): Superscalar Pipelines 16

Superscalar Bypass

• Consider WX bypass for 1st input of each insn

– 2 non-regfile inputs to bypass mux: in general N

– 4 point-to-point connections: in general N2

– Bypass wires long (slow) and are difficult to route

• And this is just one bypass stage and one input per insn!

• N2 bypass

intRF

DM

CIS 371 (Roth/Martin): Superscalar Pipelines 17

Superscalar Stall Logic

• Full bypassing ! load/use stalls only
• Ignore 2nd register input

• Stall logic for scalar pipeline
(X/M.op==LOAD && D/X.rs1==X/M.rd)

• Stall logic for a 2-way superscalar pipeline
• Stall logic for older insn in pair: also stalls younger insn in pair

(X/M1.op==LOAD && D/X1.rs1==X/M1.rd) ||

(X/M2.op==LOAD && D/X1.rs1==X/M2.rd)

• Stall logic for younger insn in pair: doesn’t stall older insn

(X/M1.op==LOAD && D/X2.rs1==X/M1.rd) ||

(X/M2.op==LOAD && D/X2.rs1==X/M2.rd) ||

(D/X2.rs1==D/X1.rd)

• 5 terms for 2 insns: N2 dependence cross-check
• Actually N2+N–1

CIS 371 (Roth/Martin): Superscalar Pipelines 18

Superscalar Pipeline Stalls

• If older insn in pair stalls, younger insns must stall too

• What if younger insn stalls?

• Can older insn from next group move up?

• Fluid: yes

± Helps CPI a little, hurts clock a little

• Rigid: no

± Hurts CPI a little, but doesn’t impact clock

F
D
D
X
W

5

F
F
D
M

4

lw 4(r1),r8

sw r3,0(r1)

sub r5,r2,r3

d*d*Faddi r4,1,r4

XDFlw 0(r1),r4

321Rigid

D
D
X
X
W

5

F
F
D
D
M

4

lw 4(r1),r8

sw r3,0(r1)

p*Fsub r5,r2,r3

d*d*Faddi r4,1,r4

XDFlw 0(r1),r4

321Fluid

CIS 371 (Roth/Martin): Superscalar Pipelines 19

Not All N2 Problems Created Equal

• N2 bypass vs. N2 dependence cross-check

• Which is the bigger problem?

• N2 bypass … by a lot

• 32- or 64- bit quantities (vs. 5-bit)

• Multiple levels (MX, WX) of bypass (vs. 1 level of stall logic)

• Must fit in one clock period with ALU (vs. not)

• Dependence cross-check not even 2nd biggest N2 problem

• Regfile is also an N2 problem (think latency where N is #ports)

• And also more serious than cross-check

CIS 371 (Roth/Martin): Superscalar Pipelines 20

Avoid N2 Bypass/RegFile: Clustering

• Clustering: group ALUs into K clusters
• Full bypassing within cluster, limited (or no) bypassing between them

• Get values from regfile with 1 or 2 cycle delay

+ N/K non-regfile inputs at each mux, N2/K point-to-point paths

• Key to performance: steer dependent insns to same cluster

• Hurts IPC, but helps clock frequency (or wider issue at same clock)

• Typically used with replicated regfile: replica per cluster

• Alpha 21264: 4-way superscalar, 2 clusters, static steering

DM

intRF0

intRF1

cluster 0

cluster 1

CIS 371 (Roth/Martin): Superscalar Pipelines 21

Superscalar Fetch/Decode

• What is involved in fetching N insns per cycle?
• Mostly wider instruction memory data bus

• Most tricky aspects involve branch prediction

• What about Decode?
• Easier with fixed-width instructions (MIPS, Alpha, PowerPC, ARM)

• Harder with variable-length instructions (x86)

• Can be pipelined

PC

BP <>

IM

8

CIS 371 (Roth/Martin): Superscalar Pipelines 22

Superscalar Fetch with Branches

• Three related questions
• How many branches are predicted per cycle?

• If multiple insns fetched, which is assumed to be the branch?

• Can we fetch across the branch if it is predicted “taken”?

• Simplest, common design: “one”, “doesn’t matter”, “no”
• One prediction, discard post-branch insns if prediction is “taken”

• Doesn’t matter: associate prediction with non-branch to same effect

– Lowers effective fetch bandwidth width and IPC

• Average number of insns per taken branch? ~8–10 in integer code

• Compiler can help
• Reduce taken branch frequency: e.g., unroll loops

CIS 371 (Roth/Martin): Superscalar Pipelines 23

Pipelined Branch Prediction / Fetch

• To fetch across a taken branch…

• Must fetch from two separate IMem addresses in same cycle

• Split IMem into even/odd “banks” to provide bandwidth for this

• Pipeline branch prediction and fetch: branch prediction first

• Branch prediction sends two PCs to fetch: PC & target PC (if any)

– Elongates pipeline, increases branch penalty

• Pentium II & III do something like this

PC

BP <>

8

IM

CIS 371 (Roth/Martin): Superscalar Pipelines 24

Aside: VLIW

• VLIW: Very Long Insn Word

• Effectively, a 1-wide pipeline, but unit is an N-insn group

• Group travels down pipeline as a unit

• Compiler guarantees insns within a VLIW group are independent

• If no independent insns, slots filled with nops

• Typically “slotted”: 1st insn must be ALU, 2nd mem, etc.

• E.g., Itanium (two 3-wide bundles per cycle = 6-way issue)

+ Simplifies fetch and branch prediction

+ Simplifies pipeline control (no rigid vs. fluid business)

– Doesn’t help bypasses or regfile, which are bigger problems

• Can expose these issues to software, too (yuck)

– Not really compatible across machines of different widths

• How does Itanium deal with non-compatibility? Transmeta?

CIS 371 (Roth/Martin): Superscalar Pipelines 25

Predication

• Branch mis-predictions hurt more on superscalar
• Replace difficult branches with something else…

• Convert control flow into data flow (& dependencies)

• Predication
• Conditionally executed insns unconditionally fetched

• Full predication (ARM, Intel Itanium)

• Can tag every insn with predicate, but extra bits in instruction

• Conditional moves (Alpha, x86)

• Construct appearance of full predication from one primitive

cmoveq r1,r2,r3 // if (r1==0) r3=r2;

– May require some code duplication to achieve desired effect

+ Only good way of adding predication to an existing ISA

• If-conversion: replacing control with predication

