CIS 371
Computer Organization and Design

Unit 7: Floating Point

## Readings

- P+H
- Chapter 3.6 and 3.7


## This Unit: Floating Point Arithmetic



- Addition and subtraction
- Multiplication and division
- Error analysis
- Error and bias
- Rounding and truncation


## Floating Point (FP) Numbers

- Floating point numbers: numbers in scientific notation
- Two uses
- Use I: real numbers (numbers with non-zero fractions)
- 3.1415926..
- 2.1878...
- 6.62 * $10^{-34}$
- Use II: really big numbers
- 3.0 * $10^{8}$
- 6.02 * $10^{23}$
- Aside: best not used for currency values


## The Land Before Floating Point

- Early computers were built for scientific calculations
- ENIAC: ballistic firing tables
- ...But didn't have primitive floating point data types
- Many embedded chips today lack floating point hardware
- Programmers built scale factors into programs
- Large constant multiplier turns all FP numbers to integers
- inputs multiplied by scale factor manually
- Outputs divided by scale factor manually
- Sometimes called fixed point arithmetic


## Range and Precision

- Range
- Distance between largest and smallest representable numbers
- Want big
- Precision
- Distance between two consecutive representable numbers
- Want small
- In fixed width, can't have unlimited both


## The Fixed Width Dilemma

- "Natural" arithmetic has infinite width
- Infinite number of integers
- Infinite number of reals
- Infinitely more reals than integers (head... spinning...)
- Hardware arithmetic has finite width N (e.g., 16, 32, 64)
- Can represent $2^{N}$ numbers
- If you could represent $2^{N}$ integers, which would they be?
- Easy, the $2^{\mathrm{N}-1}$ on either size of 0
- If you could represent $2^{N}$ reals, which would they be?
- $2^{\mathrm{N}}$ reals from 0 to 1 , not too useful
- Uhh.... umm...


## Scientific Notation

- Scientific notation: good compromise
- Number $[\mathrm{S}, \mathrm{F}, \mathrm{E}]=\mathrm{S} * \mathrm{~F} * 2^{\mathrm{E}}$
- S: sign
- F: significand (fraction)
- E: exponent
- "Floating point": binary (decimal) point has different magnitude
+ "Sliding window" of precision using notion of significant digits
- Small numbers very precise, many places after decimal point
- Big numbers are much less so, not all integers representable
- But for those instances you don't really care anyway
- Caveat: all representations are just approximations
- Sometimes wierdos like 0.9999999 or 1.0000001 come up
+ But good enough for most purposes


## IEEE 754 Standard Precision/Range

- Single precision: float in C
- 32-bit: 1 -bit sign +8 -bit exponent +23 -bit significand
- Range: $2.0 * 10^{-38}<\mathrm{N}<2.0 * 10^{38}$
- Precision: $\sim 7$ significant (decimal) digits
- Used when exact precision is less important (e.g., 3D games)
- Double precision: double in C
- 64-bit: 1-bit sign +11 -bit exponent +52 -bit significand
- Range: 2.0 * $10^{-308}<\mathrm{N}<2.0$ * $10^{308}$
- Precision: $\sim 15$ significant (decimal) digits
- Used for scientific computations
- Numbers $>10^{308}$ don't come up in many calculations
- $10^{80} \sim$ number of atoms in universe


## Some Examples

- What is 5 in floating point?
- Sign: 0
- $5=1.25 * 2^{2}$
- Significand: $1.25=1^{*} 2^{0}+1^{*} 2^{-2}=10100000000000000000000$
- Exponent: $2=00000010$
- What is -0.5 in floating point?
- Sign: 1
- $0.5=0.5 * 2^{0}$
- Significand: $0.5=1^{*} 2^{-1}=01000000000000000000000$
- Exponent: $0=00000000$


## How Do Bits Represent Fractions?

- Sign: 0 or $1 \rightarrow$ easy
- Exponent: signed integer $\rightarrow$ also easy
- Significand: unsigned fraction $\rightarrow$ ??
- How do we represent integers?
- Sums of positive powers of two
- S-bit unsigned integer $A: A_{S-1} 2^{S-1}+A_{S-2} 2^{s-2}+\ldots+A_{1} 2^{1}+A_{0} 2^{0}$
- So how can we represent fractions?
- Sums of negative powers of two
- S-bit unsigned fraction $A: A_{S-1} 2^{0}+A_{S-2} 2^{-1}+\ldots+A_{1} 2^{-S+2}+A_{0} 2^{-S+1}$
- $1,1 / 2,1 / 4,1 / 8,1 / 16,1 / 32, \ldots$
- More significant bits correspond to larger multipliers


## Normalized Numbers

- Notice
- 5 is $1.25 * 2^{2}$
- But isn't it also $0.625 * 2^{3}$ and $0.3125 * 2^{4}$ and $\ldots$ ?
- With 8 -bit exponent, we can have 256 representations of 5
- Multiple representations for one number
- Lead to computational errors
- Waste bits
- Solution: choose normal (canonical) form
- Disallow de-normalized numbers
- IEEE 754 normal form: coefficient of $2^{0}$ is 1
- Similar to scientific notation: one non-zero digit left of decimal
- Normalized representation of 5 is $1.25 * 2^{2}\left(1.25=\mathbf{1}^{*} \mathbf{2}^{0}+1^{*} \mathbf{2}^{-2}\right)$
- $0.625 * 2^{3}$ is de-normalized $\left(0.625=0 * 2^{0}+1^{*} 2^{-1}+1^{*} 2^{-3}\right)$


## More About Normalization

- What is -0.5 in normalized floating point?
- Sign: 1
- $0.5=1 * 2^{-1}$
- Significand: $1=1^{*} 2^{0}=10000000000000000000000$
- Exponent: -1 = 11111111
- IEEE754: no need to represent co-efficient of $2^{0}$ explicitly
- It's always 1
+ Buy yourself an extra bit ( $\sim 1 / 3$ of decimal digit) of precision
- Yeeha
- Problem: what about 0?
- How can we represent 0 if $2^{0}$ is always implicitly 1 ?

CIS371 (Roth/Martin): Floating Point

## IEEE 754: Continued

- Notice: two exponent bit patterns are "unused"
- 0000 0000: represents de-normalized numbers
- Numbers that have implicit 0 (rather than 1) in $2^{0}$
- Zero is a special kind of de-normalized number
+ Exponent is all 0s, significand is all 0s (bzero still works)
- There are both +0 and -0 , but they are considered the same
- Also represent numbers smaller than smallest normalized numbers
- 1111 1111: represents infinity and NaN
- $\pm$ infinities have 0 s in the significand
- $\pm$ NaNs do not


## IEEE 754: The Whole Story

- Exponent: signed integer $\rightarrow$ not so fast
- Exponent represented in excess or bias notation
- N -bits typically can represent signed numbers from $-2^{\mathrm{N}-1}$ to $2^{\mathrm{N}-1}-1$
- But in IEEE 754, they represent exponents from $-2^{\mathrm{N}-1}+2$ to $2^{\mathrm{N}-1}-1$
- And they represent those as unsigned with an implicit $2^{\mathrm{N}-1}-1$ added
- Implicit added quantity is called the bias
- Actual exponent is $\mathrm{E}-\left(2^{\mathrm{N}-1}-1\right)$
- Example: single precision (8-bit exponent)
- Bias is 127 , exponent range is -126 to 127
- -126 is represented as $1=00000001$
- 127 is represented as $254=11111110$
- 0 is represented as $127=01111111$
- 1 is represented as $128=10000000$


## IEEE 754: Infinity and Beyond

- What are infinity and NaN used for?
- To allow operations to proceed past overflow/underflow situations
- Overflow: operation yields exponent greater than $2^{\mathrm{N}-1}-1$
- Underflow: operation yields exponent less than $-2^{\mathrm{N}-1}+2$
- IEEE 754 defines operations on infinity and NaN
- N / $0=$ infinity
- $\mathrm{N} /$ infinity $=0$
- $0 / 0=\mathrm{NaN}$
- Infinity / infinity $=\mathrm{NaN}$
- Infinity - infinity = NaN
- Anything and $\mathrm{NaN}=\mathrm{NaN}$


## IEEE 754: Final Format

## exp significand

- Biased exponent
- Normalized significand
- Exponent more significant than significand
- Helps comparing FP numbers
- Exponent bias notation helps there too
- Every computer since about 1980 supports this standard
- Makes code portable (at the source level at least)
- Makes hardware faster (stand on each other's shoulders)


## FP Addition

- Assume
- A represented as bit pattern $\left[\mathrm{S}_{A^{\prime}} \mathrm{E}_{\mathrm{A}^{\prime}}, \mathrm{F}_{\mathrm{A}}\right]$
- $B$ represented as bit pattern $\left[S_{B}, E_{B}, F_{B}\right]$
- What is the bit pattern for $A+B\left[S_{A+B}, E_{A+B}, F_{A+B}\right]$ ?
- $\left[S_{A}+S_{B}, E_{A}+E_{B}, F_{A}+F_{B}\right]$ ? Of course not
- So what is it then?


## Floating Point Arithmetic

- We will look at
- Addition/subtraction
- Multiplication/division
- Implementation
- Basically, integer arithmetic on significand and exponent - Using integer ALUs
- Plus extra hardware for normalization
- To help us here, look at toy "quarter" precision format
- 8 bits: 1 -bit sign +3 -bit exponent +4 -bit significand
- Bias is 3


## FP Addition Decimal Example

- Let's look at a decimal example first: $99.5+0.8$
- $9.95 * 10^{1}+8.0^{*} 10^{-1}$
- Step I: align exponents (if necessary)
- Temporarily de-normalize one with smaller exponent
- Add 2 to exponent $\rightarrow$ shift significand right by 2
- 8.0* $10^{-1} \rightarrow 0.08 * 10^{1}$
- Step II: add significands
- Remember overflow, it isn't treated like integer overflow
- $9.95^{*} 10^{1}+0.08^{*} 10^{1} \rightarrow \mathbf{1 0 . 0 3 *} 10^{1}$
- Step III: normalize result
- Shift significand right by 1 add 1 to exponent
- $10.03 * 10^{1} \rightarrow 1.003 * 10^{2}$


## FP Addition Quarter Example

- Now a binary "quarter" example: $7.5+0.5$
- $7.5=1.875 * 2^{2}=010111110$
- $1.875=1^{*} 2^{0}+1^{*} 2^{-1}+1^{*} 2^{-2}+1^{*} 2^{-3}$
- $0.5=1^{*} 2^{-1}=001010000$
- Step I: align exponents (if necessary)
- $001010000 \rightarrow 010100010$
- Add 3 to exponent $\rightarrow$ shift significand right by 3
- Step II: add significands
- $010111110+010100010=0101100000$
- Step III: normalize result
- $0101100000 \rightarrow 011010000$
- Shift significand right by $1 \rightarrow$ add 1 to exponent


## What About FP Subtraction?

- Or addition of negative quantities for that matter
- How to subtract significands that are not in 2 C form?
- Can we still use an adder?
- Trick: internally and temporarily convert to 2C
- Add "phantom" -2 in front $\left(-1^{*} 2^{1}\right)$
- Use standard negation trick
- Add as usual
- If phantom -2 bit is 1 , result is negative
- Negate it using standard trick again, flip result sign bit
- Ignore "phantom" bit which is now 0 anyway
- Got all that?
- Basically, big ALU has negation prefix and postfix circuits


## FP Addition Hardware



## FP Multiplication

- Assume
- A represented as bit pattern $\left[S_{A^{\prime}}, E_{A^{\prime}}, F_{A}\right]$
- $B$ represented as bit pattern $\left[S_{B}, E_{B}, F_{B}\right]$
- What is the bit pattern for $A * B\left[S_{A * B}, E_{A * B}, F_{A * B}\right]$ ?
- This one is actually a little easier (conceptually) than addition
- Scientific notation is logarithmic
- In logarithmic form: multiplication is addition
- $\left[S_{A} \wedge S_{B}, E_{A}+E_{B}, F_{A} * F_{B}\right]$ ? Pretty much, except for...
- Normalization
- Addition of exponents in biased notation (must subtract bias)
- Tricky: when multiplying two normalized significands...
- Where is the binary point?


## FP Division

- Assume
- A represented as bit pattern $\left[\mathrm{S}_{\mathrm{A}}, \mathrm{E}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right]$
- B represented as bit pattern $\left[S_{B}, E_{B}, F_{B}\right]$
- What is the bit pattern for $A / B\left[S_{A / B}, E_{A / B}, F_{A / B}\right]$ ?
- $\left[S_{A} \wedge S_{B}, E_{A}-E_{B}, F_{A} / F_{B}\right]$ ? Pretty much, again except for...
- Normalization
- Subtraction of exponents in biased notation (must add bias)
- Binary point placement
- No need to worry about remainders, either
- Ironic
- Multiplication/division roughly same complexity for FP and integer
- Addition/subtraction much more complicated for FP than integer


## More About Accuracy

- Problem with both truncation and rounding
- They cause errors to accumulate
- E.g., if always round up, result will gradually "crawl" upwards
- One solution: round to nearest even
- If un-rounded LSB is $1 \rightarrow$ round up (011 $\rightarrow 10$ )
- If un-rounded LSB is $0 \rightarrow$ round down (001 $\rightarrow 00$ )
- Round up half the time, down other half $\rightarrow$ overall error is stable
- Another solution: multiple intermediate precision bits
- IEEE 754 defines 3: guard + round + sticky
- Guard and round are shifted by de-normalization as usual
- Sticky is 1 if any shifted out bits are 1
- Round up if 101 or higher, round down if 011 or lower
- Round to nearest even if 100


## Accuracy

- Remember our decimal addition example?
- $9.95^{*} 10^{1}+8.00^{*} 10^{-1} \rightarrow 1.003^{*} 10^{2}$
- Extra decimal place caused by de-normalization...
- But what if our representation only has two digits of precision?
- What happens to the 3 ?
- Corresponding binary question: what happens to extra 1 s ?
- Solution: round
- Option I: round down (truncate), no hardware necessary
- Option II: round up (round), need an incrementer
- Why rounding up called round?
- Because an extra 1 is half-way, which "rounded" up


## Numerical Analysis

- Accuracy problems sometimes get bad
- Addition of big and small numbers
- Summing many small numbers
- Subtraction of big numbers
- Example, what's $1^{*} 10^{30}+1^{*} 10^{0}-1^{*} 10^{30}$ ?
- Intuitively: $1^{*} 10^{0}=1$
- But: $\left(1^{*} 10^{30}+1^{*} 10^{0}\right)-1^{*} 10^{30}=\left(1^{*} 10^{30}-1^{*} 10^{30}\right)=0$
- Numerical analysis: field formed around this problem
- Bounding error of numerical algorithms
- Re-formulating algorithms in a way that bounds numerical error
- Practical hints: never test for equality between FP numbers
- Use something like: if(abs(a-b) < 0.00001) then ...


## One Last Thing About Accuracy

- Suppose you added two numbers and came up with
- 010111111101
- What happens when you round?
- Number becomes denormalized... arrrrgggghhh
- FP adder actually has more than three steps...
- Align exponents
- Add/subtract significands
- Re-normalize
- Round
- Potentially re-normalize again
- Potentially round again

Summary

| App | App |
| :---: | :---: |
| System software |  |
| Mem | CPU |
| I/O |  |

- FP representation
- Scientific notation: $\mathbf{S}^{*} \mathrm{~F}^{*} \mathbf{2}^{\mathrm{E}}$
- IEEE754 standard
- Representing fractions
- FP operations
- Addition/subtraction: harder than integer
- Multiplication/division: same as integer!!
- Accuracy problems
- Rounding and truncation
- Upshot: FP is painful
- Thank lucky stars P37X has no FP


## Arithmetic Latencies

- Latency in cycles of common arithmetic operations
- Source: Software Optimization Guide for AMD Family 10 h Processors, Dec 2007
- Intel "Core 2" chips similar

|  | Int 32 | Int 64 | Fp 32 | Fp 64 |
| :--- | :---: | :---: | :---: | :---: |
| Add/Subtract | 1 | 1 | 4 | 4 |
| Multiply | 3 | 5 | 4 | 4 |
| Divide | 14 to 40 | 23 to 87 | 16 | 20 |

- Floating point divide faster than integer divide?
- Why?

CIS371 (Roth/Martin): Floating Point

