
CIS371 (Roth/Martin): Pipelining 1

CIS 371
Computer Organization and Design

Unit 6: Pipelining

CIS371 (Roth/Martin): Pipelining 2

This Unit: (Scalar In-Order) Pipelining

• Basic Pipelining

• Pipeline control

• Data Hazards

• Software interlocks and scheduling

• Hardware interlocks and stalling

• Bypassing

• Control Hazards

• Branch prediction

• Multi-cycle operations

• Exceptions

CPUMem I/O

System software

AppApp App

CIS371 (Roth/Martin): Pipelining 3

Readings

• P+H

• Chapter 6 (6.1 - 6.8)

CIS371 (Roth/Martin): Pipelining 4

Single-Cycle Datapath Performance

• Goes against make common case fast (MCCF) principle
+ Low CPI: 1

– Long clock period: to accommodate slowest instruction

P

C

Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

CIS371 (Roth/Martin): Pipelining 5

Alternative: Multi-Cycle Datapath

• Multi-cycle datapath: attacks high clock period

• Cut datapath into multiple stages (5 here), isolate using FFs

• FSM control “walks” insns thru stages (by staging control signals)

+ Insns can bypass stages and exit early (memory ops vs alu ops)

P

C

Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

I

R DO

B

A

s3

s3

s3 s4

s5

s5s5

CIS371 (Roth/Martin): Pipelining 6

Multi-Cycle Datapath Performance

• Opposite performance split of single-cycle datapath

+ Short clock period

– High CPI

P

C

Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

I

R DO

B

A

CIS371 (Roth/Martin): Pipelining 7

Clock Period and CPI

• Single-cycle datapath
+ Low CPI: 1

– Long clock period: to accommodate slowest insn

• Multi-cycle datapath
+ Short clock period

– High CPI

• Can we have both low CPI and short clock period?
– No good way to make a single insn go faster

+ Insn latency doesn’t matter anyway … insn throughput matters

• Key: exploit inter-insn parallelism

insn0.fetch, dec, exec

insn1.fetch, dec, exec

insn0.decinsn0.fetch

insn1.decinsn1.fetch

insn0.exec

insn1.exec

CIS371 (Roth/Martin): Pipelining 8

Pipelining

• Pipelining: important performance technique

• Improves insn throughput rather than insn latency

• Exploits parallelism at insn-stage level to do so

• Begin with multi-cycle design

• When insn advances from stage 1 to 2, next insn enters stage 1

• Individual insns take same number of stages

+ But insns enter and leave at a much faster rate

• Breaks “fetch/execute” Von Neumann (VN) loop ... but maintains illusion

• Automotive assembly line analogy

insn0.decinsn0.fetch

insn1.decinsn1.fetch

insn0.exec

insn1.exec

insn0.decinsn0.fetch

insn1.decinsn1.fetch

insn0.exec

insn1.exec

CIS371 (Roth/Martin): Pipelining 9

5 Stage Multi-Cycle Datapath

P

C

Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

I

R DO

B

A

CIS371 (Roth/Martin): Pipelining 10

5 Stage Pipelined Datapath

• Temporary values (PC,IR,A,B,O,D) re-latched every stage

• Why? 5 insns may be in pipeline at once, they share a single PC?

• Notice, PC not latched after ALU stage (why not?)

PC
Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

CIS371 (Roth/Martin): Pipelining 11

Pipeline Terminology

• Stages: Fetch, Decode, eXecute, Memory, Writeback

• Latches (pipeline registers): PC, F/D, D/X, X/M, M/W

PC
Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

CIS371 (Roth/Martin): Pipelining 12

Some More Terminology

• Scalar pipeline: one insn per stage per cycle

• Alternative: “superscalar” (later)

• In-order pipeline: insns enter execute stage in VN order

• Alternative: “out-of-order” (maybe later)

• Pipeline depth: number of pipeline stages

• Nothing magical about five

• Trend has been to deeper pipelines

CIS371 (Roth/Martin): Pipelining 13

Pipeline Example: Cycle 1

• 3 instructions

PC
Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

add $3,$2,$1

CIS371 (Roth/Martin): Pipelining 14

Pipeline Example: Cycle 2

PC
Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

lw $4,0($5) add $3,$2,$1

CIS371 (Roth/Martin): Pipelining 15

Pipeline Example: Cycle 3

PC
Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

sw $6,4($7) lw $4,0($5) add $3,$2,$1

CIS371 (Roth/Martin): Pipelining 16

Pipeline Example: Cycle 4

• 3 instructions

PC
Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

sw $6,4($7) lw $4,0($5) add $3,$2,$1

CIS371 (Roth/Martin): Pipelining 17

Pipeline Example: Cycle 5

PC
Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

sw $6,4($7) lw $4,0($5) add

CIS371 (Roth/Martin): Pipelining 18

Pipeline Example: Cycle 6

PC
Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

sw $6,4(7) lw

CIS371 (Roth/Martin): Pipelining 19

Pipeline Example: Cycle 7

PC
Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

sw

CIS371 (Roth/Martin): Pipelining 20

Pipeline Diagram

• Pipeline diagram: shorthand for what we just saw

• Across: cycles

• Down: insns

• Convention: X means lw $4,0($5) finishes execute stage and

writes into X/M latch at end of cycle 4

WMXDFsw $6,4($7)

WMXDFlw $4,0($5)

WMXDFadd $3,$2,$1

987654321

CIS371 (Roth/Martin): Pipelining 21

What About Pipelined Control?

• Should it be like single-cycle control?

• But individual insn signals must be staged

• Should it be like multi-cycle control?

• But all stages are simultaneously active

• How many different controllers are we going to need?

• One for each insn in pipeline?

• Solution: use simple single-cycle control, but pipeline it

• Single controller

CIS371 (Roth/Martin): Pipelining 22

Pipelined Control

PC
Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

CTRL

xC

mC

wC

mC

wC

wC

CIS371 (Roth/Martin): Pipelining 23

Example Pipeline Perf. Calculation

• Single-cycle
• Clock period = 50ns, CPI = 1

• Performance = 50ns/insn

• Multi-cycle
• Branch: 20% (3 cycles), load: 20% (5 cycles), ALU: 60% (4 cycles)

• Clock period = 11ns, CPI = (0.2*3+0.2*5+0.6*4) = 4

• Why is clock period 11ns and not 10ns?

• Performance = 44ns/insn

• Pipelined
• Clock period = 12ns

• CPI = 1.5 (on average insn completes every 1.5 cycles)

• Performance = 18ns/insn

CIS371 (Roth/Martin): Pipelining 24

Q1: Why Is Pipeline Clock Period …

• … > delay thru datapath / number of pipeline stages?

• Latches (FFs) add delay

• Pipeline stages have different delays, clock period is max delay

• Both factors have implications for ideal number pipeline stages

CIS371 (Roth/Martin): Pipelining 25

Q2: Why Is Pipeline CPI…

• … > 1?
• CPI for scalar in-order pipeline is 1 + stall penalties

• Stalls used to resolve hazards

• Hazard: condition that jeopardizes VN illusion

• Stall: artificial pipeline delay introduced to restore VN illusion

• Calculating pipeline CPI
• Frequency of stall * stall cycles

• Penalties add (stalls generally don’t overlap in in-order pipelines)

• 1 + stall-freq1*stall-cyc1 + stall-freq2*stall-cyc2 + …

• Correctness/performance/MCCF
• Long penalties OK if they happen rarely, e.g., 1 + 0.01 * 10 = 1.1

• Stalls also have implications for ideal number of pipeline stages

CIS371 (Roth/Martin): Pipelining 26

Dependences and Hazards

• Dependence: relationship between two insns
• Data: two insns use same storage location

• Control: one insn affects whether another executes at all

• Not a bad thing, programs would be boring without them

• Enforced by making older insn go before younger one

• Happens naturally in single-/multi-cycle designs

• But not in a pipeline

• Hazard: dependence & possibility of wrong insn order
• Effects of wrong insn order cannot be externally visible

• Stall: for order by keeping younger insn in same stage

• Hazards are a bad thing: stalls reduce performance

CIS371 (Roth/Martin): Pipelining 27

Why Does Every Insn Take 5 Cycles?

• Could/should we allow add to skip M and go to W? No

– It wouldn’t help: peak fetch still only 1 insn per cycle

– Structural hazards: imagine add follows lw

PC
Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

add $3,$2,$1 lw $4,0($5)

CIS371 (Roth/Martin): Pipelining 28

Structural Hazards

• Structural hazards

• Two insns trying to use same circuit at same time

• E.g., structural hazard on regfile write port

• To fix structural hazards: proper ISA/pipeline design

• Each insn uses every structure exactly once

• For at most one cycle

• Always at same stage relative to F (fetch)

• Tolerate structure hazards

• Add stall logic to stall pipeline when hazards occur

CIS371 (Roth/Martin): Pipelining 29

Data Hazards

• Let’s forget about branches and the control for a while

• The three insn sequence we saw earlier executed fine…
• But it wasn’t a real program

• Real programs have data dependences

• They pass values via registers and memory

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($5)sw $6,0($7)

Data

Mem

a

d

O

D

IR

M/W

CIS371 (Roth/Martin): Pipelining 30

Dependent Operations

• Independent operations

add $3,$2,$1

add $6,$5,$4

• Would this program execute correctly on a pipeline?

add $3,$2,$1

add $6,$5,$3

• What about this program?

add $3,$2,$1

lw $4,0($3)

addi $6,1,$3

sw $3,0($7)

CIS371 (Roth/Martin): Pipelining 31

Data Hazards

• Would this “program” execute correctly on this pipeline?
• Which insns would execute with correct inputs?

• add is writing its result into $3 in current cycle

– lw read $3 2 cycles ago ! got wrong value

– addi read $3 1 cycle ago ! got wrong value

• sw is reading $3 this cycle ! OK (regfile timing: write first half)

add $3,$2,$1lw $4,0($3)sw $3,0($7) addi $6,1,$3

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data

Mem

a

d

O

D

IR

M/W

CIS371 (Roth/Martin): Pipelining 32

Memory Data Hazards

• What about data hazards through memory? No
• lw following sw to same address in next cycle, gets right value

• Why? DMem read/write take place in same stage

• Data hazards through registers? Yes (previous slide)
• Occur because register write is 3 stages after register read

• Can only read a register value 3 cycles after writing it

sw $5,0($1)lw $4,0($1)

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data

Mem

a

d

O

D

IR

M/W

CIS371 (Roth/Martin): Pipelining 33

Fixing Register Data Hazards

• Can only read register value 3 cycles after writing it

• Option #1: make sure programs don’t do it

• Compiler puts two independent insns between write/read insn pair

• If they aren’t there already

• Independent means: “do not interfere with register in question”

• Do not write it: otherwise meaning of program changes

• Do not read it: otherwise create new data hazard

• Code scheduling: compiler moves around existing insns to do this

• If none can be found, must use nops (no-operation)

• This is called software interlocks

• MIPS: Microprocessor w/out Interlocking Pipeline Stages

CIS371 (Roth/Martin): Pipelining 34

Software Interlock Example
add $3,$2,$1
nop
nop
lw $4,0($3)
sw $7,0($3)
add $6,$2,$8
addi $3,$5,4

• Can any of last three insns be scheduled between first two
• sw $7,0($3)? No, creates hazard with add $3,$2,$1

• add $6,$2,$8? OK

• addi $3,$5,4? No, lw would read $3 from it

• Still need one more insn, use nop
add $3,$2,$1
add $6,$2,$8
nop
lw $4,0($3)
sw $7,0($3)
addi $3,$5,4

CIS371 (Roth/Martin): Pipelining 35

Software Interlock Performance

• Same deal

• Branch: 20%, load: 20%, store: 10%, other: 50%

• Software interlocks
• 20% of insns require insertion of 1 nop

• 5% of insns require insertion of 2 nops

• CPI is still 1 technically

• But now there are more insns

• #insns = 1 + 0.20*1 + 0.05*2 = 1.3

– 30% more insns (30% slowdown) due to data hazards

CIS371 (Roth/Martin): Pipelining 36

Hardware Interlocks

• Problem with software interlocks? Not compatible

• Where does 3 in “read register 3 cycles after writing” come from?

• From structure (depth) of pipeline

• What if next MIPS version uses a 7 stage pipeline?

• Programs compiled assuming 5 stage pipeline will break

• A better (more compatible) way: hardware interlocks

• Processor detects data hazards and fixes them

• Two aspects to this

• Detecting hazards

• Fixing hazards

CIS371 (Roth/Martin): Pipelining 37

Detecting Data Hazards

• Compare F/D insn input register names with output
register names of older insns in pipeline
Hazard =

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||

(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

hazard

Data

Mem

a

d

O

D

IR

M/W

CIS371 (Roth/Martin): Pipelining 38

Fixing Data Hazards

• Prevent F/D insn from reading (advancing) this cycle
• Write nop into D/X.IR (effectively, insert nop in hardware)

• Also reset (clear) the datapath control signals

• Disable F/D latch and PC write enables (why?)

• Re-evaluate situation next cycle

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

hazard

nop

Data

Mem

a

d

O

D

IR

M/W

CIS371 (Roth/Martin): Pipelining 39

Aside: Insert NOP/Reset Register

• Earlier: registers support separate clock, write enable
• Useful for writes into register file

• Also useful for implementing stalls

• Registers can also support synchronous reset (clear)
• Useful for implementing stalls

• Implement as additional hardwired 0 input to FF data mux

• Resetting pipeline registers equivalent to inserting a NOP

• If NOP is all zeros

• If zero means “don’t write” for all write-enable control signals

• Design ISA/control signals to make sure this is the case

FF
D

Q

[RST:WE]

FF
D Q

WE

0

2

CIS371 (Roth/Martin): Pipelining 40

Hardware Interlock Example: cycle 1

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||

(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)

= 1

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($3)

hazard

nop

Data

Mem

a

d

O

D

IR

M/W

CIS371 (Roth/Martin): Pipelining 41

Hardware Interlock Example: cycle 2

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||

(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)

= 1

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($3)

hazard

nop

Data

Mem

a

d

O

D

IR

M/W

CIS371 (Roth/Martin): Pipelining 42

Hardware Interlock Example: cycle 3

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||

(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)

= 0

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($3)

hazard

nop

Data

Mem

a

d

O

D

IR

M/W

CIS371 (Roth/Martin): Pipelining 43

Pipeline Control Terminology

• Hardware interlock maneuver is called stall or bubble

• Mechanism is called stall logic

• Part of more general pipeline control mechanism

• Controls advancement of insns through pipeline

• Distinguish from pipelined datapath control

• Controls datapath at each stage

• Pipeline control controls advancement of datapath control

CIS371 (Roth/Martin): Pipelining 44

Pipeline Diagram with Data Hazards

• Data hazard stall indicated with d*

• Stall propagates to younger insns

• This is not good (why?)

WMXDFsw $6,4($7)

WMXDd*d*Flw $4,0($3)

WMXDFadd $3,$2,$1

987654321

WMXDFsw $6,4($7)

WMXDd*d*Flw $4,0($3)

WMXDFadd $3,$2,$1

987654321

CIS371 (Roth/Martin): Pipelining 45

Hardware Interlock Performance

• Same deal

• Branch: 20%, load: 20%, store: 10%, other: 50%

• Hardware interlocks: same as software interlocks
• 20% of insns require 1 cycle stall (I.e., insertion of 1 nop)

• 5% of insns require 2 cycle stall (I.e., insertion of 2 nops)

• CPI = 1 * 0.20*1 + 0.05*2 = 1.3

• So, either CPI stays at 1 and #insns increases 30% (software)

• Or, #insns stays at 1 (relative) and CPI increases 30% (hardware)

• Same difference

• Anyway, we can do better

CIS371 (Roth/Martin): Pipelining 46

Observe

• Technically, this situation is broken
• lw $4,0($3) has already read $3 from regfile

• add $3,$2,$1 hasn’t yet written $3 to regfile

• But fundamentally, everything is OK
• lw $4,0($3) hasn’t actually used $3 yet

• add $3,$2,$1 has already computed $3

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($3)

Data

Mem

a

d

O

D

IR

M/W

CIS371 (Roth/Martin): Pipelining 47

Bypassing

• Bypassing
• Reading a value from an intermediate (µarchitectural) source

• Not waiting until it is available from primary source

• Here, we are bypassing the register file

• Also called forwarding

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($3)

Data

Mem

a

d

O

D

IR

M/W

CIS371 (Roth/Martin): Pipelining 48

WX Bypassing

• What about this combination?
• Add another bypass path and MUX input

• First one was an MX bypass

• This one is a WX bypass

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($3)

Data

Mem

a

d

O

D

IR

M/W

CIS371 (Roth/Martin): Pipelining 49

ALUinB Bypassing

• Can also bypass to ALU input B

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1add $4,$2,$3

Data

Mem

a

d

O

D

IR

M/W

CIS371 (Roth/Martin): Pipelining 50

WM Bypassing?

• Does WM bypassing make sense?
• Not to the address input (why not?)

• But to the store data input, yes

Register

File

S

X

s1 s2 d
Data

Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

lw $3,0($2)sw $3,0($4)

CIS371 (Roth/Martin): Pipelining 51

Bypass Logic

• Each MUX has its own, here it is for MUX ALUinA
(D/X.IR.RS1 == X/M.IR.RD) => 0

(D/X.IR.RS1 == M/W.IR.RD) => 1

Else => 2

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data

Mem

a

d

O

D

IR

M/W

bypass

CIS371 (Roth/Martin): Pipelining 52

Bypass and Stall Logic

• Two separate things

• Stall logic controls pipeline registers

• Bypass logic controls MUXs

• But complementary

• For a given data hazard: if can’t bypass, must stall

• Slide #43 shows full bypassing: all bypasses possible

• Is stall logic still necessary?

CIS371 (Roth/Martin): Pipelining 53

Yes, Load Output to ALU Input

Stall = (D/X.IR.OP == LOAD) &&

 ((F/D.IR.RS1 == D/X.IR.RD) ||

 ((F/D.IR.RS2 == D/X.IR.RD) && (F/D.IR.OP != STORE))

Register

File

S

X

s1 s2 d
Data

Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

lw $3,4($2)

stall

nop

add $4,$2,$3

lw $3,4($2)add $4,$2,$3

CIS371 (Roth/Martin): Pipelining 54

Pipeline Diagram With Bypassing

• Use compiler scheduling to reduce load-use stall frequency

• Like software interlocks, but for performance not correctness

WMXDd*Faddi $6,$4,1

WMXDFlw $4,4($3)

WMXDFadd $3,$2,$1

987654321

WMXDFsub $8,$3,$1

WMXDFaddi $6,$4,1

WMXDFlw $4,4($3)

WMXDFadd $3,$2,$1

987654321

CIS371 (Roth/Martin): Pipelining 55

Pipelining and Multi-Cycle Operations

• What if you wanted to add a multi-cycle operation?
• E.g., 4-cycle multiply

• P/W: separate output latch connects to W stage

• Controlled by pipeline control and multiplier FSM

Register

File

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data

Mem

a

d

O

D

IR

P

IR

X

P/W

Xctrl

CIS371 (Roth/Martin): Pipelining 56

A Pipelined Multiplier

• Multiplier itself is often pipelined, what does this mean?
• Product/multiplicand register/ALUs/latches replicated

• Can start different multiply operations in consecutive cycles

Register

File

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data

Mem

a

d

O

D

IR

P

M

IR

P0/P1

P

M

IR

P1/P2

P

M

IR

P

M

IR

P2/P3 P3/W

CIS371 (Roth/Martin): Pipelining 57

What about Stall Logic?

Stall = (OldStallLogic) ||

 (F/D.IR.RS1 == P0/P1.IR.RD) || (F/D.IR.RS2 == P0/P1.IR.RD) ||

 (F/D.IR.RS1 == P1/P2.IR.RD) || (F/D.IR.RS2 == P1/P2.IR.RD) ||

 (F/D.IR.RS1 == P2/P3.IR.RD) || (F/D.IR.RS2 == P2/P3.IR.RD)

Register

File

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data

Mem

a

d

O

D

IR

P

M

IR

P0/P1

P

M

IR

P1/P2

P

M

IR

P

M

IR

P2/P3 P3/W

CIS371 (Roth/Martin): Pipelining 58

Actually, It’s Somewhat Nastier

• What does this do?
Stall = (OldStallLogic) ||

 (F/D.IR.RD != -1 &&

 F/D.IR.OP != MULT && P0/P1.IR.RD != -1)

Register

File

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data

Mem

a

d

O

D

IR

P

M

IR

P0/P1

P

M

IR

P1/P2

P

M

IR

P

M

IR

P2/P3 P3/W

CIS371 (Roth/Martin): Pipelining 59

Actually, We’re Not Done

• And what about this?
Stall = (OldStallLogic) ||

 (F/D.IR.RD == D/X.IR.RD && D/X.IR.OP == MULT)

Register

File

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data

Mem

a

d

O

D

IR

P

M

IR

P0/P1

P

M

IR

P1/P2

P

M

IR

P

M

IR

P2/P3 P3/W

CIS371 (Roth/Martin): Pipelining 60

Pipeline Diagram with Multiplier

• This is the situation that slide #58 logic tries to avoid

• Two instructions trying to write regfile in same cycle

WMXDd*d*d*Faddi $6,$4,1

WP3P2P1P0DFmul $4,$3,$5

987654321

WMXDFadd $5,$6,$10

WMXDFaddi $6,$1,1

WP3P2P1P0DFmul $4,$3,$5

987654321

CIS371 (Roth/Martin): Pipelining 61

More Multiplier Nasties

• This is the situation on slide #59 tries to avoid
• Mis-ordered writes to the same register

• Software thinks add gets $4 from addi, actually gets it from mul

• Common? Not for a 4-cycle multiply with 5-stage pipeline
• More common with deeper pipelines

• In any case, must be correct

WMXDFadd $10,$4,$6

…

…

WMXDFaddi $4,$1,1

WP3P2P1P0DFmul $4,$3,$5

987654321

CIS371 (Roth/Martin): Pipelining 62

Corrected Pipeline Diagram

• With the correct stall logic

• Prevent mis-ordered writes to the same register

• Why two cycles of delay?

• Multi-cycle operations complicate pipeline logic

WMXDFadd $10,$4,$6

…

…

WMXDd*d*Faddi $4,$1,1

WP3P2P1P0DFmul $4,$3,$5

987654321

CIS371 (Roth/Martin): Pipelining 63

What About Branches?

• Control hazards

• Fetch past branch insns before branch outcome is known

• Default: assume “not-taken” (at fetch, can’t tell it’s a branch)

PC
Insn

Mem

Register

File

s1 s2 d

+

4

<<

2

F/D D/X

X/M

PC

A

B

IR

O

B

IR

PC

IR

S

X

CIS371 (Roth/Martin): Pipelining 64

Branch Recovery

• Branch recovery: what to do when branch is actually taken

• Insns that will be written into F/D and D/X are wrong

• Flush them, i.e., replace them with nops

+ They haven’t had written permanent state yet (regfile, DMem)

PC
Insn

Mem

Register

File

s1 s2 d

+

4

<<

2

F/D D/X

X/M

nopnop

PC

A

B

IR

O

B

IR

PC

IR

S

X

CIS371 (Roth/Martin): Pipelining 65

Branch Recovery Pipeline Diagram

• Convention: don’t fill in flushed insns

• Taken branch penalty is 2 cycles

WMXDFaddi $8,$7,1targ:

targ: Faddi $8,$7,1

DFsw $6,4($7)

WMXDFbnez $3,targ

WMXDFaddi $3,$0,1

987654321

WMXDFaddi $8,$7,1targ:

WMXDFbnez $3,targ

WMXDFaddi $3,$0,1

987654321

CIS371 (Roth/Martin): Pipelining 66

Branch Performance

• Back of the envelope calculation

• Branch: 20%, load: 20%, store: 10%, other: 50%

• 75% of branches are taken

• Why not 50%/50%? Loop back edges

• CPI = 1 + 20% * 75% * 2 =
 1 + 0.20*0.75*2 = 1.3

– Branches cause 30% slowdown

• Even worse with deeper pipelines

• How do we reduce this penalty?

CIS371 (Roth/Martin): Pipelining 67

One MIPS-Specific Way: Fast Branch

• Fast branch: can decide at D, not X

• Test must be comparison to zero or equality, no time for ALU

+ New taken branch penalty is 1

– Additional insns (slt) for more complex tests

– Must bypass to D-stage too

PC
Insn

Mem

Register

File

s1 s2 d

+

4

<<

2

F/D

D/X X/M

S

X

<>

0

O

B

IR

A

B

IR

PC

IR

S

X

CIS371 (Roth/Martin): Pipelining 68

Fast Branch Performance

• Assume: Branch: 20%, 75% of branches are taken
• CPI = 1 + 20% * 75% * 1 = 1 + 0.20*0.75*1 = 1.15

• 15% slowdown (better than the 30% from before)

• But wait, fast branches assume only simple comparisons
• Fine for P37X & MIPS

• But not fine for ISAs with “branch if $1 > $2” operations

• In such cases, say 25% of branches require an extra insn
• CPI = 1 + (20% * 75% * 1) + 20%*25%*1(extra insn) = 1.2

• Example of ISA and micro-architecture interaction
• Type of branch instructions.

• What about condition codes?

CIS371 (Roth/Martin): Pipelining 69

More Generally: Speculative Execution

• Speculation: “risky transactions on chance of profit”

• Speculative execution

• Execute before all parameters known with certainty

• Correct speculation

+ Avoid stall, improve performance

• Incorrect speculation (mis-speculation)

– Must abort/flush/squash incorrect insns

– Must undo incorrect changes (recover pre-speculation state)

• The “game”: [%correct * gain] – [(1–%correct) * penalty]

• Control speculation: speculation aimed at control hazards

• Unknown parameter: are these the correct insns to execute next?

CIS371 (Roth/Martin): Pipelining 70

Control Speculation Mechanics

• Guess branch target, start fetching at guessed position
• Doing nothing is implicitly guessing target is PC+4

• Can actively guess other targets: dynamic branch prediction

• Execute branch to verify (check) guess
• Correct speculation? keep going

• Mis-speculation? Flush mis-speculated insns

• Hopefully haven’t modified permanent state (Regfile, DMem)

+ Happens naturally in in-order 5-stage pipeline

• “Game” for in-order 5 stage pipeline
• %correct = ?

• Gain = 2 cycles

+ Penalty = 0 cycles ! mis-speculation no worse than stalling

CIS371 (Roth/Martin): Pipelining 71

Dynamic Branch Prediction

• Dynamic branch prediction: guess outcome
• Start fetching from guessed address

• Flush on mis-prediction (notice new recovery circuit)

PC
Insn

Mem

Register

File
S

X

s1 s2 d

+

4

<<

2

TG

PC

IR

TG

PC

A

B

IR

O

B

IR

F/D D/X X/M

nopnop

BP

<>

CIS371 (Roth/Martin): Pipelining 72

Simple Branch Target Buffer (BTB)

• Big idea: learn from past, predict the future
• Record the past in a hardware structure

• Branch target buffer (BTB): simplest branch predictor
• “guess” the future PC based on base behavior

• “Last time the instruction at address X was followed by address Y”

• “So, in the future, if address X is fetched, fetch address Y next”

• Operation
• A small RAM (like a regfile): address = PC, data = target-PC

• Access at Fetch in parallel with instruction memory

• predicted-target = BTB[PC]

• Updated at X whenever target != predicted-target

• BTB[PC] = target

CIS371 (Roth/Martin): Pipelining 73

Branch Target Buffer (continued)

• At Fetch, how does insn know that it’s a branch & should
read BTB?
• Answer: it doesn’t have to

• All insns read BTB

• If insn isn’t a branch entry is PC+4

• BTB can’t hold all PCs…
• …what if 2 PCs alias (map to same slot)?

• Answer: doesn’t matter

• Why? BTB contents only used as a guess, can be wrong

• Which PC bits should be used to index BTB?

CIS371 (Roth/Martin): Pipelining 74

More Efficient BTB

• Naïve BTB is space inefficient

• Many entries useless entries for non-branches

• More efficient BTB

• Only explicitly represent taken branches

• Implement by tagging each entry with PC

• Update at X if (target != predicted-target)

• BTB[PC].tag = PC, BTB[PC].target = target

• All insns access at Fetch in parallel with IMem

• Predicted-target = (BTB[PC].tag == PC) ? BTB[PC].target : PC+4

PC

+

4

BTB

tag

=
=

target
predicted target

CIS371 (Roth/Martin): Pipelining 75

Why Does a BTB Work?

• Because most control insns use direct targets
• Target encoded in insn itself ! same target every time

• What about indirect targets?
• Target held in a register ! can be different each time

• Indirect conditional jumps are not widely supported

• Two indirect call idioms

+ Dynamically linked functions (DLLs): target always the same

• Dynamically dispatched (virtual) functions: hard but uncommon

• Also two indirect unconditional jump idioms

• Switches: hard but uncommon

– Function returns: hard and common but…

CIS371 (Roth/Martin): Pipelining 76

IMem

Return Address Stack (RAS)

• Return address stack (RAS)
• Call? RAS[TOS++] = PC+4

• Return? Predicted-target = RAS[--TOS]

• Q: how can you tell if an insn is a call/return before decoding it?

• Accessing RAS on every insn BTB-style doesn’t work

• Option #1: just wait a cycle

• Option #2: pre-decode bits in Imem, written when first executed

PC

+

4

BTB

tag

=
=

target
predicted target

RAS

PD

CIS371 (Roth/Martin): Pipelining 77

Branch (Direction) Prediction

• BTB uses implicit branch direction prediction
• BTB[PC].tag == PC & BTB[PC].target != PC+4 ! “taken” (T)

• BTB[PC].tag == PC & BTB[PC].target == PC+4 ! “not-taken” (N)

• Implied policy: predict last taken/non-taken

+ Surprisingly effective: captures loop idiom (~75%)

– Pathological in several ways: can do much better (~95%)

• Branch history table (BHT): explicit direction predictor
• RAM, address = PC, data = N/T (0/1), typically untagged

• Many more entries than BTB

• Individual conditional branches often unbiased or weakly biased

• 90%+ one way or the other considered “biased”

• Advanced algorithms use inter-branch correlation, tournaments, etc

• Still actively researched

CIS371 (Roth/Martin): Pipelining 78

Branch History Table (BHT)

• Branch history table (BHT): simplest direction predictor

• PC indexes table of bits (0 = N, 1 = T), no tags

• Essentially: branch will go same way it went last time

• Problem: consider inner loop branch below (* = mis-prediction)

for (i=0;i<100;i++)

 for (j=0;j<3;j++)

 // whatever

– Two “built-in” mis-predictions per inner loop iteration

– Branch predictor “changes its mind too quickly”

N

T*

T

T

T

T

TNTTTNTTTOutcome

N*T*TTN*T*TTN*State/prediction

CIS371 (Roth/Martin): Pipelining 79

Two-Bit Saturating Counters (2bc)

• Two-bit saturating counters (2bc) [Smith]

• Replace each single-bit prediction

• (0,1,2,3) = (N,n,t,T)

• Adds “hysteresis”

• Force DIRP to mis-predict twice before “changing its mind”

• One mispredict each loop execution (rather than two)

+ Fixes this pathology (which is not contrived, by the way)

• Can we do even better?

N

T*

T

T

T

T

TNTTTNTTTOutcome

tT*TTtT*tn*N*State/prediction

CIS371 (Roth/Martin): Pipelining 80

Correlated Predictor

• Correlated (two-level) predictor [Patt]

• Exploits observation that branch outcomes are correlated

• Maintains separate prediction per (PC, BHR)

• Branch history register (BHR): recent branch outcomes

• Simple working example: assume program has one branch

• BHT: one 1-bit DIRP entry

• BHT+2BHR: 22 = 4 1-bit DIRP entries

– We didn’t make anything better, what’s the problem?

BHR=TT

BHR=TN

BHR=NT

BHR=NN TTTTTTTTTTTN*State/prediction

TTTTTTTTTTN*N“active pattern”

TTTTTTTN*NNNN

N

T*

T

N*

T

N

TNTTTNTTTOutcome N N

NT*N*NNT*N*NN

CIS371 (Roth/Martin): Pipelining 81

Correlated Predictor

• What happened?

• BHR wasn’t long enough to capture the pattern

• Try again: BHT+3BHR: 23 = 8 1-bit DIRP entries

+ No mis-predictions after predictor learns all the relevant patterns

NNNNNNNNNNNNBHR=TTT

TTTTTTTN*NNNNBHR=TTN

TTTTTTN*NNNNNBHR=TNT

NNNNNNNNNNNNBHR=TNN

BHR=NTT

BHR=NTN

BHR=NNT

BHR=NNN TTTTTTTTTTTN*State/prediction

TTTTTTTTTTN*N

NNNNNNNNNNNN

N

T

T

T

T

T

TNTTTNTTTOutcome N N N

TTTTTTN*NN“active pattern”

CIS371 (Roth/Martin): Pipelining 82

Correlated Predictor

• Design choice I: one global BHR or one per PC (local)?
• Each one captures different kinds of patterns

• Global is better, captures local patterns for tight loop branches

• Design choice II: how many history bits (BHR size)?
• Tricky one

+ Given unlimited resources, longer BHRs are better, but…

– BHT utilization decreases

– Many history patterns are never seen

– Many branches are history independent (don’t care)

• PC xor BHR allows multiple PCs to dynamically share BHT

• BHR length < log2(BHT size)

– Predictor takes longer to train

• Typical length: 8–12

CIS371 (Roth/Martin): Pipelining 83

Hybrid Predictor

• Hybrid (tournament) predictor [McFarling]

• Attacks correlated predictor BHT utilization problem

• Idea: combine two predictors

• Simple BHT predicts history independent branches

• Correlated predictor predicts only branches that need history

• Chooser assigns branches to one predictor or the other

• Branches start in simple BHT, move mis-prediction threshold

+ Correlated predictor can be made smaller, handles fewer branches

+ 90–95% accuracy

PC

BHR

B
H

T

B
H

T

c
h
o

o
s
e
r

CIS371 (Roth/Martin): Pipelining 84

When to Perform Branch Prediction?

• During Fetch
• Access BHT and BTB in parallel with instruction memory

• Use BHT result to set next PC to either “PC+4” or “BTB[PC]”

+ No penalty when correctly predicted

– Need to determine which PCs are conditional branches

• BTB and/or pre-decode bits mark cond. branches

• During Decode
• Look at instruction opcode to determine branch instructions

• Can calculate next PC from instruction (for PC-relative branches)

– One cycle “mis-fetch” penalty even if branch predictor is correct

• Today’s processors usually do some hybrid
• Quick prediction at fetch, better prediction during decode

CIS371 (Roth/Martin): Pipelining 85

Branch Prediction Performance

• Dynamic branch prediction
• Simple BTB at fetch; branches predicted with 75% accuracy

• CPI = 1 + (20% * 25% * 2)= 1.1

• More advanced BTB/BHT predictor at fetch: 95% accuracy

• CPI = 1 + (20% * 5% * 2) = 1.02

• BTB during Fetch, BHT during decode

• 75% accuracy at fetch, 95% accuracy at decode

• CPI = 1 + (20% * 25% * 1) + (20% * 5% * 1) = 1.06

• Branch mis-predictions still a big problem though
• Pipelines are long: typical mis-prediction penalty is 10+ cycles

• Pipelines have full bypassing: compiler schedules the rest

• Pipelines are superscalar (later)

CIS371 (Roth/Martin): Pipelining 86

Pipelining And Exceptions

• Pipelining makes exceptions nasty

• 5 insns in pipeline at once

• Exception happens, how do you know which insn caused it?

• Exceptions propagate along pipeline in latches

• Two exceptions happen, how do you know which one to take first?

• One belonging to oldest insn

• When handling exception, have to flush younger insns

• Piggy-back on branch mis-prediction machinery to do this

• What about multi-cycle operations?

• Just FYI

CIS371 (Roth/Martin): Pipelining 87

Pipeline Depth

• No magic about 5 stages, trend had been to deeper pipelines
• 486: 5 stages (50+ gate delays / clock)

• Pentium: 7 stages

• Pentium II/III: 12 stages

• Pentium 4: 22 stages (~10 gate delays / clock) “super-pipelining”

• Core1/2: 14 stages

• Increasing pipeline depth
+ Increases clock frequency (reduces period)

– But decreases IPC (increases CPI)

• Branch mis-prediction penalty becomes longer

• Non-bypassed data hazard stalls become longer

• At some point, CPI losses offset clock gains, question is when?

• 1GHz Pentium 4 was slower than 800 MHz PentiumIII

• What was the point? Customers buy frequency, not IPC*frequency

CIS371 (Roth/Martin): Pipelining 88

Summary

• Basics of pipelining

• Pipeline diagrams

• Data hazards

• Software interlocks/code scheduling

• Hardware interlocks/stalling

• Bypassing

• Multi-cycle operations

• Control hazards

• Branch prediction

CPUMem I/O

System software

AppApp App

