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CIS 371
Computer Organization and Design

Unit 2: Single-Cycle Datapath and Control

Part 1 of 2: Digitial Logic Review
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This Unit: Single-Cycle Datapaths

• Digital logic basics

• Focus on useful components

• Mapping an ISA to a datapath

• MIPS example

• Single-cycle control

• Implementing  exceptions using control

CPUMem I/O

System software

AppApp App
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Readings

• P+H

• Chapter 5
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So You Have an ISA…

• … not useful without a piece of hardware to execute it
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Implementing an ISA

• Datapath: performs computation (registers, ALUs, etc.)
• ISA specific: can implement every insn (single-cycle: in one pass!)

• Control: determines which computation is performed
• Routes data through datapath (which regs, which ALU op)

• Fetch: get insn, translate opcode into control

• Fetch ! Decode ! Execute “cycle”

PC
Insn

memory

Register

File

Data

Memory

control

datapath

fetch
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Two Types of Components

• Purely combinational: stateless computation
• ALUs, muxes, control

• Arbitrary Boolean functions

• Combinational/sequential: storage
• PC, insn/data memories, register file

• Internally contain some combinational components

PC
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memory

Register

File

Data

Memory
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fetch
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Building Blocks: Logic Gates

• Logic gates: implement Boolean functions

• Basic gates: NOT, NAND, NOR

• Underlying CMOS transistors are naturally inverting (   = NOT)

• NAND, NOR are “Boolean complete”
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Boolean Functions and Truth Tables

• Any Boolean function can be represented as a truth table
• Truth table: point-wise input ! output mapping

• Function is disjunction of all rows in which O is 1

A,B,C ! O
0,0,0 ! 0

0,0,1 ! 0

0,1,0 ! 0

0,1,1 ! 0

1,0,0 ! 0

1,0,1 ! 1

1,1,0 ! 1

1,1,1 ! 1

• Example above: O = AB’C + ABC’ + ABC
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Truth Tables and PLAs

• Implement Boolean function by implementing its truth table
• Takes two levels of logic

• Assumes inputs and inverses of inputs are available (usually are)

• First level: ANDs (product terms)

• Second level: ORs (sums of product terms)

• PLA (programmable logic array)
• Flexible circuit for doing this
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PLA Example

• PLA with 3 inputs, 2 outputs, and 4 product terms

• O0 = AB’C + ABC’ + ABC

A

B

C

O0

O1

Permanent

connections

Programmable

connections

(unconnected)
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Boolean Algebra

• Boolean Algebra: rules for rewriting Boolean functions

• Useful for simplifying Boolean functions

• Simplifying = reducing gate count, reducing gate “levels”

• Rules: similar to logic (0/1 = F/T)

• Identity: A1 = A, A+0 = A

• 0/1: A0 = 0, A+1 = 1

• Inverses: (A’)’ = A

• Idempotency: AA = A, A+A = A

• Tautology: AA’ = 0, A+A’ = 1

• Commutativity: AB = BA, A+B = B+A

• Associativity: A(BC) = (AB)C, A+(B+C) = (A+B)+C

• Distributivity: A(B+C) = AB+AC, A+(BC) = (A+B)(A+C)

• DeMorgan’s: (AB)’ = A’+B’, (A+B)’ = A’B’
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Logic Minimization

• Logic minimization
• Iterative application of rules to reduce function to simplest form

• There are tools for automatically doing this

• Example below: function from slide #8

O = AB’C + ABC’ + ABC

O = A(B’C + BC’ + BC)       // distributivity

O = A(B’C + (BC’ + BC))     // associativity

O = A(B’C + B(C’+C))         // distributivity (on B)

O = A(B’C + B1)                 // tautology

O = A(B’C + B)                  // 0/1

O = A((B’+B)(C+B))           // distributivity (on +B)

O = A(1(B+C))                   // tautology

O = A(B+C)                       // 0/1
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Non-Arbitrary Boolean Functions

• PLAs implement Boolean functions point-wise
• E.g., represent f(X) = X+5 as [0!5, 1!6, 2!7, 3!8, …]

• Mainly useful for “arbitrary” functions, no compact representation

• Many useful Boolean functions are not arbitrary

• Have a compact representation

• E.g., represent f(X) = X+5 as X+5

• Examples

• Decoder

• Multiplexer

• Adder: e.g., X+5 (or more generally, X+Y)
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Decoder

• Decoder: converts binary integer to 1-hot representation

• Binary representation of 0…2N–1: N bits

• 1 hot representation of 0…2N–1: 2N bits

• J represented as Jth bit 1, all other bits 0

• Example below: 2-to-4 decoder

B[0]

B[1]
1H[0]

1H[1]

1H[2]

1H[3]

B 1H
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Multiplexer (Mux)

• Multiplexer (mux): selects output from N inputs

• Example: 1-bit 4-to-1 mux

• Not shown: N-bit 4-to-1 mux = N 1-bit 4-to-1 muxes + 1 decoder

A

OB

C

D

S (binary)

S (binary)

A
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C

D

O

S (1-hot)
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Adder

• Adder: adds/subtracts two 2C binary integers

• Half adder: adds two 1-bit “integers”, no carry-in

• Full adder: adds three 1-bit “integers”, includes carry-in

• Ripple-carry adder: N chained full adders add 2 N-bit integers

• To subtract: negate B input, set bit 0 carry-in to 1
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Full Adder

• What is the logic for a full adder?
• Look at truth table

CI A B ! C0 S
0  0 0 ! 0  0

0  0 1 ! 0  1

0  1 0 ! 0  1

0  1 1 ! 1  0

1  0 0 ! 0  1

1  0 1 ! 1  0

1  1 0 ! 1  0

1  1 1 ! 1  1

• S = C’A’B + C’AB’ + CA’B’ + CAB = C ^ A ^ B

• CO = C’AB + CA’B + CAB’ + CAB = CA + CB + AB

FA
B

S

CO

A
CI

A

B

S

CI

CO
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N-bit Adder/Subtracter
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Datapath Storage Elements

• Three main types of storage elements

• Singleton registers: PC

• Register files: ISA registers

• Memories: insn/data memory
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Cross-Coupled Inverters (CCIs)

• Cross-coupled inverters (CCIs)

• Simplest storage element

• Most storage arrays (regfile, caches) implemented this way

• Where is the input and where is the output?

• Forget about this for a while

Q’ Q
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S-R Latch

• S-R (set-reset) latch

• Cross-coupled NOR gates

• Distinct inputs/outputs

S,R ! Q

0,0 ! oldQ

0,1 ! 0

1,0 ! 1

1,1 ! 0

• S=0, R=0? circuit degenerates to cross-coupled INVs

• S=1, R=1? not very useful

• Not really used … except as component in something else

Q
R

S

SR
R

S

Q

Q’
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D Latch

• D latch: S-R latch + …

• control that makes S=R=1 impossible

E,D ! Q

0,0 ! oldQ

0,1 ! oldQ

1,0 ! 0

1,1 ! 1

• In other words

0,D ! oldQ

1,D ! D

• In words

• When E is 1, Q gets D

• When E is 0, Q retains old value

Q

E

D

DL
D

E

Q
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Timing Diagrams

• Voltage {0,1} diagrams for different nodes in system

• “Digitally stylized”: changes are vertical lines (instantaneous?)

• Reality is analog, changes are continuous and smooth

• Timing diagram for a D latch

E

D

Q
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Triggering: Level vs. Edge

• The D-latch is level-triggered

• The latch is open for writing as long as E is 1

• If D changes continuously, so does Q

– May not be the functionality we want

• Often easier to reason about an edge-triggered latch
• The latch is open for writing only on E transition (0 ! 1 or 1 ! 0)

+ Don’t need to worry about fluctuations in value of D

E

D

Q
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D Flip-Flop

• D Flip-Flop: also called master-slave flip-flop

• Sequential D-latches

• Enabled by inverse signals

• First latch open when E = 0

• Second latch open when E = 1

• Overall effect?

• DFF latches D on 0!1 transition

• How about a DFF that latches on 1!0?

E

D

Q

DL
D

E

Q

DL

FF
D

E

Q
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Synchronous Systems

• Processors are complex FSMs
• Combinational (compute) blocks separated by FFs

• Synchronous systems
• Clock: global signal acts as write enable for all FFs

• Typically marked as triangle on FFs

• All FFs write together, values move forward in lock-step

+ Simplifies design: design combinational blocks independently

• Aside: asynchronous systems
• Same thing, but … no clock

• Values move forward using explicit handshaking

± Have many advantages, but difficult to design

FFFF
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FFWE: FF with Separate Write Enable

• FFWE: FF with separate write enable
• FF D(ata) input is MUX of D and Q, WE selects

• Alternative: FF E(nable) input is AND of CLK and WE

+ Fewer gates

– Creates timing problems

! Do not try to do logic on CLK in Verilog

! No, really.

FFWE
D

Q

WE

FF

D Q

WE
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Singleton Register

• Register: one N-bit storage word
• Non-multiplexed input/output: data buses write/read same word

• Implementation: FFWE array with shared write-enable (WE)
• FFs written on CLK edge if WE is 1 (or if there is no WE)

• Continuous read: value available as soon as it is written

D Q

NN

WE

FFWE

FFWE

FFWE

D0

DN-1

D1

WE

Q0

Q1

QN-1
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Register File

• Register file: M N-bit storage words

• Multiplexed input/output: data buses write/read “random” word

• Port: set of buses for accessing a random word in array

• Data bus (N-bits) + address bus (log2M-bits) + optional WE bit

• P ports = P parallel and independent accesses

• MIPS integer register file

• 32 32-bit words, two read ports + one write port (why?)

Register File

RS1VAL

RS2VAL

RDVAL

RDWE RS1 RS2
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Register File (Port) Implementation

• Register file with four registers
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Add a Read Port

• Output of each register into 4to1 mux (RS1VAL)

• RS1 is select input of RS1VAL mux

RS1

RS1VAL
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Add Another Read Port

• Output of each register into another 4to1 mux (RS2VAL)

• RS2 is select input of RS2VAL mux

RS1

RS1VAL

RS2VAL

RS2
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Add a Write Port

• Input RDVAL into each register

• Enable only one register’s WE: (Decoded RD) & (WE)

• What if we needed two write ports?

RS1

RS1VAL

RS2VAL

RS2RDWE

RDVAL

CIS371 (Roth/Martin): Datapath and Control 34

Another Useful Component: Memory

• Register file: M N-bit storage words

• Few words (< 256), many ports, dedicated read and write ports

• Logically static contents

• Synchronous

• Memory: M N-bit storage words, yet not a register file

• Many words (> 1024), few ports (1, 2), shared read/write ports

• Logically dynamic contents

• Leads to different implementation choices

Memory

DATAOUTDATAIN

WE

ADDRESS
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Unified Memory Architecture

• Harvard architecture: split insn/data memories
• More common today, why? (later)

• Unified architecture: unified insn/data memory
• Build in 372 (more conducive for P37X)

PC
Register

File

Insn/Data Memory

control

datapath

fetch
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Register File, Memory Implementations

• Real register files and memories not implemented with FFs

• Much too inefficient

• Actual implementations use grids of cross-coupled inverters
(CCI) and circuit magic

• A bit more on this when we talk about caches and main memory
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CIS 371
Computer Organization and Design

Unit 2: Single-Cycle Datapath and Control

Part 2 of 2: MIPS Datapath & Control
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Datapath for MIPS ISA

• Consider only the following instructions
add $1,$2,$3

addi $1,2,$3

lw $1,4($3)

sw $1,4($3)

beq $1,$2,PC_relative_target

j absolute_target

syscall

mfc0

• Why only these?

• Most other instructions are the same from datapath viewpoint

• The one’s that aren’t are left for you to figure out
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Start With Fetch

• PC and instruction memory (Harvard architecture)

• A +4 incrementer computes default next instruction PC

P

C

Insn

Mem

+

4
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First Instruction: add

• Add register file and ALU

P

C

Insn

Mem

Register

File

Op(6)Op(6) Rs(5)Rs(5) Rt(5)Rt(5) Rd(5)Rd(5) Sh(5)Sh(5) Func(6)Func(6)R-typeR-type

s1 s2 d

+

4
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Second Instruction: addi

• Destination register can now be either Rd or Rt

• Add sign extension unit and mux into second ALU input

P

C

Insn

Mem

Register

File

S

X

Op(6)Op(6) Rs(5)Rs(5) Rt(5)Rt(5)I-typeI-type Immed(16)Immed(16)

s1 s2 d

+

4

CIS371 (Roth/Martin): Datapath and Control 42

Third Instruction: lw

• Add data memory, address is ALU output

• Add register write data mux to select memory output or ALU output

P

C

Insn

Mem

Register

File

S

X

Op(6)Op(6) Rs(5)Rs(5) Rt(5)Rt(5)I-typeI-type Immed(16)Immed(16)

s1 s2 d

Data

Mem

a

d

+

4
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Fourth Instruction: sw

• Add path from second input register to data memory data input

P

C

Insn

Mem

Register

File

S

X

Op(6)Op(6) Rs(5)Rs(5) Rt(5)Rt(5)I-typeI-type Immed(16)Immed(16)

s1 s2 d

Data

Mem

a

d

+

4
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Fifth Instruction: beq

• Add left shift unit and adder to compute PC-relative branch target

• Add PC input mux to select PC+4 or branch target

P

C

Insn

Mem

Register

File

S

X

Op(6)Op(6) Rs(5)Rs(5) Rt(5)Rt(5)I-typeI-type Immed(16)Immed(16)

s1 s2 d

Data

Mem

a

d

+

4

<<

2

z
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Sixth Instruction: j

• Add shifter to compute left shift of 26-bit immediate

• Add additional PC input mux for jump target

P

C

Insn

Mem

Register

File

S

X

Op(6)Op(6)J-typeJ-type Immed(26)Immed(26)

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2
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“Continuous Read” Datapath Timing

• Works because writes (PC, RegFile, DMem) are independent

• And because no read logically follows any write

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

Read IMem Read Registers Read DMEM Write DMEM
Write Registers

Write PC
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“Edge Read” Datapath Timing

• Inverters delay global clock and create multiple negative edges

• All writes occur on global positive edge
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What Is Control?

• 9 signals control flow of data through this datapath

• MUX selectors, or register/memory write enable signals

• A real datapath has 300-500 control signals

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+
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ALUinB
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JP

ALUop
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Rdst
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Example: Control for add

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

BR=0

JP=0

Rwd=0

DMwe=0ALUop=0

ALUinB=0Rdst=1

Rwe=1
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Example: Control for sw

• Difference between sw and add is 5 signals

• 3 if you don’t count the X (don’t care) signals

P

C

Insn
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Register

File

S

X

s1 s2 d

Data
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a

d

+

4
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Example: Control for beq

• Difference between sw and beq is only 4 signals

P

C
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How Is Control Implemented?

P

C

Insn

Mem

Register
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s1 s2 d
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Implementing Control

• Each insn has a unique set of control signals

• Most are function of opcode

• Some may be encoded in the instruction itself

• E.g., the ALUop signal is some portion of the MIPS Func field

+ Simplifies controller implementation

• Requires careful ISA design
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Control Implementation: ROM

• ROM (read only memory): like a RAM but unwritable

• Bits in data words are control signals

• Lines indexed by opcode

• Example: ROM control for 6-insn MIPS datapath

• X is “don’t care”

XX000010j

XX001001beq

XX010100sw

11100100lw

01100100addi

00100000add

RwdRdstRweDMweALUopALUinBJPBR

opcode

CIS371 (Roth/Martin): Datapath and Control 55

Control Implementation: Random Logic

• Real machines have 100+ insns 300+ control signals

• 30,000+ control bits (~4KB)

– Not huge, but hard to make faster than datapath (important!)

• Alternative: random logic (random = ‘non-repeating’)

• Exploits the observation: many signals have few 1s or few 0s

• Example: random logic control for 6-insn MIPS datapath

ALUinB

o
p
c
o
d
e

add

addi

lw

sw

beq

j

BR JP DMwe Rwd Rdst ALUopRwe
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Datapath and Control Timing

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

Control ROM/random logic

Read IMem Read Registers

(Read Control ROM)

Read DMEM Write DMEM
Write Registers

Write PC
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Operating System Features

• Operating system (OS)

• Super-application (app) manages hardware for user-apps

• Isolates user-apps from hardware nastiness and each other

• Most ISAs provide support for operating systems (OSes)

• Privileged mode: OS is privileged, user-app’s are not

• Privileged insns/data: only OS can execute/read/write

• Traps/Syscalls: jump to preset address in OS, upgrade privilege

• User-app invokes when it wants something privileged done

• Return from trap: return to user-app, downgrade privilege

• Exceptions: jump to preset address in OS, upgrade privilege

• Happens automatically when user-app does something illegal

• Executes privileged insn, writes privileged address, /0, overflow

• Interrupts: jumps to preset address in OS, upgrades privilege

• Happens automatically on some external event (e.g., timer)
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Single-Cycle Datapath Performance

• One instruction per cycle (1 IPC or 1 CPI)

• Clock cycle time proportional to worst-case logic delay
• In this datapath: insn fetch, decode, register read, ALU, data memory

access, write register

• Can we do better?

P

C

Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4
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2
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Foreshadowing: Pipelined Datapath

• Split datapath into multiple stages

• Assembly line analogy

• 5 stages results in up to 5x clock & performance improvement

PC
Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

CIS371 (Roth/Martin): Datapath and Control 60

Summary

• Digital logic review

• Single-cycle datapath and control

• Next up:

• Performance & metrics

CPUMem I/O

System software

AppApp App


