
CIS371 (Roth/Martin): Floating Point 1

CIS 371
Computer Organization and Design

Unit 7: Floating Point

CIS371 (Roth/Martin): Floating Point 2

This Unit: Floating Point Arithmetic

• Formats

• Precision and range

• IEEE 754 standard

• Operations

• Addition and subtraction

• Multiplication and division

• Error analysis

• Error and bias

• Rounding and truncation

CPUMem I/O

System software

AppApp App

CIS371 (Roth/Martin): Floating Point 3

Readings

• P+H

• Chapter 3.6 and 3.7

CIS371 (Roth/Martin): Floating Point 4

Floating Point (FP) Numbers

• Floating point numbers: numbers in scientific notation

• Two uses

• Use I: real numbers (numbers with non-zero fractions)

• 3.1415926…

• 2.1878…

• 6.62 * 10–34

• Use II: really big numbers

• 3.0 * 108

• 6.02 * 1023

• Aside: best not used for currency values

CIS371 (Roth/Martin): Floating Point 5

The Land Before Floating Point

• Early computers were built for scientific calculations

• ENIAC: ballistic firing tables

• …But didn’t have primitive floating point data types

• Many embedded chips today lack floating point hardware

• Programmers built scale factors into programs

• Large constant multiplier turns all FP numbers to integers

• inputs multiplied by scale factor manually

• Outputs divided by scale factor manually

• Sometimes called fixed point arithmetic

CIS371 (Roth/Martin): Floating Point 6

The Fixed Width Dilemma

• “Natural” arithmetic has infinite width

• Infinite number of integers

• Infinite number of reals

• Infinitely more reals than integers (head… spinning…)

• Hardware arithmetic has finite width N (e.g., 16, 32, 64)

• Can represent 2N numbers

• If you could represent 2N integers, which would they be?

• Easy, the 2N–1 on either size of 0

• If you could represent 2N reals, which would they be?

• 2N reals from 0 to 1, not too useful

• Uhh…. umm…

CIS371 (Roth/Martin): Floating Point 7

Range and Precision

• Range

• Distance between largest and smallest representable numbers

• Want big

• Precision

• Distance between two consecutive representable numbers

• Want small

• In fixed width, can’t have unlimited both

CIS371 (Roth/Martin): Floating Point 8

Scientific Notation

• Scientific notation: good compromise
• Number [S,F,E] = S * F * 2E

• S: sign

• F: significand (fraction)

• E: exponent

• “Floating point”: binary (decimal) point has different magnitude

+ “Sliding window” of precision using notion of significant digits

• Small numbers very precise, many places after decimal point

• Big numbers are much less so, not all integers representable

• But for those instances you don’t really care anyway

– Caveat: all representations are just approximations

• Sometimes wierdos like 0.9999999 or 1.0000001 come up

+ But good enough for most purposes

CIS371 (Roth/Martin): Floating Point 9

IEEE 754 Standard Precision/Range

• Single precision: float in C
• 32-bit: 1-bit sign + 8-bit exponent + 23-bit significand

• Range: 2.0 * 10–38 < N < 2.0 * 1038

• Precision: ~7 significant (decimal) digits

• Used when exact precision is less important (e.g., 3D games)

• Double precision: double in C
• 64-bit: 1-bit sign + 11-bit exponent + 52-bit significand

• Range: 2.0 * 10–308 < N < 2.0 * 10308

• Precision: ~15 significant (decimal) digits

• Used for scientific computations

• Numbers >10308 don’t come up in many calculations
• 1080 ~ number of atoms in universe

CIS371 (Roth/Martin): Floating Point 10

How Do Bits Represent Fractions?

• Sign: 0 or 1 ! easy

• Exponent: signed integer ! also easy

• Significand: unsigned fraction ! ??

• How do we represent integers?

• Sums of positive powers of two

• S-bit unsigned integer A: AS–12
S–1 + AS–22

S–2 + … + A12
1 + A02

0

• So how can we represent fractions?

• Sums of negative powers of two

• S-bit unsigned fraction A: AS–12
0 + AS–22

–1 + … + A12
–S+2 + A02

–S+1

• 1, 1/2, 1/4, 1/8, 1/16, 1/32, …

• More significant bits correspond to larger multipliers

CIS371 (Roth/Martin): Floating Point 11

Some Examples

• What is 5 in floating point?

• Sign: 0

• 5 = 1.25 * 22

• Significand: 1.25 = 1*20 + 1*2–2 = 101 0000 0000 0000 0000 0000

• Exponent: 2 = 0000 0010

• What is –0.5 in floating point?

• Sign: 1

• 0.5 = 0.5 * 20

• Significand: 0.5 = 1*2–1 = 010 0000 0000 0000 0000 0000

• Exponent: 0 = 0000 0000

CIS371 (Roth/Martin): Floating Point 12

Normalized Numbers

• Notice

• 5 is 1.25 * 22

• But isn’t it also 0.625 * 23 and 0.3125 * 24 and …?

• With 8-bit exponent, we can have 256 representations of 5

• Multiple representations for one number

– Lead to computational errors

– Waste bits

• Solution: choose normal (canonical) form

• Disallow de-normalized numbers

• IEEE 754 normal form: coefficient of 20 is 1

• Similar to scientific notation: one non-zero digit left of decimal

• Normalized representation of 5 is 1.25 * 22 (1.25 = 1*20+1*2-2)

• 0.625 * 23 is de-normalized (0.625 = 0*20+1*2-1+ 1*2-3)

CIS371 (Roth/Martin): Floating Point 13

More About Normalization

• What is –0.5 in normalized floating point?

• Sign: 1

• 0.5 = 1 * 2–1

• Significand: 1 = 1*20 = 100 0000 0000 0000 0000 0000

• Exponent: -1 = 1111 1111

• IEEE754: no need to represent co-efficient of 20 explicitly

• It’s always 1

+ Buy yourself an extra bit (~1/3 of decimal digit) of precision

• Yeeha

• Problem: what about 0?

• How can we represent 0 if 20 is always implicitly 1?

CIS371 (Roth/Martin): Floating Point 14

IEEE 754: The Whole Story

• Exponent: signed integer ! not so fast

• Exponent represented in excess or bias notation

• N-bits typically can represent signed numbers from –2N–1 to 2N–1–1

• But in IEEE 754, they represent exponents from –2N–1+2 to 2N–1–1

• And they represent those as unsigned with an implicit 2N–1–1 added

• Implicit added quantity is called the bias

• Actual exponent is E–(2N–1–1)

• Example: single precision (8-bit exponent)

• Bias is 127, exponent range is –126 to 127

• –126 is represented as 1 = 0000 0001

• 127 is represented as 254 = 1111 1110

• 0 is represented as 127 = 0111 1111

• 1 is represented as 128 = 1000 0000

CIS371 (Roth/Martin): Floating Point 15

IEEE 754: Continued

• Notice: two exponent bit patterns are “unused”

• 0000 0000: represents de-normalized numbers

• Numbers that have implicit 0 (rather than 1) in 20

• Zero is a special kind of de-normalized number

+ Exponent is all 0s, significand is all 0s (bzero still works)

– There are both +0 and –0, but they are considered the same

• Also represent numbers smaller than smallest normalized numbers

• 1111 1111: represents infinity and NaN

• ± infinities have 0s in the significand

• ± NaNs do not

CIS371 (Roth/Martin): Floating Point 16

IEEE 754: Infinity and Beyond

• What are infinity and NaN used for?

• To allow operations to proceed past overflow/underflow situations

• Overflow: operation yields exponent greater than 2N–1–1

• Underflow: operation yields exponent less than –2N–1+2

• IEEE 754 defines operations on infinity and NaN

• N / 0 = infinity

• N / infinity = 0

• 0 / 0 = NaN

• Infinity / infinity = NaN

• Infinity – infinity = NaN

• Anything and NaN = NaN

CIS371 (Roth/Martin): Floating Point 17

IEEE 754: Final Format

• Biased exponent

• Normalized significand

• Exponent more significant than significand

• Helps comparing FP numbers

• Exponent bias notation helps there too

• Every computer since about 1980 supports this standard

• Makes code portable (at the source level at least)

• Makes hardware faster (stand on each other’s shoulders)

exp significand

CIS371 (Roth/Martin): Floating Point 18

Floating Point Arithmetic

• We will look at

• Addition/subtraction

• Multiplication/division

• Implementation

• Basically, integer arithmetic on significand and exponent

• Using integer ALUs

• Plus extra hardware for normalization

• To help us here, look at toy “quarter” precision format

• 8 bits: 1-bit sign + 3-bit exponent + 4-bit significand

• Bias is 3

CIS371 (Roth/Martin): Floating Point 19

FP Addition

• Assume

• A represented as bit pattern [SA, EA, FA]

• B represented as bit pattern [SB, EB, FB]

• What is the bit pattern for A+B [SA+B, EA+B, FA+B]?

• [SA+SB, EA+EB, FA+FB]? Of course not

• So what is it then?

CIS371 (Roth/Martin): Floating Point 20

FP Addition Decimal Example

• Let’s look at a decimal example first: 99.5 + 0.8

• 9.95*101 + 8.0*10-1

• Step I: align exponents (if necessary)

• Temporarily de-normalize one with smaller exponent

• Add 2 to exponent ! shift significand right by 2

• 8.0* 10-1 ! 0.08*101

• Step II: add significands

• Remember overflow, it isn’t treated like integer overflow

• 9.95*101 + 0.08*101 ! 10.03*101

• Step III: normalize result

• Shift significand right by 1 add 1 to exponent

• 10.03*101 ! 1.003*102

CIS371 (Roth/Martin): Floating Point 21

FP Addition Quarter Example

• Now a binary “quarter” example: 7.5 + 0.5
• 7.5 = 1.875*22 = 0 101 11110

• 1.875 = 1*20+1*2-1+1*2-2+1*2-3

• 0.5 = 1*2-1 = 0 010 10000

• Step I: align exponents (if necessary)
• 0 010 10000 ! 0 101 00010

• Add 3 to exponent ! shift significand right by 3

• Step II: add significands
• 0 101 11110 + 0 101 00010 = 0 101 100000

• Step III: normalize result
• 0 101 100000 ! 0 110 10000

• Shift significand right by 1 ! add 1 to exponent

CIS371 (Roth/Martin): Floating Point 22

FP Addition Hardware

E1 F1 E2 F2

–

>>

+

>>+

ctrl

E F

v

n De-normalize

smaller exponent

Add significands

Normalize result

CIS371 (Roth/Martin): Floating Point 23

What About FP Subtraction?

• Or addition of negative quantities for that matter
• How to subtract significands that are not in 2C form?

• Can we still use an adder?

• Trick: internally and temporarily convert to 2C
• Add “phantom” –2 in front (–1*21)

• Use standard negation trick

• Add as usual

• If phantom –2 bit is 1, result is negative

• Negate it using standard trick again, flip result sign bit

• Ignore “phantom” bit which is now 0 anyway

• Got all that?

• Basically, big ALU has negation prefix and postfix circuits

CIS371 (Roth/Martin): Floating Point 24

FP Multiplication

• Assume

• A represented as bit pattern [SA, EA, FA]

• B represented as bit pattern [SB, EB, FB]

• What is the bit pattern for A*B [SA*B, EA*B, FA*B]?

• This one is actually a little easier (conceptually) than addition

• Scientific notation is logarithmic

• In logarithmic form: multiplication is addition

• [SA^SB, EA+EB, FA*FB]? Pretty much, except for…

• Normalization

• Addition of exponents in biased notation (must subtract bias)

• Tricky: when multiplying two normalized significands…

• Where is the binary point?

CIS371 (Roth/Martin): Floating Point 25

FP Division

• Assume

• A represented as bit pattern [SA, EA, FA]

• B represented as bit pattern [SB, EB, FB]

• What is the bit pattern for A/B [SA/B, EA/B, FA/B]?

• [SA^SB, EA–EB, FA/FB]? Pretty much, again except for…

• Normalization

• Subtraction of exponents in biased notation (must add bias)

• Binary point placement

• No need to worry about remainders, either

• Ironic

• Multiplication/division roughly same complexity for FP and integer

• Addition/subtraction much more complicated for FP than integer

CIS371 (Roth/Martin): Floating Point 26

Accuracy

• Remember our decimal addition example?
• 9.95*101 + 8.00*10-1 ! 1.003*102

• Extra decimal place caused by de-normalization…

• But what if our representation only has two digits of precision?

• What happens to the 3?

• Corresponding binary question: what happens to extra 1s?

• Solution: round

• Option I: round down (truncate), no hardware necessary

• Option II: round up (round), need an incrementer

• Why rounding up called round?

• Because an extra 1 is half-way, which “rounded” up

CIS371 (Roth/Martin): Floating Point 27

More About Accuracy

• Problem with both truncation and rounding

– They cause errors to accumulate

• E.g., if always round up, result will gradually “crawl” upwards

• One solution: round to nearest even
• If un-rounded LSB is 1 ! round up (011 ! 10)

• If un-rounded LSB is 0 ! round down (001 ! 00)

• Round up half the time, down other half ! overall error is stable

• Another solution: multiple intermediate precision bits

• IEEE 754 defines 3: guard + round + sticky

• Guard and round are shifted by de-normalization as usual

• Sticky is 1 if any shifted out bits are 1

• Round up if 101 or higher, round down if 011 or lower

• Round to nearest even if 100

CIS371 (Roth/Martin): Floating Point 28

Numerical Analysis

• Accuracy problems sometimes get bad
• Addition of big and small numbers

• Summing many small numbers

• Subtraction of big numbers

• Example, what’s 1*1030 + 1*100 – 1*1030?

• Intuitively: 1*100 = 1

• But: (1*1030 + 1*100) – 1*1030 = (1*1030 – 1*1030) = 0

• Numerical analysis: field formed around this problem
• Bounding error of numerical algorithms

• Re-formulating algorithms in a way that bounds numerical error

• Practical hints: never test for equality between FP numbers
• Use something like: if(abs(a-b) < 0.00001) then …

CIS371 (Roth/Martin): Floating Point 29

One Last Thing About Accuracy

• Suppose you added two numbers and came up with

• 0 101 11111 101

• What happens when you round?

• Number becomes denormalized… arrrrgggghhh

• FP adder actually has more than three steps…

• Align exponents

• Add/subtract significands

• Re-normalize

• Round

• Potentially re-normalize again

• Potentially round again

CIS371 (Roth/Martin): Floating Point 30

• Latency in cycles of common arithmetic operations

• Source: Software Optimization Guide for AMD Family 10h

Processors, Dec 2007

• Intel “Core 2” chips similar

• Floating point divide faster than integer divide?

• Why?

Arithmetic Latencies

201623 to 8714 to 40Divide

4453Multiply

4411Add/Subtract

Fp 64Fp 32Int 64Int 32

CIS371 (Roth/Martin): Floating Point 31

Summary

• FP representation

• Scientific notation: S*F*2E

• IEEE754 standard

• Representing fractions

• FP operations

• Addition/subtraction: harder than integer

• Multiplication/division: same as integer!!

• Accuracy problems

• Rounding and truncation

• Upshot: FP is painful

• Thank lucky stars P37X has no FP

CPUMem I/O

System software

AppApp App

