
Real-Time Syst (2012) 48:430–462
DOI 10.1007/s11241-012-9151-3

State-based scheduling with tree schedules: analysis
and evaluation

Madhukar Anand · Sebastian Fischmeister ·
Insup Lee · Linh T.X. Phan

Published online: 28 April 2012
© Springer Science+Business Media, LLC 2012

Abstract Distributed real-time systems require bounded communication delays and
achieve them by means of a predictable and verifiable control mechanism for the
communication medium. Real-time bus arbitration mechanisms control access to the
medium and guarantee bounded communication delays. These arbitration mecha-
nisms can be static dispatch tables or dynamic, algorithmic approaches.

In this work, we introduce a real-time bus arbitration mechanism called tree sched-
ules that takes the best parts of both sides: It can be analyzed like static dispatch ta-
bles, and it provides a certain degree of flexibility similar to algorithmic approaches.
We present tree schedules as a framework to specify real-time traffic and introduce
mechanisms to analyze it. We discuss how tree schedules can capture application-
specific behavior in a time-triggered state-based supply model by means of con-
ditional branching built into the model. We present analysis results for this model
specifically aiming at schedulability in fixed and dynamic priority schemes and wait-
ing time analysis. Finally, we demonstrate the advantages of state-based supply over
stateless supply by means of two case studies.

M. Anand
Cisco Systems, San Jose, USA
e-mail: anandm@seas.upenn.edu

S. Fischmeister (!)
University of Waterloo, Waterloo, Canada
e-mail: sfischme@uwaterloo.ca

I. Lee · L.T.X. Phan
University of Pennsylvania, Philadelphia, USA

I. Lee
e-mail: lee@cis.upenn.edu

L.T.X. Phan
e-mail: linhphan@cis.upenn.edu

mailto:anandm@seas.upenn.edu
mailto:sfischme@uwaterloo.ca
mailto:lee@cis.upenn.edu
mailto:linhphan@cis.upenn.edu

Real-Time Syst (2012) 48:430–462 431

Keywords Real-time networking · Scheduling · Network code

1 Introduction

Modern real-time systems realize distributed applications with timeliness require-
ments. An intrinsic property of such a system is that the correctness of the system
depends on the correctness of values and the correctness of timing. This implies that
a correct value at an incorrect time can lead to an error. Consider a car with a brake-
by-wire system, where the pedal communicates to the brakes when to apply force
to the tires: In this system, a correct value means that the brakes apply force to the
tires only when the driver hits the brake pedal, and correct timing means that the
time between the two events of “hitting the pedal” and “applying force” should be
bounded. It is obvious that the system is only useful, if both—correct timing and
correct values—are guaranteed.

Distributed real-time systems add the complexity of decentralized control to a
shared communication medium in the design process. In a decentralized system, all
the connected network nodes act independently and could access the medium con-
currently, resulting in message collisions. Retransmitting messages in the wake of
collisions would resolve this problem, but could make it difficult to bound the end-
to-end latency of messages. Another approach is to use dispatch tables in a TDMA
fashion. However, these methods are designed for the worst-case and always execute
this worst case, whereas our approach allows designing for the worst case but execut-
ing the worst case only if necessary and a better case otherwise. A primary research
goal therefore is to design effective real-time message arbitration without all these
shortcomings.

This goal has been the motivation to research elaborate mechanisms and led to
this work. Here we introduce tree communication schedules, or in short, tree sched-
ules, which provide a structured way to represent and program access control for
time-triggered communication. Our model of programming communication is dis-
tinct from standard TDMA schemes in that our model makes use of application-
specific state information at each network node to decide when to communicate. Such
information is vital in increasing the operational range and flexibility of applications
by, for instance, allowing retransmissions in specific cases or increasing throughput
by reclaiming resources and turning off unused components. In our model, the state
is kept by the use of shared variables. The variables are updated when messages are
transmitted, and the communication schedule depends on the value of these variables.

Our approach differs from other approaches that it aims to use application-specific
state information. Traditional scheduling techniques also maintain state such as a
ready queue or priority information. Our approach tries to use application-specific in-
formation such as the contents of a transmitted message containing a sensor reading,
the number of elements in a transmission or receive buffer, or the current tempera-
ture sensor reading. This application-specific information is then incorporated into
the schedule to make decisions that improve the performance of the system.

In this work, we introduce tree schedules and provide analysis results with dead-
lines and with known path probabilities. Specifically, the contributions of this work
include:

432 Real-Time Syst (2012) 48:430–462

– We show how we can express time-triggered state-based supply models with tree
schedules and show its advantages over stateless supply.

– In the presence of deadlines, we present results on the schedulability analysis of
time-triggered state-based supply w.r.t. both fixed and dynamic priority schemes.

– In the presence of known path probabilities, we present calculations for waiting
time analysis of messages serviced under state-based supply.

– We demonstrate the utility of the framework for control applications and jit-
tery/bursty environments by performing a case study with an inverted pendulum
system and a video streaming application.

The remainder of the article is structured as follows: Sect. 2 introduces tree sched-
ules as means for time-triggered state-based supply and defines their structure and
properties. Section 3 contains our results for schedulability analysis of message trans-
missions with tree schedules with fixed and dynamic priority schemes. Section 4
explains how to calculate average waiting times for messages scheduled with tree
schedules. Section 5 shows a case study of an inverted pendulum and demonstrates
the advantages of time-triggered state-based supply over stateless supply. Section 6
shows a case study of a jittery/bursty video streaming application which also shows
the advantages of time-triggered state-based supply over stateless supply. Section 7
briefly summaries the implementation efforts around tree schedules. Finally, we close
the paper in Sect. 8 with a brief summary of our work.

2 Tree schedule and definitions

Informally, a tree schedule is a structure consisting of locations and transitions be-
tween these locations such that its underlying graph is a directed tree. Each location
of the tree schedule may specify a transmission on the shared network, and each
transition is guarded by a condition that needs to be met before proceeding to the
next location. An empty location indicates that no transmission is scheduled in the
network.

2.1 Model overview

Figure 1 provides an overview of the model we use for our distributed real-time sys-
tems. A distributed real-time system consists of a set of tasks (τi). Tasks communicate
via messages (mi) which are encapsulated into packets. For this work we assume that
every message fits into one packet. Messages are produced according to a specified
arrival model such as periodic (Liu and Layland 1973), periodic with jitter (Baruah
et al. 1997), recurring branching task (Baruah 1998), control flow graph (Pop et al.
2000). Each task enqueues its messages in an output queue (qi). The system con-
tains multiple such queues, and each task uses exactly one for its messages. Several
tasks may share one queue. Messages in an output queue are ordered according to a
specified policy. Such a policy could be earliest deadline first or rate monotonic.

Messages are communicated in slots according to a tree schedule (Ω). A slot has
a start time and a length, and different slots may have different lengths. However,
all slot assignments and slot lengths are specified offline. A slot assignment is the

Real-Time Syst (2012) 48:430–462 433

Fig. 1 Model overview

mapping of messages and queues to individual slots. Slots, with their assignments
and lengths are specified as a state-based supply which is modelled as a tree schedule.
During a slot, the sending network node has exclusive write access to the network and
communicates as many messages from the specified queue as possible. If the queue
is empty, then the slot will remain unused.

On the receiving side, the network node enqueues received messages into an input
queue (q ′

i). The system contains several input queues. Each input queue is mapped
to one output queue, so messages from output queue q1 will be received into input
queue q ′

1. Tasks dequeue messages from the input queue.
We assume that time is given in discrete units. Further, we assume the presence

of a global clock and that all times are measured on this clock. The communication
medium provides an atomic broadcast service (a common assumption for our target
domain of embedded systems, which often use single segmented bus networks or can
be achieved by special hardware (Kopetz 1997)); therefore, either all network nodes
receive a message or none of them do. The system structure including the tasks, the
queues, and the task to queue mapping is known in advance and static. All necessary
data structures including the queues and the state-based supply are generated offline.

To ensure that the approach schedules, the developer can only include as many
decisions in the schedule as resources are available for the scheduling system. So

434 Real-Time Syst (2012) 48:430–462

for example in our implementation for switched Ethernet (Carvajal and Fischmeister
2010) on the NetFPGA platform, we operate the board at 125 MHz (62.5 for the
cores) which is sufficient to communicate at line speed for 1 Gbps Ethernet. On the
NetFPGA, we have 280 kB memory available for application-specific guards. On
the ML403 implementation (Fischmeister et al. 2009) we operate at 100 MHz for
100 Mbps Ethernet and have about 8 kB memory available for guard.

2.2 Definition of a tree schedule

In our model of a tree schedule, a location is similar to a vertex. The tree schedule in
Fig. 1 shows several locations (vertices), for example one being 〈qh,1〉.

Definition 1 (Tree Schedule) A Tree Schedule (TS) Ω is represented by a tuple
〈V, V ,Q, sl,K,T 〉 where

– V is a finite set of locations,
– V is a finite set of variables,
– Q is a finite set of queues that hold messages to be transmitted,
– sl : V ↪→ Q × B specifies the queue from which messages are transmitted in this

location and a clock constraint,
– K is a finite set of clocks |K| ≥ 1 relative to the shared global clock,
– T ⊆ V ×G× 2K × 2V is a set of transitions such that the underlying graph (V ,T)

is a directed tree.

We denote the root location by v0 ∈ V . The set of leaf locations is denoted by
V F ⊆ V . The mapping sl defines for each location a queue q (or ε) and a set of
clock constraints on that location. The queue q contains messages communicating
variables. Clocks are discrete time represented by Q, and the clock constraint b ∈ B

is of the form k = q where k is a clock and q ∈ Z+.
A transition (v, g, s, v′) ∈ T , denoted by v

g,s−→ v′, defines a source location v, an
enabling condition g, a finite set of clocks s to be reset, and a target location v′. For
reducible transitions, we will later expand v′ to a set of alternative target locations.
The enabling condition is any decidable function over the variables V . The enabling
conditions g1

v, . . . , g
m
v of transitions leaving one location v must satisfy the following

conditions: (1) any two enabling conditions gi
v and g

j
v are mutually exclusive and

(2) the set of enabling conditions is exhaustive, i.e.,
∨m

j=1 g
j
v = true. These conditions

ensure that the schedule always makes progress, and a reset to v0 will always occur
eventually when the schedule reaches a leaf. In practice, the enabling conditions are
typically functions of the state of the schedule, local variables, and transmitted values.

We assume that the enabling conditions are evaluated instantaneously. In practice,
however, evaluating the conditions will consume time but we treat this as the overhead
of implementing tree schedules. The metrics for measuring such overheads are treated
in our earlier work (Anand et al. 2006).

We define liveness to mean that some locations will always eventually be reached.
Note that liveness implies deadlock freedom. Tree schedules guarantee liveness by
construction, because in each tree schedule, exactly one guard gi

v is always enabled

Real-Time Syst (2012) 48:430–462 435

and a reset will always eventually occur. Consequently, the schedule’s root will al-
ways eventually be executed and all locations prior the first decision will always be
executed (reachable with a probability of 1). The set T is partitioned into sets Tm

and Tr , where Tm contains all transitions that have exactly one destination (i.e., for
all 〈v,g, s, v′〉 ∈ Tm we have |v′| = 1). We call the transitions in Tm minimum transi-
tions and the ones in Tr reducible transitions. Each network node can have multiple
outgoing transitions, and each transition could lead to multiple locations; here, the
system can choose to continue in one of the locations. This mechanism may encode
alternative, equivalent schedules which are all acceptable to the application, which
uses the schedule. Our notion of equivalence only considers the resulting resource
supply. Hence, two schedules are considered equivalent if they both satisfy the appli-
cation demand, although they might satisfy it differently or even overprovision it. For
example, if an application requires nine slots out of ten, then the two schedules, where
one provides ten out of ten and the other provides nine out of ten, are equivalent.

Definition 2 (Path) A path from location vm to location vm+n, denoted by pathΩ(vm,

vm+n), is a sequence of locations of a tree schedule Ω : vm gm+1,sm+1−→ · · · gm+n,sm+n−→
vm+n, where 〈vm+i−1, gm+i , sm+i , v

m+i〉 ∈ T for all i,1 ≤ i ≤ n. A complete path is
pathΩ(v0, v) with v ∈ V F ; the set of all complete paths is denoted by P .

Two paths will be called equivalent, if both can generate the same sequence of
transitions from the start and end location of the path. We denote two equivalent paths
p1 and p2 by p1 ≡ p2. The duration of a path, dur(p) with p = path(vm, vm+n), is
the time it takes to transit from vm to vm+n. If all complete paths of Ω have the same
duration, then we say that Ω is an isochronous tree schedule. Otherwise, it is said to
be anisochronous. In an isochronous tree schedule, the duration of a complete path is
defined to be the period of recurrence (P).

Finally, we note that the probability pr of path(vm, vm+n) is the probability of
reaching vm+n starting from vm. This probability is useful to reason about composi-
tion of anisochronous tree schedules where there is no fixed period of recurrence of
the start location.

2.3 Execution semantics

The execution semantics of a tree schedule as it is executed in the network layer
(see Fischmeister et al. 2007) for a complete architecture overview) is as follows:
The tree schedule starts execution at v0 with all clocks set to 0. The variables in V
are assigned to some default values by the user. The network layer then transmits
messages from queues as specified in schedule’s mapping sl (or if this is ε, then it
remains idle). The network layer remains in the current location v until it can make a
suitable transition to one of v’s children (recall that exactly one g will be enabled by
definition). This happens when the clock constraint of the current location evaluates
to true. The decision about which transition is taken is made by first evaluating all
the enabling conditions and then making a transition to the one that is enabled. If this
transition leads to multiple locations (representing equivalent schedules), then the
system chooses the first one that is stored in the list of destination locations. Since

436 Real-Time Syst (2012) 48:430–462

we use a distributed system, each node executes this independently. This requires
distributing information relevant to making the decision to all nodes and assumes a
reliable communication medium. These two problems together with verifying the tree
schedule are extensively discussed here (Fischmeister et al. 2007).

The execution continues until a leaf location is reached. In the leaf location
(v ∈ V F), the schedule resets immediately after the clock constraint becomes true.
This means that (1) the schedule starts again at the root v0 and (2) all the clocks K

are set to 0 during the reset. Variables get updated at run time through messages. If
one network node transmits a new value for a variable, then all nodes use this new
value for evaluating enabling conditions. For more details about this, we refer the
reader to Fischmeister et al. (2006).

2.4 Example

Assume a distributed real-time system in which we have to communicate one sensor
value. Data integrity requirements specify that the system must tolerate failures at the
sensor reading hardware. We assume that the variation in the reading is bounded by
δ unless a fault occurs, faults happen with a temporal distance of at least one com-
munication round, fault occur in reading the value and are independent of faults in
the controlling system and the tree schedule, and we assume that the communication
medium between the units is reliable. Our approach requires three separate sensor
reading units. Each unit uses its own sensor and produces a value. The units then
need to agree on what the real sensor value is. To implement this, we need three
values x1 to x3 communicated in queues q1 to q3. The units use these values to com-
municate each one’s sensor reading. With our assumptions, a simple majority vote is
sufficient. Figure 2 shows the resulting tree schedule for this example. In the figure,
a tuple (a, b) represents the queue from which a message is being transmitted (a)
and the time spent in that location (b). The two branches A and B only differ in the
ordering of the initial two sensor readings. Note, that if two values already create a
decisive vote, then it is unnecessary to communicate the third one.

We can encode the application by the TS 〈V, V ,Q, sl,K,T 〉:
– V = {v0, v1, v2, v3, v4, v5, v6, v7, v8}

Fig. 2 Example tree schedule

Real-Time Syst (2012) 48:430–462 437

– V := {x1, x2, δ}, K = {k},
– Q = {q1, q2, q3} with one queue for each sensor,
– sl as shown in the figure for each location v,
– Tr = {〈v0,∅, {k}, {v1, v5}〉}, and Tm contains all other transitions.

The guard g0 := |x1 − x2| < δ checks whether the first two sensor readings are
already within a bound δ. The clock k is reset on every transition.

The execution of the schedule is as follows: The system starts executing at the
root location v0. Since the clock constraint in location v0 is clk = 0, the system im-
mediately selects one of the branches and continues execution. Let us assume that
it continues on Branch A: The system enters location v1. There it transmits value
x1 and waits for the clock constraint (clk = 10) to become true. It then proceeds to
location v2 where it transmits value x2 and waits again for 10 time units. Then, the
system evaluates the guard g0, and depending on result, it will enter location v3 or v4.
In location v3, the system will immediately reset and continue at the root location. In
location v4, the system will transmit the third value x3 before it resets.

2.5 Relation to other state-based models

State-based methods have also been recently developed in the context of formal
modeling and analysis of stream processing systems. For instance, event count
automata (Chakraborty et al. 2005) and its hybrid techniques (Phan et al. 2007,
2008) have been used to model bursty characteristics of event streams and state-
dependent scheduling policies. Similarly, timed-automata (Alur and Dill 1994) have
also been used to describe complex task arrival patterns and processing semantics (see
e.g., Abdeddaïm et al. 2003; Hendriks and Verhoef 2006). It has been shown for these
models that, by capturing the state-information, not only are these models able to de-
scribe more complex practical systems, but also achieve a better analysis accuracy.
Tree schedules can be considered as a special class of automata-theoretic methods,
where the automata structure is limited to a tree structure. As a result, they allow for
more efficient analysis techniques, which cannot be achieved using automata verifi-
cation, while still being highly expressive.

On the implementation side, mode changes (Real and Crespo 2004) as imple-
mented in, for instance, the Time Triggered Architecture (Kopetz 1997) permit some
flexibility to adjust the current schedule to the application’s demands. The developer
can specify different schedules for different modes and then switch between modes
at run time. Modern protocols such as FlexRay (FlexRay Consortium 2004) or Pow-
erLink Ethernet (Ethernet 2003) can also adjust in how the application uses the dy-
namic segments. However, compared to tree schedules and their implementation (see
Sect. 7) they offer less flexibility and oversight as tree schedules encapsulate all pos-
sible adaptations in one representation and tree schedules can make decisions after
each communication slot.

2.6 Generation of tree schedules

It is important to understand how and when tree schedules occur in systems. While it
is outside the scope of this work, we still want to refer to related work that addresses
this question.

438 Real-Time Syst (2012) 48:430–462

Tree schedules and other state-based schedules are generated from high-level spec-
ifications. Related work has shown to generate such schedules from control sys-
tems (Weiss et al. 2009) specifications, synchronous programs or Simulink (Potop-
Butucaru et al. 2009), and from regular specifications (Alur and Weiss 2008). We
also wrote a demonstrator to use state-based schedules in the Simulink TrueTime
framework (Cervin et al. 2003). In generating these schedules is a topic of ongoing
research.

3 Analysis with deadlines: schedulability

If deadlines for messages are known, then their schedulability analysis can be per-
formed. In this section, we consider the schedulability analysis of messages given a
periodic task model that generates these messages. We consider the cases when the
messages are scheduled for transmission either with the Earliest Deadline First (EDF)
or Rate Monotonic (RM) policy and the resource (network) is provided according to
a tree schedule. We consider EDF and RM, because both are optimal algorithms in
their class.

We assume that messages are generated by tasks, and that messages are released
every time a task is executed. Each task has a fixed resource (network) requirement
e that specifies how many network slots are needed for the messages of a task to be
successfully communicated. The tasks also have a deadline d , by which the transmis-
sion should be completed. The released messages are enqueued into a shared queue,
from which they are scheduled either according to EDF or RM scheduling policy.
We associate all the tasks that share a queue with a workload W . We now present the
schedulability analysis for such a system with periodic tasks. Note that preemption of
messages cannot occur, because we assume that the whole message always fits into a
single slot.

The network demand bound function (dbf) of a task that releases a message m

provides an upper bound on the amount of resource required to meet the deadlines of
all the released messages. For a time interval length t , dbf(t) gives the largest network
demand in any time interval of length t . The dbf(t) includes all the task instances with
messages that are both released and have their deadlines within the interval.

The supply bound function sbfQΩ of a tree schedule Ω lower bounds the amount
of network provided (resource) to the messages in the queue Q. For a time interval
length t , sbfQΩ(t) gives the smallest network supply in any time interval of length t .
In the remainder of this section, we assume that the queue Q is apparent from the
context, and represent the sbf as sbfΩ(t).

We also define the service time of a resource supply as the duration that it takes for
the supply to provide the resource. Specifically, the service time function tbfQΩ(t) re-
turns the time it takes for the supply Ω to provide t units of resource for the workload
W that shares the queue Q.

In the remainder of this section, we consider that the tasks specified are periodic,
without jitter. It is to be noted that the framework of tree schedules (which describes
the resource supply) itself can be used in conjunction with other task models as well.
For analyzing schedulability with other task models, the resource requirement (in

Real-Time Syst (2012) 48:430–462 439

terms of demand bound function) would have to be computed, and checked against
the supply provided by the tree schedules to ensure schedulability.

For a task set W consisting of periodic tasks τi ≡ (pi, ei, di), where pi is the
periodicity of the task and ei and di are the network requirement and deadline of the
message generated by τi , respectively,

dbfEDF (W, t) =
∑

τi∈W

(⌊
t − di

pi

⌋
+ 1

)
· ei (1)

This dbf has been proposed by Baruah et al. (1990) in the context of computational
resources.

For a periodic task set W under RM scheduling, Lehoczky et al. (1987) proposed
a dbfRM(W, t, i) as,

dbfRM(W, t, i) = ei +
∑

τk∈HPW (i)

⌈
t

pk

⌉
· ek (2)

where HPW(i) is the set of higher priority tasks than τi in W . For a task τi over a
resource supply model Ω , the worst case response time ri(Ω) of τi can be computed
as given in Shin and Lee (2004) and based on Joseph and Pandya (1986) for periodic
resource models:

ri(Ω) = min{t} s.t. dbfRM(W, t, i) ≤ sbfΩ(t) (3)

For isochronous TS, we present the following scheme to compute its sbf. The
procedure is similar to that used by Baruah (1998) to compute the dbf of a recurring
branching tasks (RBT) which is a task model with branches.

To compute the sbfQΩ of a tree schedule Ω , we need to compute the lower bound
on the amount of network provided (resource) to the messages in the queue Q. This is
computed for two cases based on the period of recurrence P . The first case considers
the supply provided in any interval t of duration < 2P for that queue, and the second
case calculates the minimum supply for that queue amongst all intervals t (≥ 2P).
In the first case, the supply in any interval t is computed by enumerating all possible
paths of the tree schedule of duration t , and noting the minimum possible supply in
these paths. To compute the worst case supply in the second case, we break down
the supply in interval t > 2P into multiple intervals of duration P , which provide
minimum possible supply in duration P , and the remainder interval, which is going
to be of duration < 2P . The idea is that, by breaking it down in this fashion, we can
compute the demand for any interval t > 2P based on the demand calculated in the
first step. This technique is elaborated below.

1. Case t < 2P : Consider the TS Ω with a period P and a time interval of length
t < 2P where P is the period of Ω . In this case, we enumerate all the paths
and build a table tabulating the different t and corresponding minimum supply,
sbfΩ(t) for every queue. Observe that in this case, the initial location v0 occurs at
most once. There are two subcases. The first subcase is a path where v0 does not
occur at all, and the second subcase where v0 occurs exactly once. If v0 does not

440 Real-Time Syst (2012) 48:430–462

Fig. 3 Critical run for t ≥ 2P

appear in a path, then, the path originates at a internal location va , and terminates
at another internal location vb. The number of distinct runs in this subcase is,
therefore, O(|V |2) corresponding to the number of different combinations of va

and vb. Now consider the second subcase. In case v0 appears exactly once, we can
describe the path (in general) to consist of two components: a path starting from
some location va leading to v0 via a leaf vb and a path from v0 to some location vc.
The number of distinct runs in this subcase is, therefore, O(|V |3) corresponding
to the number of different combinations of va, vb and vc. Based on this, we can
state that the enumeration procedure in either subcase is polynomial in |V |.1

2. Case t ≥ 2P : For t ≥ 2P , we first define the worst case supply path for a queue Q

given a tree schedule Ω as a path from v0 back to v0 with the minimum network
supply (for a queue Q). We denote the supply along this path by wsQ.

In general, a path with minimum supply in Ω for queue Q and duration t

(≥ 2P), can be seen to consist of the three sub-paths. The first part of the run
consists of a path from some internal location vi to the initial location v0 through
some leaf location. The second part of the run consists of some (non-zero) paths
from location v0 back to v0. The third part of the run consists of a path from v0 to
some internal location vj . The three sub-paths of path of duration t are illustrated
in Fig. 3. Formally, a path(vi, vj) of duration t (≥ 2P) can be shown to consist of
three sub-paths:

– a path(vi, v0) of duration t1 s.t. t1 < P ,
– a path(v0, v0) of duration t2 s.t. t2 = kP,∃k ∈ N,
– a path(v0, vj) of duration t3 s.t. t3 < P , and
– t1 + t2 + t3 = t .

A few observations:
(a) Given a path with minimum supply for a queue Q of duration t ≥ 2P , there

are following possibilities. (a) The path starts at v0 (i.e., vi = v0, t1 = 0),
or (b) ends at v0 (i.e., vj = v0, t3 = 0), or (c), begins and ends at v0, or
(d) comprises of all the three sub-paths, i.e., begins and ends at a location
different from v0.

(b) The minimum supply for a queue Q during any path that begins at v0 and ends
at v0 has to be equal to wsQ. Therefore, the minimum supply in the second
part of the run is simply k · wsQ.

(c) Consider the first and the last sub-paths. Since path(vi, v0) of duration t1 ends
in v0 and path(v0, vj) of duration t3 starts from v0, for the purposes of sbf
computation, we can concatenate them into a single path of duration t1 + t3,
as the supply of the new path is the same as that of the two paths individually.

1However, it must be noted that the enumeration complexity is actually pseudopolynomial as number of
vertices |V | itself is exponential in terms of the input.

Real-Time Syst (2012) 48:430–462 441

Fig. 4 Example tree schedule
for computing the sbf

Based on the above observations, we proceed to compute the minimum supply in
Ω for queue Q and duration t (≥ 2P) as follows. We have to consider all the four
possibilities highlighted in the first observation. In case such a path begins and
ends at v0, then t is a multiple of P , and the minimum supply for a queue Q is
simply . t

P /wsQ. If the path either begins at v0, or ends at v0 (but not both), then
again, the minimum resource supply for queue Q for the phase from v0 back to v0

is . t
P /wsQ. The remainder of the run has a duration of less than P , and its supply

can be looked up the enumerated table from the first case as sbfΩ(t − . t
P /P).

If the path of minimum duration neither begins, nor ends, at v0, then there are
two cases to consider: t1 + t3 < P , and P ≤ t1 + t3 < 2P . If the first and third sub-
paths combined have a duration less than P , the minimum supply can be looked
up the enumerated table from the first case (t < 2P) as sbfΩ(t − . t

P /P). The
minimum supply contribution of the sub-path from v0 to v0 would be . t

P /wsQ.
Otherwise, if the duration of the first and third sub-paths combined is at least
P and less than 2P , then, the supply would be sbfΩ(t − . t

P /P + P), and the
contribution of the middle portion would be (. t

P / − 1)wsQ.
Combining all these different possibilities, we can state the sbfΩ(t) for a queue

Q and t ≥ 2P compactly as,

min
{⌊

t

P

⌋
wsQ + sbfΩ

(
t −

⌊
t

P

⌋
P

)
,

(⌊
t

P

⌋
− 1

)
wsQ

+ sbfΩ

(
t −

⌊
t

P

⌋
P + P

)}
(4)

Example 1 Consider the tree schedule Ω as shown in Fig. 4. There are 4 queues
in the system, labeled Q0,Q1,Q2 and Q3. The tuple (Q,n) indicates the queue
being serviced (network supply) for n units of time. The tree schedule presented is
isochronous with a period of recurrence 12.

sbfΩ is tabulated for Q0 and Q1 in the Fig. 5.
To elaborate on the procedure outlined above, consider queue Q0. Observe that Q0

receives a supply in locations v2 and v3, and v4. In any path from v0 to v0, the least
amount of supply that queue Q0 receives is 2. One such path is v0 → v4 → v5 → v0.

442 Real-Time Syst (2012) 48:430–462

Fig. 5 The sbf values for
t ≤ 2P for TS in Fig. 4

Fig. 6 The tbf values for TS in
Fig. 4

Therefore, we have wsQ0 = 2. Similarly, it can be seen that and wsQ1 = 4, on any
path from v0 back to v0. For any path of duration < 10 that visits v0 at most once,
the worst case supply for Q0 is 0. One such path is v5 → v0. Therefore sbfQ0

Ω (t) for
t ≤ 10 is 0. From the path v5 → v0 → v1 → v3, we can also see that sbfQ0

Ω (14) = 1.
Any other path, for instance, one involving location v2 will involve a greater supply,
and is therefore, ignored in the computation. After we have computed sbf values
in Fig. 5, we can easily compute the tbf values. For example, the first (minimum)
duration where queue Q0 is guaranteed of a supply of 1 unit is 14, a supply of 2
units is 15, a supply of 3 units is 26, and so on. The numbers for other queues can be
computed similarly. The computed tbf values are shown in Fig. 6.

Real-Time Syst (2012) 48:430–462 443

The sbf computation procedure for isochronous models cannot be directly applied
to anisochronous tree schedule models. This is because, the minimum duration be-
tween successive invocations of the root location v0 in the anisochronous case, de-
pends on the particular run. In fact, a reduction from the integer knapsack problem
can be used to prove that sbf computation for this case is NP-hard. It is possible to get
around this limitation, by resorting to approximations to lower bound the supply. One
possibility is to use approximations to the integer knapsack problem to compute the
approximate minimum supply. The other possibility is to convert the anisochronous
tree schedule into an isochronous tree schedule, such that the minimum supply is pre-
served (i.e., it does not increase) across the transformation. A similar approach has
been proposed for computing the demand of anisochronous tasks (Anand et al. 2008),
and we leave the possibility of pursuing this approach as future work.

We are now in a position to state the schedulability conditions under two schedul-
ing algorithms—EDF and RM. EDF is a dynamic scheduling algorithm where the
scheduler schedules tasks that are closest to their deadline with priority, i.e., the task
with earliest deadline is scheduled for execution over tasks that have later deadlines.
RM scheduling is a static priority scheduling algorithm, where task priorities are as-
signed based on the period of execution of the job: the shorter the task period, the
higher is the task priority. The results we present below for EDF and RM are similar
to Theorem 1 and 2 (Shin and Lee 2003) stated in the context of periodic resource
models.

Theorem 1 Consider a workload W consisting of periodic tasks τi ≡ (pi, ei, di),
(di ≤ pi) that generate messages mi with resource (network) requirement ei and a
deadline di every pi units of time. Let us also denote by rli the release time of task
τi . W is schedulable under EDF, if and only if,

∀0 < t < 2LCMW + rlmax, dbfEDF (W, t) ≤ sbfΩ(t) (5)

where LCMW is the least common multiple of all pi , and rlmax = maxτi∈W rli .

Proof If sbfΩ is less than dbfW , then the required resources are insufficient, and
the workload W is not schedulable. This implies the necessity. To show sufficiency,
we prove that if all tasks in W are not schedulable by EDF, then Eq. (5) does not
hold. Let t2 be the first instant at which a message generated by some task τi in
W misses its deadline. Let t1 be the latest instant at which the resource supplied
was idle or was supplied to a message whose deadline is after t2. Therefore, for the
time interval t ′ = t2 − t1, the total demand is greater than the supply provided by
Ω , which implies dbfEDF (W, t ′) > sbfΩ(t ′). The condition should be tested for all
intervals 0 < t < 2LCMW + rlmax . This is because each of the periodic tasks could
be asynchronously released, and for the asynchronous tasks, it has been shown by
Leung and Merrill (1980) that the task set is feasible if and only if all deadlines in the
interval 0 < t < 2LCMW + rlmax are met. !

Theorem 2 Consider a workload W consisting of periodic tasks τi ≡ (pi, ei, di),
(di = pi) that generate messages mi with resource (network) requirement ei and a

444 Real-Time Syst (2012) 48:430–462

deadline di . W is schedulable under RM, if and only if,

∀τi ∈ W,∃0 < t ≤ pi, dbfRM(W, t, i) ≤ sbfΩ (t) (6)

Proof A workload W is schedulable with Ω if and only if the maximum service
duration for all the messages of W is no greater than their relative deadlines. For a
task τi ∈ W , the maximum response time of a workload occurs when it experiences
the worst-case interference Ii from other higher priority tasks that share the same
queue. The maximum service duration of Ω for Ii is given by tbf(Ii), which is the
maximum response time ri(Ω) of τi . Therefore, a necessary and sufficient condition
for τi to meet its deadline with supply Ω is ri(Ω) ≤ pi . We get the desired result from
Equation 3 and the observation that all messages generated by tasks in the workload is
schedulable with Ω if and only if each of them is individually schedulable with Ω . !

Discussion Although we consider a conditional resource supply, we have not
specifically considered the conditions in the branching in our analysis above. By
ignoring the conditions, we were able to derive a schedulability condition under
both dynamic, and fixed priority scheduling. Viewed in the context of conditional
task and supply models, these results may be too conservative and pessimistic. Ex-
act schedulability analysis, which models the conditions explicitly, can be performed
by timed model checking. We refer the reader to some approaches involving timed
model checking (Fersman et al. 2002; Fischmeister et al. 2007) which have performed
such analyses. We plan on expanding our results using some of the methods used in
literature.

In this work, we have focused exclusively on message schedulability, i.e., the
schedulability of the system with respect to network resource. This analysis makes
the assumption that computational resources to enqueue/dequeue messages from the
queues, and other execution requirements of the tasks that generate messages are
met. Although separating computational and communication requirements keeps the
analysis simple, to be completely safe, what we need to do is to analyze both compu-
tational and communication requirements in conjunction. This type of schedulabil-
ity analysis is called holistic, which has been extensively explored for systems with
stateless supply (see e.g., Tindell and Clark 1994). We note that model checking tech-
niques discussed above can be used to perform such holistic schedulability analysis
for tree schedules. The disadvantage of the model checking approach is the lack of
closed form schedulability conditions, which may be desirable for quick checking.
We leave the prospect of extending the analysis to consider computational require-
ment of tasks as future work.

4 Analysis with probabilistic choices: average waiting time

If path probabilities (pr as mentioned in Sect. 2) are known, then we can analyze how
long a message waits in a queue before it is transmitted. This is an important metric
both from the perspectives of quality of service and estimating the error, for instance,

Real-Time Syst (2012) 48:430–462 445

in control applications. The average waiting time specifies how long a specified mes-
sage has to wait from the instant it arrives, to the instant it is serviced (i.e., when it
gets a communication slot in the network).

We start with the assumption that we are given an application that generates dif-
ferent events. These events, in turn, generate messages which need to be sent on the
network. We assume that there are two types of events: independent and dependent
ones. For instance, in a fault tolerant application, there could be a provision to trans-
mit a message again in case the original message could not be sent. The original event
constitutes an independent event whereas the transmission of the backup message is
a dependent event. We assume that independent events arrive according to a known
distribution. We also assume that the conditional probabilities of a dependent event
given the events it depends on are known. For instance, such a model can be presented
in the form of a dependency graph. Such a dependency graph can be generated from
the knowledge of dependencies and probabilities of different events.

In addition to the message arrival at network nodes, we assume a Tree Schedule
Ω , which specifies the CPU schedule where the application runs. We also assume
that there is a known mapping from messages to slots in the communication schedule
and the probability of taking a transition in the schedule. Further, in our calculations,
we assume that each of the reducible transitions is equally likely to be taken.

We now introduce some additional terminology for this section.
Terminology. When messages arrive, we assume that they will be enqueued in

the queue qin. The message at the head of the queue qin on a network node will be
serviced in the slot assigned to the node holding the message. We refer to the time
spent in the queue until the message reaches the head of the queue as the waiting
time (TW). The effective service time (TES) is the total time spent at the head of the
queue qin waiting for the slot plus the time in the slot (TS). The effective waiting time
(TEW) can be defined as TW + TES − TS . For the analysis here, we do not consider
the waiting time in the queue qout of the receiving node, as we are more interested in
the queueing delay related to the communication schedule.

In our analysis, we consider event-triggered systems, in which messages are gen-
erated as a result of events. For the analysis, the system is assumed to consist of a
network of queues and we consider the service and waiting times once the system
has reached a steady state. We note that the waiting time may be different for the first
few messages, but not so in a stabilized system. For event-triggered systems, indepen-
dent events are considered to arrive as a Poisson process, i.e., the number of arrivals
N(E , t) of an event E in a finite interval t is given by P {N(E , t) = m} = (λt)m

m! e−λt .
We choose the Poisson process as it represents the sequence of events that are ran-
domly spaced in time. We defer the proposition of considering more complicated
models (e.g., Lehoczky 1996) as future work. Further, to simplify the analysis, we
consider infinite buffers.

Waiting time analysis Before we present the distribution of effective service times
given a tree schedule, we introduce some terms and functions to be used in that result.

Let us assume that messages are generated corresponding to an event Ei that ar-
rives according to a Poisson distribution, and that they are serviced at multiple loca-
tions Vi = {v1

i , . . . , v
m
i } as specified per a Tree Schedule Ω . For example, given the

446 Real-Time Syst (2012) 48:430–462

TS in Fig. 4, if we assume an event of interest gets serviced by queue Q0, then,
Vi = {v2, v3, v4}. As in Sect. 2.2, pr(v

i, vj) of path(vi, vj) is the probability of
reaching vj starting from vi . For every location v

j
i ∈ Vi , we define set F(v

j
i) as

the set of leaf locations that are reachable from v
j
i . In the TS specified in Fig. 4,

for an event that is serviced by queue Q0, F(v1) = {v2, v6} and F(v4) = {v5}. As
there could be multiple locations in Vi servicing a particular event, we define a con-
tribution of every location v

j
i ∈ Vi towards the service time of event Ei by a function

w(v
j
i) = pr(v

0, v
j
i) · ∑

v∈F(v
j
i)

pr(v
j
i , v) 1

m(v) , where m(v) is the number of service

locations of Ei from v0 up to, and including, v. Informally, the weight function w(v
j
i)

computes how likely a particular event is serviced by location v
j
i considering the

probability of reaching v
j
i . We denote by S(v

j
i) ⊂ Vi , the set of descendant schedule

locations servicing event Ei that are reachable from location v
j
i . Lastly, we denote by

NSi ⊂ V F , the set of leaf locations such that the path from v0 to any location in NSi

contains no service location for event Ei . For example, given the TS in Fig. 4 and an
event that is serviced by queue Q3, then, NSi = {v2, v5}.

The following theorem gives a bound on the average waiting time to service all
these messages.

Theorem 3 Given a TS Ω , if the messages corresponding to an arrival event Ei are
serviced at schedule locations Vi = {v1

i , . . . , v
m
i } as specified in Ω , then the moment

(i.e., distribution of a random variable.) s of the effective service times is given by,

T1n

(
v

j
i

)
=

∑

vk
i ∈S(v

j
i)

pr

(
v

j
i , vk

i

)
· dur

(
v

j
i , vk

i

)n (7)

T2n

(
v

j
i

)
=

∑

vk
i ∈F(v

j
i)

pr

(
v

j
i , vk

i

)
·
(
dur

(
v

j
i , v0) + µ0

i

)n (8)

sn(Ei) =
∑

v
j
i ∈Vi

w
(
v

j
i

)(
T1n

(
v

j
i

)
+ T2n

(
v

j
i

))
(9)

µ0
i =

∑
vk
i
∈S(v0)

pr (v
0,vk

i)·dur(v0,vk
i)+∑

v∈NSi
pr (v

0,v)·dur(v0,v)

1−∑
v∈NSi

pr (v0,v)
where n is the order of the

moment, and the terms are as defined above.
The mean and variance of effective service times (TES) for an event Ei are then

given by s1(Ei) and s2(Ei) − (s1(Ei))
2, respectively.

Proof Let the messages corresponding to an arrival event Ei get serviced in slots at
locations Vi = {v1

i , . . . , v
m
i } in the TS Ω . Consider one such location, say v

j
i . The

effective service times experienced starting from this location depends on the next
slot available for Ei starting from v

j
i . Now, it is possible that one of the descendants

of v
j
i in Ω , say vk

i will be one servicing Ei . If this is the case, then the effective
service time will be dur(vj

i , vk
i). When this path involves reducible transitions (there

Real-Time Syst (2012) 48:430–462 447

are multiple paths to vk
i from v

j
i), we consider dur to be the average time taken over

all the reducible transitions. Therefore, the nth moment of effective service time in
this case is,

∑
vk
i ∈S(v

j
i)

pr(v
j
i , vk

i) · dur(vj
i , vk

i)
n.

If there is no direct descendant slot that services Ei , then the schedule Ω will
consist of a return to the root location from some leaf location that is a descen-
dant of v

j
i and the service slot would be reached in the next cycle at any of the

locations servicing Ei from v0, say vk
i . The probability of reaching vk

i is pr(v
0, vk)

and the service time here is simply dur(v0, vk). On the other hand, the proba-
bility that no service slot would be reached is (1 − ∑

v
j
i ∈S(v0)

pr(v
0, v

j
i)) where

S(v0) ⊂ Vi is the set of next schedule locations servicing event E (from location
v0). The average effective service time starting from v0 can be derived as, µ0

i =
∑

vk
i ∈S(v0) pr(v

0, v
j
i) · dur(v0, vk

i) + ∑
v∈NSi

pr(v
0, v)(dur(v0, v) + µ0

i). The aver-
age cycle duration for schedules without any slot for Ei is then obtained by solving

the above equation to get, µ0
i =

∑
vk
i
∈S(v0)

pr (v
0,vk

i)·dur(v0,vk
i)+∑

v∈NSi
pr (v

0,v)·dur(v0,v)

1−∑
v∈NSi

pr (v0,v)
.

Therefore,
∑

vk
i ∈F(v

j
i)

pr(v
j
i , vk

i) · (dur(vj
i , v0) + µ0

i)
n is the nth moment of effec-

tive service time in this case, where the initial location v0 is reached through vk
i .

From the above observations, we get that, the nth moment of the total effective
service time sn(Ei) = ∑

v
j
i ∈Vi

w(v
j
i) · (T1n(v

j
i)+T2n(v

j
i)), where w(v

j
i) is the weight

function associating the contribution of location v
j
i towards the servicing time of an

event such that
∑

v
j
i
w(v

j
i) = 1 along a path. !

Returning to the analysis of waiting times, the arrival of independent events is
Poisson (and hence Markovian), the service times are general distribution function,
we can model them as the queueing model M/G/1 for the independent events.
Therefore, the variance in arrival times is σ 2

T (Ei) = 1
λi

. Now consider dependent
events. Let us say that the dependent event Ej depends on an independent event Ei .
Since the arrival process of Ei is Poisson, its inter-arrival times are exponentially dis-
tributed. The inter-arrival times (TI) of dependent event Ej is given by the function,
P(TI = t) = pij · λiv

−λi t . We can consider this as a G/D/1 queueing scheme. For

a G/G/1, we have the following inequality on the waiting time, Wq ≤ λ
σ 2

X+σ 2
T

2(1−λµX)
(Bose 2001), where λ is the average rate of arrival, µX,σX are the mean and variance
of the service times, and σT is the variance of the arrival time. For a dependent event,
the mean arrival time is σ 2

T (Ej) = 1
pij λi

.

Definition 3 Given an event-triggered system comprising of events Ei , i = 1, . . . , n

such that the independent events arrive as a Poisson process, and these events are
serviced by a TS Ω , the average waiting time (TW) of an event Ei satisfies,

TW(Ei) ≤ λ2
i s2(Ei)

2 + 1
2λi (1 − λi s1(Ei))

(10)

448 Real-Time Syst (2012) 48:430–462

Fig. 7 A tree schedule with one
on-the-fly choice

where Ei is an independent event with arrival rate of λi , and

TW(Ej) ≤
p2

jλ
2
i s2(Ei)

2 + 1

2pjλi (1 − pjλi s1(Ei))
(11)

where Ej is a dependent event with interarrival times distributed as pj · λkv
−λk t for

some k. s1(E) and s2(E) are the average and variance of the effective service times as
given in Theorem 3. The average waiting time for the whole system can be defined
as, TW(E) = 1

|E |
∑

Ei∈E T ′
W(Ei) where TW

′ represents the upper bounds of effective
waiting times.

Example 2 Consider the schedule in Fig. 7 with one on-the-fly choice at time t = 1.
Let the probability of guard transition to n3 be 3

4 and n2 be 1
4 . Assume that the slot for

n3 in the upper path is single slot in duration. Let us assume that the arrivals at n1 is
Poisson with rate λ1. Then, the variance in arrival time for n1 is 1

λ2
1
. The mean service

time for n1 is 9
4 , and the variance is (3

4)22 + (1
4)32 − (9

4)2 = 3
16 . Let us analyze the

waiting time for a dependent event n3. Its mean arrival rate is 1
λ , the mean service

time would have to be calculated for positions of n3 (on the path above and the path
below). In both these cases, this is given by (3

4)1 + (1
4)2. Therefore the mean time is

5
4 . Its variance is then (3

4)1 + (1
4)4 − (5

4)2 = 3
16 . For n2, the mean arrival time is 1

4λi

and the mean service time is
∑

n≥0(
3
4)n 1

4 (2 + 2 · n) = 8. The average waiting time
for the entire schedule can now be calculated.

5 Case study 1: inverted pendulum control

The aim of the case study is to evaluate the idea of tree schedules. For this, we im-
plement a control system for an inverted pendulum, which tolerates one independent,
transient value fault using triple modular redundancy (Kopetz 1997). In the case study
we show benefits of state-based communication schedules as expressed in tree sched-
ules and analyse them using the presented framework.

An inverted pendulum is essentially a pole mounted on a cart. The pole is free to
rotate round on an axis, and the cart can move horizontally. The objective is to main-
tain the inverted pendulum in the upright position (see Fig. 8). The control parameter
is the linear acceleration F of the pivot. This parameter bases on the pendulum’s
angle θ to the car and its angular speed ω. We assume the linear acceleration F to
saturate around a maximum, meaning that the motor only has finite strength specified
by a saturation point.

Real-Time Syst (2012) 48:430–462 449

Fig. 8 Inverted pendulum

In our system, we want the system to tolerate one fault of the reading of variable θ .
We use standard triple modular redundancy to mask this fault. In our particular case,
we use three independent units reading θ ’s value to vote. These units are labeled u1 to
u3. All units share a broadcast network which they use to communicate their readings
to a controller following a communication schedule. The control unit receives all
readings and computes a new value for F . To mask a single measuring fault, the
controller receives three readings and uses a majority vote to identify the correct
value. A majority of at least two votes for one reading value will decide the voting.
Note that we assume faults will only occur when reading the variables. We exclude
faults in the controller or the system executing the tree schedules.

5.1 The simulation model

Figure 9 shows the Simulink model for the inverted pendulum using a PID controller
(the inverted pendulum block was taken from CMU (last visited 12/2007)). We model
the packetized broadcast network shared by the controller and the measurement units
by an enabled, triggered subsystem. A pulse generator (labeled “Network slotting”)
specifies the slot length by triggering the subsystem and the communication schedule
enables communication of a new value θ to the controller (representing a successful
voting). For example, in the standard TDMA system a successful voting happens
every third slot: Given a step size of 0.02 s, a new value of θ is available every
0.06 s (= 3 · 0.02 s), In the implementation, we ignore overhead introduced by clock
synchronization or computation time for reading values, adjusting values, and the
voting. This can be incorporated as additional overhead to the cycle duration.

The blocks between the inverted pendulum and the PID controller (i.e., PACKET-
SIM and memory) simulate a packetized network and tree schedules. The network
schedules are implemented in a state machine inside the block called “Tree Sched-
ule”. This block is triggered by the pulse generator in the block “Network slotting”
that specifies the slot length. The output of the tree schedule block enables or dis-
ables the network (i.e., PACKETSIM and memory) and thus controls whether the PID
controller receives a fresh value of θ . Additionally, the Tree Schedule block receives
an randomized input parameter to simulate error.

This error rate is used to determine the likelihood of a decisive vote after receiv-
ing γ + x slots with γ as the minimum number of required readings and x as the

450 Real-Time Syst (2012) 48:430–462

Fig. 9 PID control with pendulum and Tree Schedules

extra readings. For example: after receiving three readings, the voting is always de-
cisive given that at most one error occurs. We use this in our case study to determine
the likelihood that a voting is already decisive after receiving two readings (i.e., the
first reading equals the second reading). Thus, when a system tolerates n faults, the
probability P(x) of requiring γ + x slots is:

P(x) =
(

γ

x

)
px(1 − p)(γ−x) (12)

with γ = 2 2n+1
2 3 defining the minimal number of slots, p defining the probability of

any network node failing, and 1 ≤ x ≤ . 2n+1
2 / defining the number of additionally

required slots.
If x = 1, then we need one additional slot in our communication schedule; there-

fore, one of γ slots contains a different value than the others, which happens when a
fault occurred. For γ = 3 this is: (1 −p)(1 −p)p + (1 −p)p(1 −p)+p(1 −p)(1 −
p) = 3p(1−p)2. For an arbitrary γ , this is: γ ·p · (1−p)(γ−1). Now for an arbitrary
x, the probability is the sum of px(1 − p)(γ−x) for all possible subsets of length x.
Equation (12) follows.

For the case study, we consider a slot length of 0.02 time units and we use
a simulation fixed-step size of 10−4. The physical values are taken from CMU
(last visited 12/2007): The mass of the cart is 0.5 kg, the mass of the pendulum is
0.2 kg, the friction of the cart is 0.1 N/m, the length to the pendulum center of mass
is 0.3 m, the inertia of the pendulum is 0.006 kg, and gravity is approximated by
9.8 m/s2. The PID controller has a setting of Kp = 100, Ki = 1, and Kd = 20. Fi-
nally, we assume an error rate of p = 0.005, which means that one out of two hundred
measurements shows an error. Although, this results in a mean time to fault which
is several magnitudes higher than empirical results (Kopetz 2004), a lower fault rate
only further improves our results.

5.2 Case study schedules

Figure 10 shows the schedules for the two scenarios. The schedule in Fig. 10(a) shows
the standard table-based TDMA schedule in which all three values are communicated
each round before a decision is made and a new value is supplied to the PID controller.

Real-Time Syst (2012) 48:430–462 451

Fig. 10 Schedules for the case study

Fig. 11 Simulation sample run with a force saturation of 19 000 Newton

Figure 10(b) shows the tree schedules for the same scenario; however, in this system
the PID controller may get a new value after already two slots if the voting is decisive.

For comparison purposes, we also consider the optimal schedule, which assumes
no faults. This schedule consists of only one slot in which one measurement unit
reports a new value of θ to the PID controller.

5.3 Hypothesis, experiment, and results

In our case study, we would like to the test the following hypothesis: Using tree
schedules, the required motor strength to stabilize the pendulum is significantly lower
than using table-based TDMA. The intuition is that the tree schedule will provide
values more frequently (a ratio of 2:3 for the system using the tree schedule compared
to the one using table-based TDMA), and this increase in update frequency allows us
to use a weaker motor.

Figure 11 shows an example run of the simulation using a motor force limit of
19 000 Newton. Note that we used aggressive PID settings. In practice, the settings
would be tuned to permit lower motor forces. The top part of the chart shows the
angle θ of the pendulum, the middle part shows the force applied to the cart, and the
bottom part shows the cumulative error with respect to the stable position of θ = 0.

To test the hypothesis, we gradually lowered the force limit of the motor as ap-
plied by the PID controller. We started with a force limit of 25 000 which allowed

452 Real-Time Syst (2012) 48:430–462

Fig. 12 Simulation results of motor force limits

all systems to stabilize the pendulum, down to the point when no system was able to
stabilize any longer. Figure 12 shows the results of this experiment by comparing the
settling time of the pendulum with the force limit of the motor.

For the statistical analysis, we use the Kruskal-Wallis Rank Sum Test to compare
the results of the algorithms, because our resulting data follows no normal distri-
bution (tested with the Shapiro-Wilk normality test). Since our model had no other
disturbances other than the induced faults in the sensor, only the tree schedule data
differs between runs. We ran 100 runs with varying random seeds to collect data for
the statistical analysis. From these results we can make the following observations:

– The hypothesis is correct. Using tree schedules allow us to use a weaker motor
without compromising the requirement of tolerating one fault. In addition to the
presented scenario, we also checked with different sets of values for pendulum
length, cart weight, etc. and the system with the tree schedule consistently outper-
formed the system using table-based TDMA schedules (with a p of usually less
than 0.0003 in the statistical test).

– The system settles faster than expected. Our expectation was that tree schedules re-
duce settling time by about 2/3: for example, given a force limit of 20 000, TDMA
has a settling time of 1.6 seconds, so tree schedules should offer an approximate
settling time of 1.3 seconds. However, as can be seen in Fig. 12, the system using
tree schedules settles much faster than the estimated value; in this case nearly twice
as fast.

– The operational range increases more than expected. Similar to the previous obser-
vation, using tree schedules exceeded our estimates. Using tree schedules, we can
use a motor that is approximately twice as weak and achieve the same performance
than the system using table-based TDMA.

Real-Time Syst (2012) 48:430–462 453

6 Case study 2: scheduling of video streaming systems

This case study aims to illustrate the efficacy of tree schedules in practical real-time
applications. Specifically, we employ tree schedules to manage the video transmis-
sion over a non-reliable network in a video-streaming system. We show that, by cap-
turing the state-information, state-based tree schedules enable better system perfor-
mance compared to the standard round robin, in terms of server buffer requirement,
user waiting time, and user I/O buffer requirement. At the same time, we demonstrate
that tree schedules adapt well to bursty traffic conditions and effectively utilize the
system’s resources while ensuring stable system behavior.

6.1 System architecture

Figure 13 depicts the high-level architecture of the system. As shown in the figure,
the MPEG-2 encoder running at the server first encodes the raw video stream from
the camera and stores its output in the queue ENC_Q. Note that we assume a con-
stant bit rate encorder (CBR), which is commonly used for real-time video (Whitaker
and Benson 2001). The network scheduler reads the encoded bitstream from the
queue ENC_Q and transmits to the user across a bursty network. The transmitted
video stream, upon arriving at from the network interface, is stored at the input queue
DEC_Q while waiting to be decoded by the MPEG-2 decoder running at the user’s
machine. The decoded video stream will finally be displayed at the output device.

In this system, we assume that the encoder encodes the raw video at a constant bit
rate of 15 Mbps. The encoded bitstream consists of three types of frames: intra (I),
non-intra predicted (P) and bidirectional (B) frames, where possible patterns of I, B
and P are determined by a transition system that determines the implementation of
the encoder application as described in Wandeler et al. (2004). Here, the size of an
I-frame is taken to be 2 times the size of a P-frame and 6 times the size of a B-frame.
The decoder reads data from its input queue DEC_Q at the same speed as the encoder
(15 Mbps), after an initial delay of 20 seconds waiting for the initial frames buffering
in the queue DEC_Q.

The encoded video stream is transmitted through a non-reliable network that ex-
hibits bursty behavior, which is caused by other background applications that share
the same network with the video streaming application (not shown in Fig. 13). We as-
sume that these background applications are network intensive, and they take as much
network bandwidth as are allocated by the network scheduler. In this case study, we

Fig. 13 Architecture of a video streaming system

454 Real-Time Syst (2012) 48:430–462

Fig. 14 Simulink model for the video streaming case study

assume that the quality of service for these background applications is not our con-
cern. Note that, if the quality of service of the other applications were a concern, then
they would need to be encoded in a tree schedule as well.

The above sharing of network resource might result in a delay in the transmission
of the video stream. However, to ensure that the system works fine in the standard
round robin scheme, the network bandwidth is assumed to be two times faster than
the encoder’s bitrate in average. Given the above specification, we are interested in
the behavior of the part of the system enclosed in the dashed rectangle box. In par-
ticular, we would like to compute the memory requirements for both the encoder and
the decoder, as well as the end-to-end delay of the encoded frames (i.e., the instant
they are written into the queue ENC_Q till the instant they are read by the decoder).
We consider two cases, where the network scheduler follows (i) a state-based tree
schedule, and (ii) the standard round robin scheduling policy. Figure 14 shows the
Simulink model for the case study.

6.2 Case study tree schedule

In this video streaming system, we assume that the network scheduler has feedback
information on the status of the user’s input queue. The tree schedule decides whether
to transmit the encoded frames based on the current network condition, the fill-level
(amount of data) in the encoder queue ENC_Q, and the fill-level of the decoder’s
queue DEC_Q.

As illustrated in Fig. 15(a), the tree schedule always transmits a frame when (i) the
encoder’s queue ENC_Q is non-empty and the fill-level of the decoder’s queue is
below a threshold of DL bytes, or (ii) the encoder’s queue is more than a threshold
of EH bytes. Our aims are to guarantee that there are no underflows at the decoder’s
queue and no overflows at the encoder’s queue. However, when the transmission of
the current frame is not urgent (i.e., the decoder’s queue has buffered enough to allow
for a smooth decoding process and the encoder’s queue is not close to being full), it
is desirable the allocate the network resource to other background applications. As a
result, the tree schedule always delays its transmission of the current frame in ENC_Q

if ENC_Q contains less than EL bytes and DEC_Q contains at least DH bytes. In
all other cases, the scheduler distributes the resource evenly to the video stream and
other applications by following the standard round robin policy.

Real-Time Syst (2012) 48:430–462 455

Fig. 15 The deterministic (TS) and probabilistic (pTS) tree schedules for the video stream

Figure 15(b) sketches the tree schedule for the encoded video stream for the de-
terministic (TS) and probabilistic version. In the figure, qe refers to the encoder’s
queue (ENC_Q) whereas q refers to the queue of another application that shares the
same network with the video application. The tree schedule has two variables xe and
xd , which denote the current fill-level of the encoder’s queue and decoder’s queue,
respectively. One can verify that the guard associated with each transition in the tree
schedule corresponds to the scheduling decision shown in Fig. 15(a). Note that xd is
communicated back to the encoder as part of the background traffic.

For the probabilistic tree schedule shown in Fig. 15(b), we can apply the analy-
sis developed in Sect. 4. The arrival of B, P, and I frames follows the frame pattern
generation process described by the FSM given in Wandeler et al. (2004), which can
generate three commonly used patterns: IPB, IPBB and IPBBPBB. Here, we assume
if there are more than one outgoing transitions from a state of the FSM, the transition
that generates an I frame is taken one third of the time, whereas the transitions that
generate B and P frames are taken with equal probability. Based on this generation
process, the probability of arrival is based to be 0.335 (B), 0.278 (P), and 0.385 (I),
respectively. The mean service time for the encoded data can be calculated as per The-
orem 3 as 2 ·0.898+0.025+0.025 = 1.847 slots of the tree schedule. The variance is
4 · 0.898 + 0.025 + 0.025 − 1.84 · 1.847 = 0.230. Now, applying the Definition 3, we
get the bound on expected waiting times as 3.942,3.714, and 4.552 slots for B, P, and
I frames. The expected queue size can then be found using Little’s theorem (Sect. 5.2,
Cooper 1981) as, 3.942 ·0.335+3.714 ·0.278 ·3+4.552 ·0.385 ·6 = 14.971. Note that
the queue size calculated is the expected size. From a practical standpoint however,
the maximum queue size may be more interesting. We estimate this using simulations
in the next section.

6.3 Hypothesis, experiment, and results

The video streaming system as built can exhibit jittery and bursty behavior: the com-
munication can be jittery, and this in turn leads to bursty arrival patterns at the de-
coder side. In addition, as the encoder can also switch between different encoding
sequences upon a change in the video scene, the number of frames that are generated
is also varied with time. In this case study we would like to test the hypothesis: state-
based (e.g., tree scheduled) systems can handle bursty/irregular and jittery behaviour
better than schedules that don’t consider state (e.g., round robin) systems.

456 Real-Time Syst (2012) 48:430–462

Fig. 16 Buffer size in the data queues of the encoder and decoder

We ran the Simulink model 100 times for a duration of 5 000 produced frames. The
resulting data contains 997 936 observations per variable. Our data collection process
is as follows: We run the Simulink model in one of the three configurations—round
robin, tree schedule, probabilistic tree schedule—from the command line and store
the resulting data with a run identifier in a data file. The data files act as input to our
statistical analysis.

Our data passed our integrity checks: (1) all queues always have byte count in N≥0
(2) all queues always have frame count in N≥0, (3) the encoder always produces data
at integer values following the specification (t DIV 1 = 0), (4) the queue byte counts
always change by a value between 0 and 6, which corresponds to a combined push
and pop action of a frame.

6.3.1 Queue size analysis

Both the encoder and the decoder contain queues to buffer data packets in case of
sporadic packet drops or bursty events on the decoder side.

Figure 16 shows the empirical cumulative distribution function (ECDF) for the
queue sizes of the different scheduling scenarios. The x-axis shows the buffer size
normalized to B-frames; so a value of one means that it has the size of one B-frame.
The y-axis shows the probability of a specific buffer size being required at run time.
For example, in 80 percent of the simulation cases, the tree schedule requires a queue
of at most 25 at the encoder side while round robin requires at least 67 units.

This figure is useful to compare how the different strategies use queues in the
system. Due to the large amount of collected data, the confidence bands on the ECDF
are minimal and can be ignored. For example the confidence band on 80 percent for
round robin is precisely 67. From the data, we can observe the following:

– Hypothesis holds: Deterministic tree schedules can handle bursts and jitter better
than stateless schedules. The tree scheduled system has a steeper increase in its

Real-Time Syst (2012) 48:430–462 457

probability than the round robin scheduled system. This means that the queue sizes
vary less between the different runs. In fact, the round robin scheduled system has a
long tail close to the probability of one, which means that building a reliable system
with round robin will require much over-provisioning of buffers. The difference
between the two systems comes form the fact that tree schedules can react to bursts
in the system as they can encode a separate state how to handle a burst.

– Tree schedules can require smaller queue sizes in bursty and jittery systems. The
cross over point where the tree schedule and the round robin schedule perform
equally well is low for both the encoder and the decoder queue. With a high
reliability—this equals a low frame drop rate which will occur, if the queue cannot
contain all frames—the tree schedule clearly outperforms round robin.

We finally note that, based on the simulations, we found that the mean queue size
with probabilistic tree schedules was 13.85041 B frames. As can be seen, this number
is close to the theoretical bound (14.971) that we computed in Sect. 6.2 based on the
analysis developed in Sect. 4.

6.3.2 Queue waiting times

We also investigated the waiting time for packets in the queues. The results are equiv-
alent to the ones for the queue size behavior shown before. The data for tree schedules
shows less variation than round robin and this means that the tree schedules provide
more robust and predictable timing patterns. Due to space constraints, we cannot dis-
play the figures.

6.3.3 Frame underruns

The two queues in the system buffer data in case of bursts. A queue underrun occurs,
if an entity such as the network or the decoder tries to read from the queue, but
the queue is empty. Queue underruns are of particular interest at the decoder side,
because when the decoder wants to read the next frame, but the queue is empty, the
resulting video will be discontinuous. If many underruns happen at run time, then the
video will be choppy.

Table 1 shows the percent of occurred underruns for the different queues. We
calculate the percentage as the ration of the total number of underruns over the total
number of read requests for the queues. From the data, we can observe the following:

Table 1 Queue underruns of
the round robin (RR), the tree
schedule (TS), and the
probabilistic tree scheduled
(pTS) system

Queue Schedule Underruns [%]

1 Encoder RR 0.0201

2 TS 0.0000

3 pTS 0.0153

4 Decoder RR 0.1688

5 TS 0.0000

6 pTS 0.1458

458 Real-Time Syst (2012) 48:430–462

– State-based schedules can be used to enforce boundary conditions. The tree-
schedule-based system cannot experience underruns in the encoder queue caused
by the network scheduler, because the schedule at run time explicitly checks for
this behavior. A surprising result is that this also results in zero underruns at the
decoder side. Note that underruns can occur due to other problems such as loss of
the network link.

– Probabilistic conditions can replace deterministic decisions in a state-based
schedule. The probabilistic schedule works as well as the round robin schedule.
The difference between the two systems is statistically insignificant although the
probabilistic schedules seems to outperform the round robin one.

7 Implementation of tree schedules

We successfully implemented tree schedules in several prototypes. Due to the space
constraints, we provide only a quick overview and cite relevant work.

We can translate a tree schedule into a Network Code programs. Network
Code (Fischmeister et al. 2007) is a verifiable, executable specification language for
programming access control of shared communication media in a distributed real-
time system. It allows encoding application-specific behavior in the programmable
media access layer. A Network Code program is thereby basically a small program,
specifying, when and what is going to be transmitted and received.

The translation of a tree schedules into Network Code program is straightfor-
ward (Anand et al. 2006). Once we generated the program, we can either run it on the
software prototype (Fischmeister et al. 2007), or on a hardware-accelerated version
programmed on FPGA technology (Fischmeister et al. 2009). We also successfully
used tree schedules on a case study with medical devices (Arney et al. 2009) and also
have an implementation for switched Ethernet (Carvajal and Fischmeister 2010).

One particular problem that tree schedules create is that on partial distributed con-
sensus. At any choice point where the two different stations in the network may com-
municate depending on the decision, these two stations must agree on the result of the
choice. All other stations can reconstruct the decision based on the data they receive;
hence only partial distributed consensus. With the right communication medium, such
consensus is easy to achieve. For example, when using the Controller Area Network,
then one of the choices uses a higher communication priority than the other. For other
communication media, for example Ethernet, which do not provide intrinsic arbitra-
tion of concurrent media access, the problem of partial distributed consensus is a
topic of ongoing research. Naive solutions like mini-slotting as found in Berwanger
et al. (2000) together with state consistency protocols work (Kopetz et al. 2001).

8 Conclusions

Distributed real-time systems require bounded communication delays and achieve
them by means of a predictable and verifiable control mechanism for the commu-
nication medium often expressed as schedules. Tree schedules provide an expressive

Real-Time Syst (2012) 48:430–462 459

framework for modeling and analysing time-triggered communication schedules. The
concept of tree schedules is to find a balance between flexibility and analyzability. For
example, tree schedules allow conditional branching based on state information in the
communication schedule, however, the control-flow is restricted to tree structures to
keep the system analyzable.

In this work, we introduced the notion of tree schedules and provide a framework
to model and analyze application-specific communication schedules with tree sched-
ules. We specifically presented results in the context of two message models: (1) one
with explicit message deadlines and (2) one with probabilistic information about en-
abling conditions for transitions in the tree schedule. For the former, we presented
results for checking schedulability for fixed and dynamic priority schemes. For the
latter, we presented results for analyzing the average waiting time.

In the case study, we have shown the utility of our framework for application-
specific schedules and thereby showed the utility of the introduced concept of tree
schedules. The case study provides the unexpected result that a simple optimization
can yield a high overall improvement of the system. In the case study, we showed
that by reducing the network traffic approximately 1/3, the system settles faster by
a factor of 2 and increases its operational range by 2. This makes a strong case that
such optimization techniques are valuable for applications such as distributed control
systems. The presented framework provides the tools and analysis that allow building
complex distributed control systems using such optimization techniques.

While our framework is essential in weighing the costs versus the benefits un-
der different metrics for an application developer in considering application-specific
schedules, the framework also serves as an important step towards automatic genera-
tion of application-specific media access control based on higher-level requirements.
In the future, we will explore the problem of composing different tree schedules
which is significant in the context of large scale systems.

Acknowledgements This research was supported in part by NSERC DG 357121-2008, ORF RE03-
045, ORE RE04-036, ORF-RE04-039, ISOP IS09-06-037, APCPJ 386797-09, CFI 20314 with CMC,
ARO W911NF-11-1-0403, NSF CNS-1117185 and NSF CPS-1135630.

References

Abdeddaïm Y, Kerbaa A, Maler O (2003) Task graph scheduling using timed automata. In: Proc of the
17th international symposium on parallel and distributed processing (IPDPS), Nice, France

Alur R, Dill D (1994) A theory of timed automata. Theor Comput Sci 126(2):183–235
Alur R, Weiss G (2008) Regular specifications of resource requirements for embedded control software.

In: RTAS ’08: proceedings of the 2008 IEEE real-time and embedded technology and applications
symposium. IEEE Computer Society, Washington, pp 159–168. doi:10.1109/RTAS.2008.13

Anand M, Fischmeister S, Lee I (2006) An analysis framework for network-code programs. In: Proceed-
ings of the 6th annual ACM conference on embedded software (EMSOFT), Seoul, South Korea,
pp 122–131

Anand M, Easwaran A, Fischmeister S, Lee I (2008) Compositional feasibility analysis for conditional task
models. In: Proceedings of the eleventh IEEE international symposium on object-oriented real-time
distributed computing (ISORC). IEEE Computer Society, Washington

Arney D, Trausmuth R, Fischmeister S, Goldman JM, Lee I (2009) Plug-and-play for medical devices:
experiences from a case study. Biomed Instrum Technol 43:313–317

http://dx.doi.org/10.1109/RTAS.2008.13

460 Real-Time Syst (2012) 48:430–462

Baruah SK (1998) Feasibility analysis of recurring branching tasks. In: ECRTS, pp 138–145
Baruah SK, Mok AK, Rosier LE (1990) Preemptively scheduling hard-real-time sporadic tasks on

one processor. In: IEEE real-time systems symposium, pp 182–190. URL citeseer.ist.psu.edu/
baruah90preemptively.html

Baruah SK, Chen D, Mok AK (1997) Jitter concerns in periodic task systems. In: RTSS ’97: proceedings
of the 18th IEEE real-time systems symposium (RTSS ’97). IEEE Computer Society, Washington,
p 68

Berwanger J, Peller M, Griessbach R (2000) ByteFlight—a new high-performance data bus system for
safety-related applications. Tech Rep EE-211, BMW AG

Bose SK (2001) Introduction to queueing systems. Kluwer Academic/Plenum Publishers, New York
Carvajal G, Fischmeister S (2010) A TDMA Ethernet switch for dynamic real-time communication. In:

Proc of the 18th IEEE symposium on field-programmable custom computing machines (FCCM),
Charlotte, United States, pp 119–126

Cervin A, Henriksson D, Lincoln B, Eker J, Arzen KE (2003) How does control timing affect performance?
Analysis and simulation of timing using Jitterbug and TrueTime. IEEE Control Syst Mag 23(3):16–
30. doi:10.1109/MCS.2003.1200240

Chakraborty S, Phan LTX, Thiagarajan PS (2005) Event count automata: a state-based model for stream
processing systems. In: Proc of the 26th IEEE real-time systems symposium (RTSS), Miami, Florida,
USA

CMU (last visited 12/2007) Control tutorials for Mathlab and simulink. Web site, http://www.library.
cmu.edu/ctms/ctms/index.htm

Cooper R (1981) Introduction to queueing theory. Edward Arnold, Sevenoaks
Ethernet powerlink V2.0—communication profile specification (2003) Ethernet Powerlink Standadisation

Group (EPSG)
Fersman E, Pettersson P, Yi W (2002) Timed automata with asynchronous processes: schedulability and

decidability. In: TACAS, pp 67–82
Fischmeister S, Sokolsky O, Lee I (2006) Network-code machine: programmable real-time communication

schedules. In: Proc of the 12th IEEE real-time and embedded technology and applications symposium
(RTAS), San Jose, United States, pp 311–324

Fischmeister S, Sokolsky O, Lee I (2007) A verifiable language for programming communication sched-
ules. IEEE Trans Comput 56(11):1505–1519

Fischmeister S, Trausmuth R, Lee I (2009) Hardware acceleration for conditional state-based communica-
tion scheduling on real-time Ethernet. IEEE Trans Ind Inform 5(3):325–337

FlexRay Consortium (2004) FlexRay communications system—protocol specification. Version 2.0
Hendriks M, Verhoef M (2006) Timed automata based analysis of embedded system architectures. In:

Proc of the 20th international workshop on parallel and distributed processing symposium (IPDPS),
Rhodes Island, USA

Joseph M, Pandya PK (1986) Finding response times in a real-time system. Comput J 29(5):390–395
Kopetz H (1997) Real-time systems: design principles for distributed embedded applications. Kluwer Aca-

demic, Dordrecht
Kopetz H (2004) The fault hypothesis for the time-triggered architecture. In: Proc of the IFIP world com-

puter congress
Kopetz H, Bauer G, Poledna S (2001) Tolerating arbitrary node failures in the time-triggered architecture.

In: SAE 2001 world congress, March 2001, Detroit, MI, USA
Lehoczky JP (1996) Real-time queueing theory. In: RTSS ’96: proceedings of the 17th IEEE real-time

systems symposium (RTSS ’96). IEEE Computer Society, Washington, p 186
Lehoczky JP, Sha L, Strosnider JK (1987) Enhanced aperiodic responsiveness in hard real-time environ-

ments. In: IEEE real-time systems symposium, pp 261–270
Leung JT, Merrill M (1980) A note on preemptive scheduling of periodic, real-time tasks. Inf Process Lett

11(3):115–118
Liu C, Layland J (1973) Scheduling algorithms for multi-programming in a hard-real-time environment. J

ACM 20(1):46–61
Phan LTX, Chakraborty S, Thiagarajan PS, Thiele L (2007) Composing functional and state-based perfor-

mance models for analyzing heterogeneous real-time systems. In: Proc of the 28th IEEE real-time
systems symposium (RTSS), Tucson, Arizona, USA

http://citeseer.ist.psu.edu/baruah90preemptively.html
http://citeseer.ist.psu.edu/baruah90preemptively.html
http://dx.doi.org/10.1109/MCS.2003.1200240
http://www.library.cmu.edu/ctms/ctms/index.htm
http://www.library.cmu.edu/ctms/ctms/index.htm

Real-Time Syst (2012) 48:430–462 461

Phan LTX, Chakraborty S, Thiagarajan PS (2008) A multi-mode real-time calculus. In: Proc of the 29th
IEEE real-time systems symposium (RTSS), Barcelona, Spain

Pop P, Eles P, Peng Z (2000) Schedulability analysis for systems with data and con-
trol dependencies. In: Euromicro conference on real-time systems, pp 201–208. URL
http://www2.imm.dtu.dk/pubdb/p.php?4632

Potop-Butucaru D, de Simone R, Sorel Y, Talpin JP (2009) Clock-driven distributed real-time im-
plementation of endochronous synchronous programs. In: EMSOFT ’09: proceedings of the
seventh ACM international conference on embedded software. ACM, New York, pp 147–156.
doi:10.1145/1629335.1629356

Real J, Crespo A (2004) Mode change protocols for real-time systems: a survey and a new proposal.
Real-Time Syst 26(2):161–197

Shin I, Lee I (2003) Periodic resource model for compositional real-time guarantees. In: RTSS, pp 2–13
Shin I, Lee I (2004) Compositional real-time scheduling framework. In: RTSS, pp 57–67
Tindell K, Clark J (1994) Holistic schedulability analysis for distributed hard real-time systems. Micro-

process Microprogram 40(2–3):117–134. doi:10.1016/0165-6074(94)90080-9
Wandeler E, Maxiaguine A, Thiele L (2004) Quantitative characterization of event streams in analysis of

hard real-time applications. In: Proceedings of the 10th IEEE real-time and embedded technology
and applications symposium (RTAS), Toronto, Canada, pp 450–461

Weiss G, Fischmeister S, Anand M, Alur R (2009) Specification and analysis of network resource require-
ments of control systems. In: Proc of the 12th international conference on hybrid systems: computa-
tion and control (HSCC), San Fransisco, United States, pp 381–395

Whitaker J, Benson B (2001) Standard handbook of audio and radio engineering. McGraw-Hill, New York

Madhukar Anand received a B.S and M.S degrees in Mathematics and
Computing from the Indian Institute of Technology (IIT), Kharagpur,
and a Ph.D. in Computer and Information Science from the University
of Pennsylvania in 2008. From Fall of 2008, he is working with the
Data Center Routing Team at Cisco Systems. His research interests in-
clude, Real-Time and Embedded Systems, Networked Embedded Sys-
tems, Data Center Networking, Formal Methods, Hybrid Systems, and
Wireless Sensor Networks. Amongst other awards, he has won the In-
stitute Silver Medal for academic excellence from IIT Kharagpur.

Sebastian Fischmeister is an Assistant Professor in the Department
of Electrical and Computer Engineering at the University of Waterloo,
Canada. He received his MASc in Computer Science at the Vienna Uni-
versity of Technology, Austria, and his Ph.D. degree at the University
of Salzburg, Austria. He was awarded the APART stipend in 2005 and
worked as a research associate at the University of Pennsylvania, USA,
until 2008. He performs systems research at the intersection of software
technology, distributed systems, and formal methods.

http://www2.imm.dtu.dk/pubdb/p.php?4632
http://dx.doi.org/10.1145/1629335.1629356
http://dx.doi.org/10.1016/0165-6074(94)90080-9

462 Real-Time Syst (2012) 48:430–462

Insup Lee is Cecilia Fitler Moore Professor of Computer and Infor-
mation Science and Director of PRECISE Center at the University of
Pennsylvania. He also holds a secondary appointment in the Depart-
ment of Electrical and Systems Engineering. He received the B.S. in
Mathematics from the University of North Carolina, Chapel Hill and the
Ph.D. in Computer Science from the University of Wisconsin, Madi-
son.
His research interests include cyber physical systems (CPS), real-time
embedded systems, formal methods and tools, high-confidence medical
device systems, and software engineering. The theme of his research ac-
tivities has been to assure and improve the correctness, safety, and time-
liness of life-critical embedded systems. Recently, he has been working
in the area of medical cyber physical systems.
He has served on many program committees and chaired many interna-
tional conferences and workshops. He has also served on various steer-

ing and advisory committees of technical societies, including CPSWeek, ESWeek, ACM SIGBED, IEEE
TC-RTS, RV, ATVA. He has served on the editorial boards of the several scientific journals and is a found-
ing co-Editor-in-Chief of KIISE Journal of Computing Science and Engineering (JCSE). He was Chair of
IEEE Computer Society Technical Committee on Real-Time Systems (2003–2004) and an IEEE CS Dis-
tinguished Visitor Speaker (2004–2006). He with his student received the best paper award in RTSS 2003.
He was a member of Technical Advisory Group (TAG) of President’s Council of Advisors on Science and
Technology (PCAST) Networking and Information Technology (NIT), 2006–2007. He is IEEE fellow and
received IEEE TC-RTS Outstanding Technical Achievement and Leadership Award in 2008.

Linh T.X. Phan is a Postdoctoral Researcher in the PRECISE Center at
the University of Pennsylvania. She received the B.S. degree in Com-
puter Science in 2003 and the Ph.D. degree in Computer Science in
2009 from the National University of Singapore (NUS). Her research
interests include formal modeling and analysis methods, system-level
design techniques, and compositional analysis methods for real-time
embedded systems, cyber-physical systems and multi-mode systems.
Some of the application domains she works in include automotive elec-
tronics and software, avionics, real-time multimedia, body-area sensor
networks and cloud computing. She was a recipient of the Singapore
Scholarship (1999–2003) and NUS Graduate Scholarship (2003–2007).
For her Ph.D. dissertation, she received the Graduate Research Excel-
lence Award from NUS (2009). She also received the Best Paper Award
nomination at EMSOFT 2010. She has served as a co-chair of APRES
2011 and CRTS 2011, and a PC member of ETFA 2010–2012, APRES

2012, RTAS WiP 2010–2012, RTSS-At-Work 2011, CPSNA 2011–2012, EMC 2010–2011, CRTS 2010,
WTR 2011, and WCTT 2011.

	State-based scheduling with tree schedules: analysis and evaluation
	Abstract
	Introduction
	Tree schedule and definitions
	Model overview
	Definition of a tree schedule
	Execution semantics
	Example
	Relation to other state-based models
	Generation of tree schedules

	Analysis with deadlines: schedulability
	Discussion

	Analysis with probabilistic choices: average waiting time
	Waiting time analysis

	Case study 1: inverted pendulum control
	The simulation model
	Case study schedules
	Hypothesis, experiment, and results

	Case study 2: scheduling of video streaming systems
	System architecture
	Case study tree schedule
	Hypothesis, experiment, and results
	Queue size analysis
	Queue waiting times
	Frame underruns

	Implementation of tree schedules
	Conclusions
	Acknowledgements
	References

