CIS 371
Computer Organization and Design

Unit 2: Single-Cycle Datapath and Control

Part 1 of 2: Digitial Logic Review
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Readings

This Unit: Single-Cycle Datapaths

App | [ App [[App | o Digital logic basics

System software o Focus on useful components

e P+H
e Chapter 5
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Mem o | * Mapping an ISA to a datapath
e MIPS example

¢ Single-cycle control
e Implementing exceptions using control
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So You Have an ISA...

¢ ... not useful without a piece of hardware to execute it
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Two Types of Components

Implementing an ISA
‘:> J datapath
fetch ”
PE) Insn _ & Register ;DJ—V Data J
I—I__’ memory File A . Memory

o x

L T

. : performs computation (registers, ALUs, etc.)
o ISA specific: can implement every insn (single-cycle: in one pass!)

Control: determines which computation is performed

¢ Routes data through datapath (which regs, which ALU op)
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: get insn, translate opcode into control

. — Decode — “cycle”

Building Blocks: Logic Gates

fetch

A 4

A 4
[PCH ner
memory

datapath
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File x
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¢ Logic gates: implement Boolean functions
¢ Basic gates: NOT, NAND, NOR
¢ Underlying CMOS transistors are naturally inverting (g = NOT)

NOT (INV)

A _Do_ A

« NAND, NOR a
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e ALUs, muxes, control

o Arbitrary Boolean functions

: storage

¢ PC, insn/data memories, register file
¢ Internally contain some combinational components
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Boolean Functions and Truth Tables

L T

e Purely combinational: stateless computation

e Truth table: point-wise input — output mapping
¢ Function is disjunction of all rows in which O is 1

~
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e Example above: O = AB'C + ABC’ + ABC
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¢ Any Boolean function can be represented as a truth table




Truth Tables and PLAs

¢ Implement Boolean function by implementing its truth table

e Takes two levels of logic

¢ Assumes inputs and inverses of inputs are available (usually are)

o First level: ANDs (product terms)
¢ Second level: ORs (sums of product terms)

¢ PLA (programmable logic array)
¢ Flexible circuit for doing this
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Boolean Algebra

PLA Example

e Boolean Algebra: rules for rewriting Boolean functions

o Useful for simplifying Boolean functions

« Simplifying = reducing gate count, reducing gate “levels”
¢ Rules: similar to logic (0/1 = F/T)

o Identity: AL = A, A+0 = A

¢« 0/1: A0=0,A+1=1

e Inverses: (A') = A

e Idempotency: AA=A A+tA=A

e Tautology: AA'=0, A+A' =1

o Commutativity: AB = BA, A+B = B+A

» Associativity: A(BC) = (AB)C, A+(B+C) = (A+B)+C

¢ Distributivity: A(B+C) = AB+AC, A+(BC) = (A+B)(A+C)

 DeMorgan’s: (AB)' = A'+B’, (A+B)' = A'B’
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e PLA with 3 inputs, 2 outputs, and 4 product terms

e 00 = AB'C + ABC' + ABC

! ® PY PN Permanent
B LDC @ \d 4 connections
@ @ @
c Do—e ® ®
’ ’ Programmable
connections
(unconnected)
®
® @
o1
e — —
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Logic Minimization
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¢ Logic minimization

o Iterative application of rules to reduce function to simplest form
¢ There are tools for automatically doing this
e Example below: function from slide #8

O = AB'C + ABC' + ABC
O = A(B'C + BC' + BC)
O = A(B'C + (BC' + BQ))
0 = A(B'C + B(C'+())

0O =A(BC +B1)

O =A(BC + B)

O = A((B'+B)(C+B))

0 = A(1(B+CQ))

0 = A(B+C)
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// distributivity

// associativity

// distributivity (on B)
// tautology

/1 0/1

// distributivity (on +B)
// tautology

/1 0/1
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Non-Arbitrary Boolean Functions

e PLAs implement Boolean functions point-wise
e E.g., represent f(X) = X+5 as [0—5, 1—+6, 2—7, 3-8, ...]
¢ Mainly useful for “arbitrary” functions, no compact representation

e Many useful Boolean functions are not arbitrary
e Have a compact representation
e E.g., represent f(X) = X+5 as X+5
e Examples
e Decoder
e Multiplexer
o Adder: e.g., X+5 (or more generally, X+Y)
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Multiplexer (Mux)

Decoder

e Multiplexer (mux): selects output from N inputs
e Example: 1-bit 4-to-1 mux
¢ Not shown: N-bit 4-to-1 mux = N 1-bit 4-to-1 muxes + 1 decoder

S (binary)/j_\

S (1-hot) .
D> T S(binary)
A » Ao
8 (0]
B O C—p
> D—p
a B
D :}
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e Decoder: converts binary integer to 1-hot representation
¢ Binary representation of 0...2N-1: N bits
¢ 1 hot representation of 0...2N-1: 2N bits
» J represented as J® bit 1, all other bits 0
e Example below: 2-to-4 decoder

B[0]
B[] g
| M 1h11)
° B
- 1H[2]
:}.>1H[3]‘_7__,.-/—""//
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Adder

e Adder: adds/subtracts two 2C binary integers
o Half adder: adds two 1-bit “integers”, no carry-in
¢ Full adder: adds three 1-bit “integers”, includes carry-in
¢ Ripple-carry adder: N chained full adders add 2 N-bit integers
¢ To subtract: negate B input, set bit 0 carry-in to 1
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Full Adder

N-bit Adder/Subtracter

e What is the logic for a full adder?

0 >
=7 1
A » FA > S,
By <
Cpol) ™y . ;
» >
Ay | FAIT s
B, . B g
v A -
v e
A > EA —'PSN-1/,/'
BN_ﬂ—W .
‘ +/—
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Cross-Coupled Inverters (CCIs)

e Look at truth table | CI
CIAB —> CO S
0 00 —=0 0 S
0 01 —=0 1 i N Cl
I A y S
0 11—-1 0 BT 1T | FA
1 00—=0 1 B
1 011 0 vco
1 10—-1 0
1 11—-1 1
v Cco
e S=CAB+CAB'+CAB +CAB=C~A~B
e CO=CAB+CAB+CAB'+ CAB=CA+CB + AB
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Datapath Storage Elements
datapath

fetch ':>
n_"a_ Insn |—> __I:DJ—» Data J
—> >
memory A .| Memory

A A

] |
— control )

e Three main types of storage elements
+ Singleton registers: PC
. : ISA registers
. : insn/data memory
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e Cross-coupled inverters (CCIs)
¢ Simplest storage element
¢ Most storage arrays (redfile, caches) implemented this way
e Where is the input and where is the output?
¢ Forget about this for a while
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S-R Latch

¢ S-R (set-reset) latch

¢ Cross-coupled NOR gates R_ 3
¢ Distinct inputs/outputs
Q
S,R = Q S
0,0 — o0ldoQ -
0,1 = 0
1,0 = 1 & _Q
1,1 = 0 ST’ SR

S=0, R=07 circuit degenerates to cross-coupled INVs
S=1, R=1? not very useful
Not really used ... except as component in something else
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Timing Diagrams

D Latch

¢ Voltage {0,1} diagrams for different nodes in system
» “Digitally stylized”: changes are vertical lines (instantaneous?)
¢ Reality is analog, changes are continuous and smooth

¢ Timing diagram for a D latch

B | T

D [ [ | I L

Q [ [ L
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e D latch: S-R latch + ...
o control that makes S=R=1 impossible
E,D = Q

0,0 — 0ldQ D_
0,1 = oldQ >0
1,0 = 0
1,1 — 1
e In other words E_
0,D — 0ldQ
1,D = D
o In words Q, 9
« When E is 1, Q gets D | DL
e When E is 0, Q retains old value E
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Triggering: Level vs. Edge
E | I [
D [ L1 I I
Q [ L1 L

e The D-latch is level-triggered
¢ The latch is open for writing as long as E is 1
¢ If D changes continuously, so does Q
— May not be the functionality we want
¢ Often easier to reason about an edge-triggered latch
¢ The latch is open for writing only on E transition (0 — 1 or 1 — 0)
+ Don't need to worry about fluctuations in value of D
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D Flip-Flop Synchronous Systems

« D Flip-Flop: also called master-slave flip-flop I—O—»EOEJ
 Sequential D-latches D

Q

. . > =N - —
T TTapid by inverse signais ——ﬁ >z DL r DL e Processors are complex FSMs
o First latch open when E = 0

P E ¢ Combinational (compute) blocks separated by FFs
e Second latch open when E =1 5 _ Synchronous systems

- °
e Overall effect? -
« DFF latches D on 01 transition D: _Q ¢ Clock: global signal acts as write enable for all FFs
¢ How about a DFF that latches on 1—-0? :: AP » Typically marked as triangle. on FFs
) E o All FFs write together, values move forward in lock-step

+ Simplifies design: design combinational blocks independently

¢ Aside: asynchronous systems

T
¢ Same thing, but ... no clock
D 1| | I g
T

¢ Values move forward using explicit handshaking
+ Have many advantages, but difficult to design
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FFwe: FF with Separate Write Enable Singleton Register

e FFy.: FF with separate write enable BT Qo

« FF D(ata) input is MUX of D and Q, WE selects FFwe
D Q
N N ! FF H->'

i byas I rage -
D ->Q D—> —9 > D — Q

FF F N-1 | | N1
- EFwe FFuel |
s v ot it SO RO SO \N\;»\"‘-—-;
WE WE I WE R
¢ Alternative: FF E(nable) input is AND of CLK and WE ¢ Register: one N-bit storage word WE
+ Fewer gates ¢ Non-multiplexed input/output: data buses write/read same word

— Creates timing problems
= Do not try to do logic on CLK in Verilog
= No, really.

e Implementation: FF, array with shared write-enable (WE)
e FFs written on CLK edge if WE is 1 (or if there is no WE)
¢ Continuous read: value available as soon as it is written
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Register File

RDVAL RS1VAL
-\ >

Register File RS2VAL

¥

x
WE RD RS1 RS2

¢ Register file: M N-bit storage words
¢ Multiplexed input/output: data buses write/read “random” word
e Port: set of buses for accessing a random word in array
o Data bus (N-bits) + address bus (log,M-bits) + optional WE bit
e P ports = P parallel and independent accesses
e MIPS integer register file
e 32 32-bit words, two read ports + one write port (why?)
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Add a Read Port
'EEWAL

i

e Output of each register into 4tol mux (RS1VAL)
e RS1 is select input of RS1VAL mux
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Register File (Port) Implementation

A

¢ Register file with four registers
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Add Another Read Port

@ ’
L

RS2VAL
—>
D\ D\ D| - ;}RSWAL

RS21RS1

e Output of each register into another 4to1 mux (RS2VAL)
e RS2 is select input of RS2VAL mux
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Add a Write Port

RDVAL ﬁ ﬁ ﬁ 2

L RS2VAL
.

~
"c R§1VAL
L 4
¢
WE| ARD RS2TRS1
e Input RDVAL into each register
* Enable only one register's WE: (Decoded RD) & (WE)
e What if we needed two write ports?
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Unified Memory Architecture
datapath

s~
fetch ::>>|
o [ P

T |

l
—____control ] D) Yélx

| Insn/Data Memory |
e Harvard architecture: split insn/data memories
¢ More common today, why? (later)
¢ Unified architecture: unified insn/data memory
¢ Build in 372 (more conducive for P37X)
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Another Useful Component: Memory

DATAIN \DATAOUT
ADDRESS’| Memory
~
wE 1

e Register file: M N-bit storage words
¢ Few words (< 256), many ports, dedicated read and write ports
¢ Logically static contents
¢ Synchronous

e Memory: M N-bit storage words, yet not a register file
e Many words (> 1024), few ports (1, 2), shared read/write ports
¢ Logically dynamic contents
¢ Leads to different implementation choices
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Register File, Memory Implementations

¢ Real register files and memories not implemented with FFs
e Much too inefficient

¢ Actual implementations use grids of cross-coupled inverters

(CCI) and circuit magic
* A bit more on this when we talk about caches and main memory
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Datapath for MIPS ISA

¢ Consider only the following instructions
add $1,$2,$3
addi $1,2,$3
CIS_ 37_1 : 1w $1,4($3)
Computer Organization and Design sw $1,4($3)
beq $1,$2,PC_relative target
j absolute_target
syscall

Unit 2: Single-Cycle Datapath and Control
mfcO

Part 2 of 2: MIPS Datapath & Control « Why only these?

e Most other instructions are the same from datapath viewpoint
e The one’s that aren't are left for you to figure out
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Start With Fetch First Instruction: add

Insn Register
Mem File

P s1s2 d

Voo

1
R-type Rs(5) [Rt(5) 'Rd(5) Func(6)

e PC and instruction memory (Harvard architecture) o Add register file and ALU
¢ A +4 incrementer computes default next instruction PC
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Second Instruction: addi

P Insn Register
C Mem File
P P P> s1s2 d
I-type | Op(6) Hi R ed(16

¢ Destination register can now be either Rd or Rt
¢ Add sign extension unit and mux into second ALU input
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Fourth Instruction: sw

Third Instruction: Iw

P Insn __’ Register
C Mem File
P P P> s1s2 d
I-type | Op(6) BEi R ed(16

¢ Add data memory, address is ALU output
o Add register write data mux to select memory output or ALU output
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Fifth Instruction: beq

P Insn __’ Register Data
C Mem File Mem
P P P s1s2 d

&

G

4

I-type | Op(6) Bi R ed(16

¢ Add path from second input register to data memory data input
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P Insn __’ Register g Data
C Mem File Mem
P - P s1s2 d [T
EFR!
I-type | Op(6) Hi R ed(16

o Add left shift unit and adder to compute PC-relative branch target
¢ Add PC input mux to select PC+4 or branch target
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Sixth Instruction: j “Continuous Read” Datapath Timing

>
g
> +
>
- 4
>
>

a 6 P Insn __’ Register aData
C Mem File 4 Mem
P Insn __’ Register Data C > > sl sg d L a
C Mem File Mem /§ /F@_,
P - P s1s2 d [ 17
o | |
t t t
Read IMem Read Registers Read ISMEM Write DMEM
J-type | Op(6) Immed(26) Write Iéveﬁgztgrcs:
¢ Add shifter to compute left shift of 26-bit immediate ¢ Works because writes (PC, RegFile, DMem) are independent
* Add additional PC input mux for jump target e And because no read logically follows any write
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A\Y n H H
Edge Read” Datapath Timing What Is Control?
+ ] >
4 » BFi
> a a ) JP
P Insn | | Register Data
C Mem File 4 Mem
. < > s = d L = P Insn __’ Register g Data
A § }@_’ C Mem File Mem | Rwd
P - P s1s2 d [ 17
T

1 |} Rdst  ALUinB
¢ 9 signals control flow of data through this datapath

o Inverters delay global clock and create multiple negative edges » MUX selectors, or register/memory write enable signals
e All writes occur on global positive edge ¢ A real datapath has 300-500 control signals
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Example: Control for add

L9,

Register
File
s1s2 d

Rwd=0

ALUop=0ppwe=0

Rdst=1 ALUInB=0
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Example: Control for beq

Example: Control for sw

Register
File
s1s2 d

ALUop=0ppiwe=1

Rdst=X ALUiInB=1

o Difference between sw and add is 5 signals
¢ 3 if you don't count the X (don't care) signals
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How Is Control Implemented?

A 4

Register
File

s1s2 d

ALUop=1ppMwe=0

Rdst=X ALUInB=0
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¢ Difference between sw and begq is only 4 signals

Rwd=X

51
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P Insn Register
(¢} Mem File d
P P P> s1s2 d
A 4
Rwe

52



Implementing Control Control Implementation: ROM

e Each insn has a unique set of control signals ¢ ROM (read only memory): like a RAM but unwritable
e Most are function of opcode ¢ Bits in data words are control signals
¢ Some may be encoded in the instruction itself ¢ Lines indexed by opcode
¢ E.g., the ALUop signal is some portion of the MIPS Func field e Example: ROM control for 6-insn MIPS datapath
+ Simplifies controller implementation e Xis"“don't care”

» Requires careful ISA design

BR | JP | ALUInB | ALUop | DMwe | Rwe | Rdst | Rwd
> add| 0| 0 0 0 0 1 0 0
— addi| 0| 0 1 0 0 1 1 0
opcode L > w| 0| O 1 0 0 1 1 1
— sw| O 0 1 0 1 0 X X
L » beq| 1| O 0 1 0 0 X X
> j| o] 1 0 0 0 0 X X
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Control Implementation: Random Logic Datapath and Control Timing
¢ Real machines have 100+ insns 300+ control signals ¥
« 30,000+ control bits (~4KB) 4
— Not huge, but hard to make faster than datapath (important!) ) A
o - — -~ ity P Insn Register Data
e Alternative: random logic (random = ‘non-repeating’) c = File Merm
. . L . _ d
Exploits the observatpn. many 5|gna_ls have few 1s or few 0s S > > 152 d — >
e Example: random logic control for 6-insn MIPS datapath = %l/ :
add Py P
addi ° PY ontrol RO ando 0g
Iw
o o
=1 |sw ? | |
8| [be ? f f f i
e i LY S Read IMem Read Registers Read DMEM  Write DMEM
o (Read Control ROM) Write WQtlstgré
rite
v ?

JP DMwe Rwe Rw Rdst  ALUop ALSlS_JinB

BR
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Operating System Features

¢ Operating system (0S)
¢ Super-application (app) manages hardware for user-apps
¢ Isolates user-apps from hardware nastiness and each other

¢ Most ISAs provide support for operating systems (OSes)
¢ Privileged mode: OS is privileged, user-app’s are not

Privileged insns/data: only OS can execute/read/write
Traps/Syscalls: jump to preset address in OS, upgrade privilege

¢ User-app invokes when it wants something privileged done
Return from trap: return to user-app, downgrade privilege
Exceptions: jump to preset address in OS, upgrade privilege

¢ Happens automatically when user-app does something illegal

* Executes privileged insn, writes privileged address, /0, overflow
Interrupts: jumps to preset address in OS, upgrades privilege

¢ Happens automatically on some external event (e.g., timer)
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Foreshadowing: Pipelined Datapath

>®=DJ

O
Register
File 0 atal” 1=
P> s1s2 d v . em

A 4
\ 4

¢ Split datapath into multiple stages
¢ Assembly line analogy
o 5 stages results in up to 5x clock & performance improvement
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Single-Cycle Datapath Performance

> » >
Register
File ata i
P> s1s2 d [T em
A »

o
e One instruction per cycle (1 IPC or 1 CPI)

e Clock cycle time proportional to worst-case logic delay

¢ In this datapath: insn fetch, decode, register read, ALU, data memory
access, write register

e Can we do better?
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Summary
App | [ Aop | [ App | Digital logic review

System software ¢ Single-cycle datapath and control

Mem 1/O
e Next up:

¢ Performance & metrics
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