
CIS 371 (Roth/Martin): Performance 1

CIS 371
Computer Organization and Design

Unit 3: Performance

CIS 371 (Roth/Martin): Performance 2

This Unit

• Performance

• Latency and throughput

• Benchmarking

• CPU performance equationCPUMem I/O

System software

AppApp App

CIS 371 (Roth/Martin): Performance 3

Readings

• P+H

• Chapter 4

CIS 371 (Roth/Martin): Performance 4

240 ! 371

• CSE 240: build something that works

• CSE 371: build something that works “well”
• “well” means “high-performance” but also cheap, low-power, etc.

• Mostly “high-performance”

• So, what is the performance of this?

• What is performance?

PC
Insn

Mem

Register

File
s1 s2 d

Data

Mem

+

4



CIS 371 (Roth/Martin): Performance 5

Performance: Latency vs. Throughput

• Latency (execution time): time to finish a fixed task

• Throughput (bandwidth): number of tasks in fixed time

• Different: exploit parallelism for throughput, not latency (e.g., bread)

• Often contradictory (latency vs. throughput)

• Will see many examples of this

• Choose definition of performance that matches your goals

• Scientific program? Latency, web server: throughput?

• Example: move people 10 miles

• Car: capacity = 5, speed = 60 miles/hour

• Bus: capacity = 60, speed = 20 miles/hour

• Latency: car = 10 min, bus = 30 min

• Throughput: car = 15 PPH (count return trip), bus = 60 PPH

CIS 371 (Roth/Martin): Performance 6

Comparing Performance

• A is X times faster than B if

• Latency(A) = Latency(B) / X

• Throughput(A) = Throughput(B) * X

• A is X% faster than B if

• Latency(A) = Latency(B) / (1+X/100)

• Throughput(A) = Throughput(B) * (1+X/100)

• Car/bus example

• Latency? Car is 3 times (and 200%) faster than bus

• Throughput? Bus is 4 times (and 300%) faster than car

CIS 371 (Roth/Martin): Performance 7

Processor Performance and Workloads

• Q: what does latency(Pentium) or thruput(Pentium) mean?

• A: nothing, there must be some associated workload

• Workload: set of tasks someone (you) cares about

• Benchmarks: standard workloads

• Used to compare performance across machines

• Either are or highly representative of actual programs people run

• Micro-benchmarks: non-standard non-workloads

• Tiny programs used to isolate certain aspects of performance

• Not representative of complex behaviors of real applications

• Examples: towers-of-hanoi, 8-queens, etc.

CIS 371 (Roth/Martin): Performance 8

SPEC Benchmarks

• SPEC: Standard Performance Evaluation Corporation
• http://www.spec.org/

• Consortium that collects, standardizes, and distributes benchmarks

• Suites for CPU, Java, I/O, Web, Mail, OpenMP (multithreaded), etc.

• Updated every few years: so companies don’t target benchmarks

• Post SPECmark results for different processors

• 1 number that represents performance for entire suite

• CPU 2006: 29 CPU-intensive C/C++/Fortran programs

• “integer”: bzip2, gcc, perl, hmmer (genomics), h264, etc.

• “floating-point”: wrf (weather), povray, sphynx3 (speech), etc.

• TPC: Transaction Processing Council
• Like SPEC, but for web/database server workloads

• Much heavier on memory, I/O, network, than on CPU

• Doesn’t give you the source code, only a ‘description’



CIS 371 (Roth/Martin): Performance 9

SPECmark

• Reference machine: Sun SPARC 10

• Latency SPECmark

• For each benchmark

• Take odd number of samples: on both machines

• Choose median

• Take latency ratio (Sun SPARC 10 / your machine)

• Take GMEAN of ratios over all benchmarks

• Throughput SPECmark

• Run multiple benchmarks in parallel on multiple-processor system

• Recent SPECmark latency leaders

• SPECint: Intel 2.3 GHz Core2 Extreme (3119)

• SPECfp: IBM 2.1 GHz Power5+ (4051)

CIS 371 (Roth/Martin): Performance 10

Mean (Average) Performance Numbers

• Arithmetic: (1/N) * !P=1..N Latency(P)
• For units that are proportional to time (e.g., latency)

• You can add latencies, but not throughputs
• Latency(P1+P2,A) = Latency(P1,A) + Latency(P2,A)

• Throughput(P1+P2,A) != Throughput(P1,A) + Throughput(P2,A)

• 1 mile @ 30 miles/hour + 1 mile @ 90 miles/hour

• Average is not 60 miles/hour

• Harmonic: N / !P=1..N 1/Throughput(P)
• For units that are inversely proportional to time (e.g., throughput)

• Geometric: N"#P=1..N Speedup(P)
• For unitless quantities (e.g., speedups)

CIS 371 (Roth/Martin): Performance 11

CPU Performance Equation

• Multiple aspects to performance: helps to isolate them

• Latency = seconds / program =

• (insns / program) * (cycles / insn) * (seconds / cycle)

• Insns / program: dynamic insn count = f(program, compiler, ISA)

• Cycles / insn: CPI = f(program, compiler, ISA, micro-arch)

• Seconds / cycle: clock period = f(micro-arch, technology)

• For low latency (better performance) minimize all three

– Difficult: often pull against one another

• Example we have seen: RISC vs. CISC ISAs

± RISC: low CPI/clock period, high insn count

± CISC: low insn count, high CPI/clock period

CIS 371 (Roth/Martin): Performance 12

MIPS (performance metric, not the ISA)

• Factor out dynamic insn count, CPU equation becomes…
• Latency: seconds / insn = (cycles / insn) * (seconds / cycle)

• Throughput: insns / second = (insns / cycle) * (cycles / second)

• MIPS (millions of insns per second): insns / second * 10-6

• Cycles / second: clock frequency (in MHz)

• Example: CPI = 2, clock = 500 MHz, what is MIPS?

• 0.5 * 500 MHz * 10-6 = 250 MIPS

• MIPS is OK for micro-architects
• Typically work in one ISA/one compiler, treat insn count as fixed

• Not OK for general public
• Processors with different ISAs/compilers have incomparable MIPS

• Wait, it gets worse…



CIS 371 (Roth/Martin): Performance 13

Mhz (MegaHertz) and Ghz (GigaHertz)

• 1 Hertz = 1 cycle per second
1 Ghz is 1 cycle per nanosecond, 1 Ghz = 1000 Mhz

• Micro-architects often ignore instruction count…

• … but general public (mostly) also ignores CPI
• Equates clock frequency with performance!!

• Which processor would you buy?
• Processor A: CPI = 2, clock = 5 GHz

• Processor B: CPI = 1, clock = 3 GHz

• Probably A, but B is faster (assuming same ISA/compiler)

• Classic example
• 800 MHz PentiumIII faster than 1 GHz Pentium4!

• Same ISA and compiler!

• Meta-point: danger of partial performance metrics!

CIS 371 (Roth/Martin): Performance 14

Non-CPU Performance Equation

• Clock frequency implies CPU clock
• Other system components have their own clocks (or not)

• E.g., increasing processor clock doesn’t accelerate memory

• Example
• Processor A: CPICPU = 1, CPIMEM = 1, clock = 500 MHz

• What is the speedup if we double clock frequency?

• Base: CPI = 2 ! IPC = 0.5 ! MIPS = 250

• New: CPI = 3 ! IPC = 0.33 ! MIPS = 333

• Clock *= 2 ! CPIMEM *= 2

• Speedup = 333/250 = 1.33 << 2

• What about an infinite clock frequency?
• Only a 2X (factor of 2) speedup

• Example of Amdahl’s Law

CIS 371 (Roth/Martin): Performance 15

Amdahl’s Law

• Literally: total speedup limited by non-accelerated piece

• Example: can optimize 50% of program A

• Even “magic” optimization that makes this 50% disappear…

• …only yields a 2X speedup

• For consumers: buy a balanced system

• For microarchitects: build a balanced system

• MCCF (Make Common Case Fast)

• Focus your efforts on things that matter

CIS 371 (Roth/Martin): Performance 16

How Can We Make Common Case Fast?

• If we don’t know what CC is?

• How is CPI actually measured?
• Execution time: time (Unix): wall clock / CPU + system

• CPI = CPU time / (clock frequency * dynamic insn count)

• How is dynamic insn count measured?
• Hardware event counters: e.g., LC3/P37X insn counter

• More useful is CPI breakdown (CPICPU, CPIMEM, etc.)
• So we know what performance problems are and what to fix

• Hardware event counters: e.g., LC3/P37X branch/load stall counters

+ Accurate

– Can’t measure everything or evaluate modifications

• Cycle-level micro-architecture simulation: e.g., SimpleScalar

+ Measure exactly what you want, evaluate potential fixes

– Burden of accuracy is on the simulator writer



CIS 371 (Roth/Martin): Performance 17

Latency vs. Throughput Revisited

• Latency and throughput: two views of performance …

• … at the program level

• ... not at the insn level

• Single insn latency

– Nobody cares: programs comprised of [billions]+ of insns

– Difficult to reduce anyway

• As number of dynamic instructions is large…
• Insn throughput ! program latency or throughput

+ Can reduce using inter-insn parallelism

• Most important example: pipelining

CIS 371 (Roth/Martin): Performance 18

Inter-Insn Parallelism: Pipelining

• Pipelining: cut datapath into N stages (here 5)
• One insn in each stage in each cycle

+ Clock period = MAX(Tinsn-mem, Tregfile, TALU, Tdata-mem)

+ Base CPI = 1: insn enters and leaves every cycle

– Actual CPI > 1: pipeline must often stall

• Individual insn latency increases (pipeline overhead), not the point

PC
Insn

Mem

Register

File
s1 s2 d

Data

Mem

+

4

Tinsn-mem Tregfile TALU Tdata-mem Tregfile

Tsinglecycle

CIS 371 (Roth/Martin): Performance 19

Pipelining: Clock Frequency vs. IPC

• Increase number of pipeline stages

+ Increases clock frequency (decreases clock period)

– Decreases IPC (increase CPI)

– At some point, actually causes performance to decrease

• “Optimal” pipeline depth is program and technology specific

• Remember example

• PentiumIII: 12 stage pipeline, 800 MHz

• Pentium4: 22 stage pipeline, 1 GHz

– Actually slower (because of lower IPC)

• Core2: 15 stage pipeline

+ Intel learned its lesson

CIS 371 (Roth/Martin): Performance 20

What Determines Clock Frequency?

• Technology (transistors & wires), micro-architecture (ALUs, pipeline)

• Clock period = MAX(Tinsn-mem, Tregfile, TALU, Tdata-mem)
• But which one of these is largest?

• Simple model: each gate has delay of ‘1’, wires have no delay

• TALU is largest: N-bit ripple-carry has 2N gate delays

• Reality: ALUs don’t use ripple-carry, wire delay dominates storage

PC
Insn

Mem

Register

File
s1 s2 d

Data

Mem

+

4

Tinsn-mem Tregfile TALU Tdata-mem Tregfile



CIS 371 (Roth/Martin): Performance 21

Summary

• Performance

• Latency and throughput, metrics

• CPU performance equation

• Next

• Fast integer arithmetic

CPUMem I/O

System software

AppApp App


